Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJulian Eisel <eiseljulian@gmail.com>2018-01-30 00:53:32 +0300
committerJulian Eisel <eiseljulian@gmail.com>2018-01-30 01:24:11 +0300
commit3f0871dfcfbb1dda15c176dba92d36639305385a (patch)
treede7ffeeef7a99fc6103d413ebfa564596811087d /source/blender/draw/engines/eevee/shaders
parent53d94dafc474380651fc529f9c03f84ce7142b13 (diff)
parent1fe2b4bf608b22ae4513051e01cf45e5012c2409 (diff)
Merge branch 'blender2.8' into topbar
Diffstat (limited to 'source/blender/draw/engines/eevee/shaders')
-rw-r--r--source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl164
-rw-r--r--source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl26
-rw-r--r--source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl123
-rw-r--r--source/blender/draw/engines/eevee/shaders/bsdf_sampling_lib.glsl4
-rw-r--r--source/blender/draw/engines/eevee/shaders/common_uniforms_lib.glsl55
-rw-r--r--source/blender/draw/engines/eevee/shaders/default_frag.glsl2
-rw-r--r--source/blender/draw/engines/eevee/shaders/effect_gtao_frag.glsl49
-rw-r--r--source/blender/draw/engines/eevee/shaders/effect_minmaxz_frag.glsl9
-rw-r--r--source/blender/draw/engines/eevee/shaders/effect_motion_blur_frag.glsl2
-rw-r--r--source/blender/draw/engines/eevee/shaders/effect_ssr_frag.glsl410
-rw-r--r--source/blender/draw/engines/eevee/shaders/effect_subsurface_frag.glsl13
-rw-r--r--source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl9
-rw-r--r--source/blender/draw/engines/eevee/shaders/lamps_lib.glsl43
-rw-r--r--source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl2
-rw-r--r--source/blender/draw/engines/eevee/shaders/lightprobe_filter_diffuse_frag.glsl3
-rw-r--r--source/blender/draw/engines/eevee/shaders/lightprobe_filter_glossy_frag.glsl3
-rw-r--r--source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl7
-rw-r--r--source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl48
-rw-r--r--source/blender/draw/engines/eevee/shaders/ltc_lib.glsl426
-rw-r--r--source/blender/draw/engines/eevee/shaders/prepass_frag.glsl10
-rw-r--r--source/blender/draw/engines/eevee/shaders/raytrace_lib.glsl10
-rw-r--r--source/blender/draw/engines/eevee/shaders/ssr_lib.glsl9
-rw-r--r--source/blender/draw/engines/eevee/shaders/update_noise_frag.glsl18
-rw-r--r--source/blender/draw/engines/eevee/shaders/volumetric_frag.glsl5
-rw-r--r--source/blender/draw/engines/eevee/shaders/volumetric_lib.glsl37
-rw-r--r--source/blender/draw/engines/eevee/shaders/volumetric_scatter_frag.glsl22
26 files changed, 793 insertions, 716 deletions
diff --git a/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl b/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
index 5ec72833379..55f66f5500a 100644
--- a/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
@@ -30,87 +30,18 @@
#ifndef UTIL_TEX
#define UTIL_TEX
uniform sampler2DArray utilTex;
+#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */
-uniform vec4 aoParameters[2];
-uniform sampler2DArray horizonBuffer;
-
-/* Cannot use textureSize(horizonBuffer) when rendering to it */
-uniform ivec2 aoHorizonTexSize;
-
-#define aoDistance aoParameters[0].x
-#define aoSamples aoParameters[0].y
-#define aoFactor aoParameters[0].z
-#define aoInvSamples aoParameters[0].w
-
-#define aoOffset aoParameters[1].x /* UNUSED */
-#define aoBounceFac aoParameters[1].y
-#define aoQuality aoParameters[1].z
-#define aoSettings aoParameters[1].w
+uniform sampler2D horizonBuffer;
+/* aoSettings flags */
#define USE_AO 1
#define USE_BENT_NORMAL 2
#define USE_DENOISE 4
-vec2 pack_horizons(vec2 v) { return v * 0.5 + 0.5; }
-vec2 unpack_horizons(vec2 v) { return v * 2.0 - 1.0; }
-
-/* Returns the texel coordinate in horizonBuffer
- * for a given fullscreen coord */
-ivec2 get_hr_co(ivec2 fs_co)
-{
- bvec2 quarter = notEqual(fs_co & ivec2(1), ivec2(0));
-
- ivec2 hr_co = fs_co / 2;
- hr_co += ivec2(quarter) * (aoHorizonTexSize / 2);
-
- return hr_co;
-}
-
-/* Returns the texel coordinate in fullscreen (depthBuffer)
- * for a given horizonBuffer coord */
-ivec2 get_fs_co(ivec2 hr_co)
-{
- hr_co *= 2;
- bvec2 quarter = greaterThanEqual(hr_co, aoHorizonTexSize);
-
- hr_co -= ivec2(quarter) * (aoHorizonTexSize - 1);
-
- return hr_co;
-}
-
-/* Returns the phi angle in horizonBuffer
- * for a given horizonBuffer coord */
-float get_phi(ivec2 hr_co, ivec2 fs_co, float sample)
-{
- bvec2 quarter = greaterThanEqual(hr_co, aoHorizonTexSize / 2);
- ivec2 tex_co = ((int(aoSettings) & USE_DENOISE) != 0) ? hr_co - ivec2(quarter) * (aoHorizonTexSize / 2) : fs_co;
- float blue_noise = texture(utilTex, vec3((vec2(tex_co) + 0.5) / LUT_SIZE, 2.0)).r;
-
- float phi = sample * aoInvSamples;
-
- if ((int(aoSettings) & USE_DENOISE) != 0) {
- /* Interleaved jitter for spatial 2x2 denoising */
- phi += 0.25 * aoInvSamples * (float(quarter.x) + 2.0 * float(quarter.y));
- blue_noise *= 0.25;
- }
- /* Blue noise is scaled to cover the rest of the range. */
- phi += aoInvSamples * blue_noise;
- phi *= M_PI;
-
- return phi;
-}
-
-/* Returns direction jittered offset for a given fullscreen coord */
-float get_offset(ivec2 fs_co, float sample)
-{
- float offset = sample * aoInvSamples;
-
- /* Interleaved jitter for spatial 2x2 denoising */
- offset += 0.25 * dot(vec2(1.0), vec2(fs_co & 1));
- offset += texture(utilTex, vec3((vec2(fs_co / 2) + 0.5 + 16.0) / LUT_SIZE, 2.0)).r;
- return offset;
-}
+vec4 pack_horizons(vec4 v) { return v * 0.5 + 0.5; }
+vec4 unpack_horizons(vec4 v) { return v * 2.0 - 1.0; }
/* Returns maximum screen distance an AO ray can travel for a given view depth */
vec2 get_max_dir(float view_depth)
@@ -120,6 +51,13 @@ vec2 get_max_dir(float view_depth)
return vec2(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) * max_dist;
}
+vec2 get_ao_dir(float jitter)
+{
+ /* Only half a turn because we integrate in slices. */
+ jitter *= M_PI;
+ return vec2(cos(jitter), sin(jitter));
+}
+
void get_max_horizon_grouped(vec4 co1, vec4 co2, vec3 x, float lod, inout float h)
{
co1 *= mipRatio[int(lod + 1.0)].xyxy; /* +1 because we are using half res top level */
@@ -161,10 +99,8 @@ void get_max_horizon_grouped(vec4 co1, vec4 co2, vec3 x, float lod, inout float
h = mix(h, max(h, s_h.w), blend.w);
}
-vec2 search_horizon_sweep(float phi, vec3 pos, vec2 uvs, float jitter, vec2 max_dir)
+vec2 search_horizon_sweep(vec2 t_phi, vec3 pos, vec2 uvs, float jitter, vec2 max_dir)
{
- vec2 t_phi = vec2(cos(phi), sin(phi)); /* Screen space direction */
-
max_dir *= max_v2(abs(t_phi));
/* Convert to pixel space. */
@@ -214,11 +150,8 @@ vec2 search_horizon_sweep(float phi, vec3 pos, vec2 uvs, float jitter, vec2 max_
return h;
}
-void integrate_slice(vec3 normal, float phi, vec2 horizons, inout float visibility, inout vec3 bent_normal)
+void integrate_slice(vec3 normal, vec2 t_phi, vec2 horizons, inout float visibility, inout vec3 bent_normal)
{
- /* TODO OPTI Could be precomputed. */
- vec2 t_phi = vec2(cos(phi), sin(phi)); /* Screen space direction */
-
/* Projecting Normal to Plane P defined by t_phi and omega_o */
vec3 np = vec3(t_phi.y, -t_phi.x, 0.0); /* Normal vector to Integration plane */
vec3 t = vec3(-t_phi, 0.0);
@@ -251,71 +184,43 @@ void integrate_slice(vec3 normal, float phi, vec2 horizons, inout float visibili
bent_normal += vec3(sin(b_angle) * -t_phi, cos(b_angle) * 0.5);
}
-void denoise_ao(vec3 normal, float frag_depth, inout float visibility, inout vec3 bent_normal)
+void gtao_deferred(vec3 normal, vec3 position, vec4 noise, float frag_depth, out float visibility, out vec3 bent_normal)
{
- vec2 d_sign = vec2(ivec2(gl_FragCoord.xy) & 1) - 0.5;
-
- if ((int(aoSettings) & USE_DENOISE) == 0) {
- d_sign *= 0.0;
- }
-
- /* 2x2 Bilateral Filter using derivatives. */
- vec2 n_step = step(-0.2, -abs(vec2(length(dFdx(normal)), length(dFdy(normal)))));
- vec2 z_step = step(-0.1, -abs(vec2(dFdx(frag_depth), dFdy(frag_depth))));
-
- visibility -= dFdx(visibility) * d_sign.x * z_step.x * n_step.x;
- visibility -= dFdy(visibility) * d_sign.y * z_step.y * n_step.y;
+ /* Fetch early, hide latency! */
+ vec4 horizons = texelFetch(horizonBuffer, ivec2(gl_FragCoord.xy), 0);
- bent_normal -= dFdx(bent_normal) * d_sign.x * z_step.x * n_step.x;
- bent_normal -= dFdy(bent_normal) * d_sign.y * z_step.y * n_step.y;
-}
-
-void gtao_deferred(vec3 normal, vec3 position, float frag_depth, out float visibility, out vec3 bent_normal)
-{
+ vec4 dirs;
+ dirs.xy = get_ao_dir(noise.x * 0.5);
+ dirs.zw = get_ao_dir(noise.x * 0.5 + 0.5);
vec2 uvs = get_uvs_from_view(position);
- vec4 texel_size = vec4(-1.0, -1.0, 1.0, 1.0) / vec2(textureSize(depthBuffer, 0)).xyxy;
-
- ivec2 fs_co = ivec2(gl_FragCoord.xy);
- ivec2 hr_co = get_hr_co(fs_co);
-
bent_normal = vec3(0.0);
visibility = 0.0;
- for (float i = 0.0; i < MAX_PHI_STEP; i++) {
- if (i >= aoSamples) break;
+ horizons = unpack_horizons(horizons);
- vec2 horiz = unpack_horizons(texelFetch(horizonBuffer, ivec3(hr_co, int(i)), 0).rg);
- float phi = get_phi(hr_co, fs_co, i);
+ integrate_slice(normal, dirs.xy, horizons.xy, visibility, bent_normal);
+ integrate_slice(normal, dirs.zw, horizons.zw, visibility, bent_normal);
- integrate_slice(normal, phi, horiz.xy, visibility, bent_normal);
- }
+ visibility *= 0.5; /* We integrated 2 slices. */
- visibility *= aoInvSamples;
bent_normal = normalize(bent_normal);
}
-void gtao(vec3 normal, vec3 position, vec2 noise, out float visibility, out vec3 bent_normal)
+void gtao(vec3 normal, vec3 position, vec4 noise, out float visibility, out vec3 bent_normal)
{
vec2 uvs = get_uvs_from_view(position);
-
- float homcco = ProjectionMatrix[2][3] * position.z + ProjectionMatrix[3][3];
- float max_dist = aoDistance / homcco; /* Search distance */
- vec2 max_dir = max_dist * vec2(ProjectionMatrix[0][0], ProjectionMatrix[1][1]);
+ vec2 max_dir = get_max_dir(position.z);
+ vec2 dir = get_ao_dir(noise.x);
bent_normal = vec3(0.0);
visibility = 0.0;
- for (float i = 0.0; i < MAX_PHI_STEP; i++) {
- if (i >= aoSamples) break;
-
- float phi = M_PI * (i + noise.x) * aoInvSamples;
- vec2 horizons = search_horizon_sweep(phi, position, uvs, noise.g, max_dir);
-
- integrate_slice(normal, phi, horizons, visibility, bent_normal);
- }
+ /* Only trace in 2 directions. May lead to a darker result but since it's mostly for
+ * alpha blended objects that will have overdraw, we limit the performance impact. */
+ vec2 horizons = search_horizon_sweep(dir, position, uvs, noise.y, max_dir);
+ integrate_slice(normal, dir, horizons, visibility, bent_normal);
- visibility *= aoInvSamples;
bent_normal = normalize(bent_normal);
}
@@ -337,7 +242,7 @@ float gtao_multibounce(float visibility, vec3 albedo)
}
/* Use the right occlusion */
-float occlusion_compute(vec3 N, vec3 vpos, float user_occlusion, vec2 randuv, out vec3 bent_normal)
+float occlusion_compute(vec3 N, vec3 vpos, float user_occlusion, vec4 rand, out vec3 bent_normal)
{
#ifndef USE_REFRACTION
if ((int(aoSettings) & USE_AO) > 0) {
@@ -345,11 +250,10 @@ float occlusion_compute(vec3 N, vec3 vpos, float user_occlusion, vec2 randuv, ou
vec3 vnor = mat3(ViewMatrix) * N;
#ifdef ENABLE_DEFERED_AO
- gtao_deferred(vnor, vpos, gl_FragCoord.z, visibility, bent_normal);
+ gtao_deferred(vnor, vpos, rand, gl_FragCoord.z, visibility, bent_normal);
#else
- gtao(vnor, vpos, randuv, visibility, bent_normal);
+ gtao(vnor, vpos, rand, visibility, bent_normal);
#endif
- denoise_ao(vnor, gl_FragCoord.z, visibility, bent_normal);
/* Prevent some problems down the road. */
visibility = max(1e-3, visibility);
diff --git a/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl b/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl
index 37ed2235c6f..68299fe7546 100644
--- a/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl
@@ -11,7 +11,6 @@
uniform mat4 ProjectionMatrix;
uniform mat4 ViewProjectionMatrix;
uniform mat4 ViewMatrixInverse;
-uniform vec4 viewvecs[2];
#ifndef SHADOW_SHADER
uniform mat4 ViewMatrix;
#else
@@ -31,8 +30,6 @@ flat in int shFace; /* Shadow layer we are rendering to. */
#define ViewMatrix FaceViewMatrix[shFace]
#endif
-uniform vec2 mipRatio[10];
-
/* Buffers */
uniform sampler2D colorBuffer;
uniform sampler2D depthBuffer;
@@ -125,6 +122,10 @@ float min_v3(vec3 v) { return min(v.x, min(v.y, v.z)); }
float max_v2(vec2 v) { return max(v.x, v.y); }
float max_v3(vec3 v) { return max(v.x, max(v.y, v.z)); }
+float sum(vec2 v) { return dot(vec2(1.0), v); }
+float sum(vec3 v) { return dot(vec3(1.0), v); }
+float sum(vec4 v) { return dot(vec4(1.0), v); }
+
float saturate(float a) { return clamp(a, 0.0, 1.0); }
vec2 saturate(vec2 a) { return clamp(a, 0.0, 1.0); }
vec3 saturate(vec3 a) { return clamp(a, 0.0, 1.0); }
@@ -300,7 +301,7 @@ float get_view_z_from_depth(float depth)
return -ProjectionMatrix[3][2] / (d + ProjectionMatrix[2][2]);
}
else {
- return viewvecs[0].z + depth * viewvecs[1].z;
+ return viewVecs[0].z + depth * viewVecs[1].z;
}
}
@@ -311,7 +312,7 @@ float get_depth_from_view_z(float z)
return d * 0.5 + 0.5;
}
else {
- return (z - viewvecs[0].z) / viewvecs[1].z;
+ return (z - viewVecs[0].z) / viewVecs[1].z;
}
}
@@ -324,10 +325,10 @@ vec2 get_uvs_from_view(vec3 view)
vec3 get_view_space_from_depth(vec2 uvcoords, float depth)
{
if (ProjectionMatrix[3][3] == 0.0) {
- return (viewvecs[0].xyz + vec3(uvcoords, 0.0) * viewvecs[1].xyz) * get_view_z_from_depth(depth);
+ return (viewVecs[0].xyz + vec3(uvcoords, 0.0) * viewVecs[1].xyz) * get_view_z_from_depth(depth);
}
else {
- return viewvecs[0].xyz + vec3(uvcoords, depth) * viewvecs[1].xyz;
+ return viewVecs[0].xyz + vec3(uvcoords, depth) * viewVecs[1].xyz;
}
}
@@ -545,7 +546,7 @@ vec3 F_schlick(vec3 f0, float cos_theta)
/* Fresnel approximation for LTC area lights (not MRP) */
vec3 F_area(vec3 f0, vec2 lut)
{
- vec2 fac = normalize(lut.xy);
+ vec2 fac = normalize(lut.xy); /* XXX FIXME this does not work!!! */
/* Unreal specular matching : if specular color is below 2% intensity,
* treat as shadowning */
@@ -691,7 +692,6 @@ Closure closure_mix(Closure cl1, Closure cl2, float fac)
}
else {
cl.ssr_data = mix(vec4(vec3(0.0), cl2.ssr_data.w), cl2.ssr_data.xyzw, fac); /* do not blend roughness */
- cl.ssr_data = mix(vec4(vec3(0.0), cl2.ssr_data.w), cl2.ssr_data.xyzw, fac); /* do not blend roughness */
cl.ssr_normal = cl2.ssr_normal;
cl.ssr_id = cl2.ssr_id;
}
@@ -739,12 +739,10 @@ Closure closure_add(Closure cl1, Closure cl2)
#endif
#endif
cl.radiance = cl1.radiance + cl2.radiance;
- cl.opacity = cl1.opacity + cl2.opacity;
+ cl.opacity = saturate(cl1.opacity + cl2.opacity);
return cl;
}
-uniform bool sssToggle;
-
#if defined(MESH_SHADER) && !defined(USE_ALPHA_HASH) && !defined(USE_ALPHA_CLIP) && !defined(SHADOW_SHADER) && !defined(USE_MULTIPLY)
layout(location = 0) out vec4 fragColor;
#ifdef USE_SSS
@@ -774,6 +772,10 @@ vec4 volumetric_resolve(vec4 scene_color, vec2 frag_uvs, float frag_depth);
void main()
{
Closure cl = nodetree_exec();
+#ifndef USE_ALPHA_BLEND
+ /* Prevent alpha hash material writing into alpha channel. */
+ cl.opacity = 1.0;
+#endif
#if defined(USE_ALPHA_BLEND_VOLUMETRICS)
/* XXX fragile, better use real viewport resolution */
diff --git a/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl b/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl
index ae03f22ac14..ddc7327334c 100644
--- a/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl
@@ -28,56 +28,30 @@ float direct_diffuse_sun(LightData ld, vec3 N)
return bsdf;
}
-/* From Frostbite PBR Course
- * Analytical irradiance from a sphere with correct horizon handling
- * http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
+#ifdef USE_LTC
float direct_diffuse_sphere(LightData ld, vec3 N, vec4 l_vector)
{
- float dist = l_vector.w;
- vec3 L = l_vector.xyz / dist;
- float radius = max(ld.l_sizex, 0.0001);
- float costheta = clamp(dot(N, L), -0.999, 0.999);
- float h = min(ld.l_radius / dist , 0.9999);
- float h2 = h*h;
- float costheta2 = costheta * costheta;
- float bsdf;
-
- if (costheta2 > h2) {
- bsdf = M_PI * h2 * clamp(costheta, 0.0, 1.0);
- }
- else {
- float sintheta = sqrt(1.0 - costheta2);
- float x = sqrt(1.0 / h2 - 1.0);
- float y = -x * (costheta / sintheta);
- float sinthetasqrty = sintheta * sqrt(1.0 - y * y);
- bsdf = (costheta * acos(y) - x * sinthetasqrty) * h2 + atan(sinthetasqrty / x);
- }
-
- bsdf = max(bsdf, 0.0);
- bsdf *= M_1_PI2;
+ float NL = dot(N, l_vector.xyz / l_vector.w);
- return bsdf;
+ return ltc_evaluate_disk_simple(ld.l_radius / l_vector.w, NL);
}
-#ifdef USE_LTC
float direct_diffuse_rectangle(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
vec3 corners[4];
- corners[0] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * ld.l_sizey;
- corners[1] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey;
- corners[2] = l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * -ld.l_sizey;
- corners[3] = l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * ld.l_sizey;
+ corners[0] = normalize(l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * ld.l_sizey);
+ corners[1] = normalize(l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey);
+ corners[2] = normalize(l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * -ld.l_sizey);
+ corners[3] = normalize(l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * ld.l_sizey);
- float bsdf = ltc_evaluate(N, V, mat3(1.0), corners);
- bsdf *= M_1_2PI;
- return bsdf;
+ return ltc_evaluate_quad(corners, N);
}
-#endif
-#if 0
-float direct_diffuse_unit_disc(vec3 N, vec3 L)
+float direct_diffuse_unit_disc(LightData ld, vec3 N, vec3 V)
{
+ float NL = dot(N, -ld.l_forward);
+ return ltc_evaluate_disk_simple(ld.l_radius, NL);
}
#endif
@@ -106,47 +80,27 @@ vec3 direct_ggx_sun(LightData ld, vec3 N, vec3 V, float roughness, vec3 f0)
#ifdef USE_LTC
vec3 direct_ggx_sphere(LightData ld, vec3 N, vec3 V, vec4 l_vector, float roughness, vec3 f0)
{
- vec3 L = l_vector.xyz / l_vector.w;
- vec3 spec_dir = get_specular_reflection_dominant_dir(N, V, roughness);
- vec3 P = line_aligned_plane_intersect(vec3(0.0), spec_dir, l_vector.xyz);
-
- vec3 Px = normalize(P - l_vector.xyz) * ld.l_radius;
- vec3 Py = cross(Px, L);
+ roughness = clamp(roughness, 0.0008, 0.999); /* Fix low roughness artifacts. */
vec2 uv = lut_coords(dot(N, V), sqrt(roughness));
vec3 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rgb;
vec4 ltc_lut = texture(utilTex, vec3(uv, 0.0)).rgba;
mat3 ltc_mat = ltc_matrix(ltc_lut);
-// #define HIGHEST_QUALITY
-#ifdef HIGHEST_QUALITY
- vec3 Pxy1 = normalize( Px + Py) * ld.l_radius;
- vec3 Pxy2 = normalize(-Px + Py) * ld.l_radius;
-
- /* counter clockwise */
- vec3 points[8];
- points[0] = l_vector.xyz + Px;
- points[1] = l_vector.xyz - Pxy2;
- points[2] = l_vector.xyz - Py;
- points[3] = l_vector.xyz - Pxy1;
- points[4] = l_vector.xyz - Px;
- points[5] = l_vector.xyz + Pxy2;
- points[6] = l_vector.xyz + Py;
- points[7] = l_vector.xyz + Pxy1;
- float bsdf = ltc_evaluate_circle(N, V, ltc_mat, points);
-#else
- vec3 points[4];
- points[0] = l_vector.xyz + Px;
- points[1] = l_vector.xyz - Py;
- points[2] = l_vector.xyz - Px;
- points[3] = l_vector.xyz + Py;
- float bsdf = ltc_evaluate(N, V, ltc_mat, points);
- /* sqrt(pi/2) difference between square and disk area */
- bsdf *= 1.25331413731;
-#endif
+ /* Make orthonormal basis. */
+ vec3 L = l_vector.xyz / l_vector.w;
+ vec3 Px, Py;
+ make_orthonormal_basis(L, Px, Py);
+ Px *= ld.l_radius;
+ Py *= ld.l_radius;
+ vec3 points[3];
+ points[0] = l_vector.xyz - Px - Py;
+ points[1] = l_vector.xyz + Px - Py;
+ points[2] = l_vector.xyz + Px + Py;
+
+ float bsdf = ltc_evaluate_disk(N, V, ltc_mat, points);
bsdf *= brdf_lut.b; /* Bsdf intensity */
- bsdf *= M_1_2PI * M_1_PI;
vec3 spec = F_area(f0, brdf_lut.xy) * bsdf;
@@ -165,19 +119,38 @@ vec3 direct_ggx_rectangle(LightData ld, vec3 N, vec3 V, vec4 l_vector, float rou
vec3 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rgb;
vec4 ltc_lut = texture(utilTex, vec3(uv, 0.0)).rgba;
mat3 ltc_mat = ltc_matrix(ltc_lut);
- float bsdf = ltc_evaluate(N, V, ltc_mat, corners);
+
+ ltc_transform_quad(N, V, ltc_mat, corners);
+ float bsdf = ltc_evaluate_quad(corners, vec3(0.0, 0.0, 1.0));
bsdf *= brdf_lut.b; /* Bsdf intensity */
- bsdf *= M_1_2PI;
vec3 spec = F_area(f0, brdf_lut.xy) * bsdf;
return spec;
}
-#endif
-#if 0
-float direct_ggx_disc(vec3 N, vec3 L)
+vec3 direct_ggx_unit_disc(LightData ld, vec3 N, vec3 V, float roughness, vec3 f0)
{
+ roughness = clamp(roughness, 0.0004, 0.999); /* Fix low roughness artifacts. */
+
+ vec2 uv = lut_coords(dot(N, V), sqrt(roughness));
+ vec3 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rgb;
+ vec4 ltc_lut = texture(utilTex, vec3(uv, 0.0)).rgba;
+ mat3 ltc_mat = ltc_matrix(ltc_lut);
+ vec3 Px = ld.l_right * ld.l_radius;
+ vec3 Py = ld.l_up * ld.l_radius;
+
+ vec3 points[3];
+ points[0] = -ld.l_forward - Px - Py;
+ points[1] = -ld.l_forward + Px - Py;
+ points[2] = -ld.l_forward + Px + Py;
+
+ float bsdf = ltc_evaluate_disk(N, V, ltc_mat, points);
+ bsdf *= brdf_lut.b; /* Bsdf intensity */
+
+ vec3 spec = F_area(f0, brdf_lut.xy) * bsdf;
+
+ return spec;
}
#endif \ No newline at end of file
diff --git a/source/blender/draw/engines/eevee/shaders/bsdf_sampling_lib.glsl b/source/blender/draw/engines/eevee/shaders/bsdf_sampling_lib.glsl
index 13586619fe9..e5c0cb9c9c9 100644
--- a/source/blender/draw/engines/eevee/shaders/bsdf_sampling_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/bsdf_sampling_lib.glsl
@@ -9,12 +9,12 @@ vec2 jitternoise = vec2(0.0);
#ifndef UTIL_TEX
#define UTIL_TEX
uniform sampler2DArray utilTex;
+#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */
void setup_noise(void)
{
- jitternoise = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0)).rg; /* Global variable */
- jitternoise.g = (jitternoise.g - 0.5) * 2.0;
+ jitternoise = texelfetch_noise_tex(gl_FragCoord.xy).rg; /* Global variable */
}
#ifdef HAMMERSLEY_SIZE
diff --git a/source/blender/draw/engines/eevee/shaders/common_uniforms_lib.glsl b/source/blender/draw/engines/eevee/shaders/common_uniforms_lib.glsl
new file mode 100644
index 00000000000..37106fc32bd
--- /dev/null
+++ b/source/blender/draw/engines/eevee/shaders/common_uniforms_lib.glsl
@@ -0,0 +1,55 @@
+
+layout(std140) uniform common_block {
+ mat4 pastViewProjectionMatrix;
+ vec4 viewVecs[2];
+ vec2 mipRatio[10]; /* To correct mip level texel mis-alignement */
+ /* Ambient Occlusion */
+ vec4 aoParameters[2];
+ /* Volumetric */
+ ivec4 volTexSize;
+ vec4 volDepthParameters; /* Parameters to the volume Z equation */
+ vec4 volInvTexSize;
+ vec4 volJitter;
+ vec4 volCoordScale; /* To convert volume uvs to screen uvs */
+ float volHistoryAlpha;
+ float volLightClamp;
+ float volShadowSteps;
+ bool volUseLights;
+ /* Screen Space Reflections */
+ vec4 ssrParameters;
+ float ssrBorderFac;
+ float ssrMaxRoughness;
+ float ssrFireflyFac;
+ float ssrBrdfBias;
+ bool ssrToggle;
+ /* SubSurface Scattering */
+ float sssJitterThreshold;
+ bool sssToggle;
+ /* Specular */
+ bool specToggle;
+ /* Lamps */
+ int laNumLight;
+ /* Probes */
+ int prbNumPlanar;
+ int prbNumRenderCube;
+ int prbNumRenderGrid;
+ int prbIrradianceVisSize;
+ float prbLodCubeMax;
+ float prbLodPlanarMax;
+};
+
+/* aoParameters */
+#define aoDistance aoParameters[0].x
+#define aoSamples aoParameters[0].y /* UNUSED */
+#define aoFactor aoParameters[0].z
+#define aoInvSamples aoParameters[0].w /* UNUSED */
+
+#define aoOffset aoParameters[1].x /* UNUSED */
+#define aoBounceFac aoParameters[1].y
+#define aoQuality aoParameters[1].z
+#define aoSettings aoParameters[1].w
+
+/* ssrParameters */
+#define ssrQuality ssrParameters.x
+#define ssrThickness ssrParameters.y
+#define ssrPixelSize ssrParameters.zw \ No newline at end of file
diff --git a/source/blender/draw/engines/eevee/shaders/default_frag.glsl b/source/blender/draw/engines/eevee/shaders/default_frag.glsl
index 45c5c88e763..6d941ae6ec3 100644
--- a/source/blender/draw/engines/eevee/shaders/default_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/default_frag.glsl
@@ -11,7 +11,7 @@ Closure nodetree_exec(void)
vec3 f0 = mix(dielectric, basecol, metallic);
vec3 N = (gl_FrontFacing) ? worldNormal : -worldNormal;
vec3 out_diff, out_spec, ssr_spec;
- eevee_closure_default(N, albedo, f0, 0, roughness, 1.0, out_diff, out_spec, ssr_spec);
+ eevee_closure_default(N, albedo, f0, 1, roughness, 1.0, out_diff, out_spec, ssr_spec);
Closure result = Closure(out_spec + out_diff * albedo, 1.0, vec4(ssr_spec, roughness), normal_encode(normalize(viewNormal), viewCameraVec), 0);
diff --git a/source/blender/draw/engines/eevee/shaders/effect_gtao_frag.glsl b/source/blender/draw/engines/eevee/shaders/effect_gtao_frag.glsl
index 1c63051c65b..32edf709d88 100644
--- a/source/blender/draw/engines/eevee/shaders/effect_gtao_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/effect_gtao_frag.glsl
@@ -12,8 +12,8 @@ uniform sampler2D normalBuffer;
void main()
{
- vec4 texel_size = 1.0 / vec2(textureSize(depthBuffer, 0)).xyxy;
- vec2 uvs = saturate(gl_FragCoord.xy * texel_size.xy);
+ vec2 texel_size = 1.0 / vec2(textureSize(depthBuffer, 0)).xy;
+ vec2 uvs = saturate(gl_FragCoord.xy * texel_size);
float depth = textureLod(depthBuffer, uvs, 0.0).r;
@@ -23,28 +23,32 @@ void main()
vec3 bent_normal;
float visibility;
-#if 1
- gtao_deferred(normal, viewPosition, depth, visibility, bent_normal);
-#else
- vec2 rand = vec2((1.0 / 4.0) * float((int(gl_FragCoord.y) & 0x1) * 2 + (int(gl_FragCoord.x) & 0x1)), 0.5);
- rand = fract(rand.x + texture(utilTex, vec3(floor(gl_FragCoord.xy * 0.5) / LUT_SIZE, 2.0)).rg);
- gtao(normal, viewPosition, rand, visibility, bent_normal);
-#endif
- denoise_ao(normal, depth, visibility, bent_normal);
+
+ vec4 noise = texelfetch_noise_tex(gl_FragCoord.xy);
+
+ gtao_deferred(normal, viewPosition, noise, depth, visibility, bent_normal);
FragColor = vec4(visibility);
}
#else
-uniform float sampleNbr;
+
+#ifdef LAYERED_DEPTH
+uniform sampler2DArray depthBufferLayered;
+uniform int layer;
+# define gtao_depthBuffer depthBufferLayered
+# define gtao_textureLod(a, b, c) textureLod(a, vec3(b, layer), c)
+
+#else
+# define gtao_depthBuffer depthBuffer
+# define gtao_textureLod(a, b, c) textureLod(a, b, c)
+
+#endif
void main()
{
- ivec2 hr_co = ivec2(gl_FragCoord.xy);
- ivec2 fs_co = get_fs_co(hr_co);
-
- vec2 uvs = saturate((vec2(fs_co) + 0.5) / vec2(textureSize(depthBuffer, 0)));
- float depth = textureLod(depthBuffer, uvs, 0.0).r;
+ vec2 uvs = saturate(gl_FragCoord.xy / vec2(textureSize(gtao_depthBuffer, 0).xy));
+ float depth = gtao_textureLod(gtao_depthBuffer, uvs, 0.0).r;
if (depth == 1.0) {
/* Do not trace for background */
@@ -56,14 +60,17 @@ void main()
depth = saturate(depth - 3e-6); /* Tweaked for 24bit depth buffer. */
vec3 viewPosition = get_view_space_from_depth(uvs, depth);
-
- float phi = get_phi(hr_co, fs_co, sampleNbr);
- float offset = get_offset(fs_co, sampleNbr);
+ vec4 noise = texelfetch_noise_tex(gl_FragCoord.xy);
vec2 max_dir = get_max_dir(viewPosition.z);
+ vec4 dirs;
+ dirs.xy = get_ao_dir(noise.x * 0.5);
+ dirs.zw = get_ao_dir(noise.x * 0.5 + 0.5);
- FragColor.xy = search_horizon_sweep(phi, viewPosition, uvs, offset, max_dir);
+ /* Search in 4 directions. */
+ FragColor.xy = search_horizon_sweep(dirs.xy, viewPosition, uvs, noise.y, max_dir);
+ FragColor.zw = search_horizon_sweep(dirs.zw, viewPosition, uvs, noise.y, max_dir);
/* Resize output for integer texture. */
- FragColor = pack_horizons(FragColor.xy).xyxy;
+ FragColor = pack_horizons(FragColor);
}
#endif
diff --git a/source/blender/draw/engines/eevee/shaders/effect_minmaxz_frag.glsl b/source/blender/draw/engines/eevee/shaders/effect_minmaxz_frag.glsl
index ce6f3568cdf..65d3970a82a 100644
--- a/source/blender/draw/engines/eevee/shaders/effect_minmaxz_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/effect_minmaxz_frag.glsl
@@ -23,6 +23,10 @@ uniform sampler2D depthBuffer;
#define minmax(a, b) max(a, b)
#endif
+#ifdef GPU_INTEL
+out vec4 fragColor;
+#endif
+
void main()
{
ivec2 texelPos = ivec2(gl_FragCoord.xy);
@@ -61,5 +65,10 @@ void main()
}
#endif
+#ifdef GPU_INTEL
+ /* Use color format instead of 24bit depth texture */
+ fragColor = vec4(val);
+#else
gl_FragDepth = val;
+#endif
} \ No newline at end of file
diff --git a/source/blender/draw/engines/eevee/shaders/effect_motion_blur_frag.glsl b/source/blender/draw/engines/eevee/shaders/effect_motion_blur_frag.glsl
index 1a01db3a1a3..73e284570cd 100644
--- a/source/blender/draw/engines/eevee/shaders/effect_motion_blur_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/effect_motion_blur_frag.glsl
@@ -57,7 +57,7 @@ void main()
float inc = 2.0 * inv_samples;
float i = -1.0 + noise;
- FragColor = vec4(0.0, 0.0, 0.0, 1.0);
+ FragColor = vec4(0.0);
for (int j = 0; j < samples && j < MAX_SAMPLE; j++) {
FragColor += textureLod(colorBuffer, uvcoordsvar.xy + motion * i, 0.0) * inv_samples;
i += inc;
diff --git a/source/blender/draw/engines/eevee/shaders/effect_ssr_frag.glsl b/source/blender/draw/engines/eevee/shaders/effect_ssr_frag.glsl
index 2dc8dfa0d1c..aa88e365d93 100644
--- a/source/blender/draw/engines/eevee/shaders/effect_ssr_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/effect_ssr_frag.glsl
@@ -5,80 +5,78 @@
#ifndef UTIL_TEX
#define UTIL_TEX
uniform sampler2DArray utilTex;
+#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */
-#define BRDF_BIAS 0.7
#define MAX_MIP 9.0
-uniform float fireflyFactor;
-uniform float maxRoughness;
+uniform ivec2 halfresOffset;
+
+ivec2 encode_hit_data(vec2 hit_pos, bool has_hit, bool is_planar)
+{
+ ivec2 hit_data = ivec2(saturate(hit_pos) * 32767.0); /* 16bit signed int limit */
+ hit_data.x *= (is_planar) ? -1 : 1;
+ hit_data.y *= (has_hit) ? 1 : -1;
+ return hit_data;
+}
+
+vec2 decode_hit_data(vec2 hit_data, out bool has_hit, out bool is_planar)
+{
+ is_planar = (hit_data.x < 0);
+ has_hit = (hit_data.y > 0);
+ return vec2(abs(hit_data)) / 32767.0; /* 16bit signed int limit */
+}
#ifdef STEP_RAYTRACE
uniform sampler2D normalBuffer;
uniform sampler2D specroughBuffer;
-uniform int planar_count;
-uniform float noiseOffset;
-
-layout(location = 0) out vec4 hitData0;
-layout(location = 1) out vec4 hitData1;
-layout(location = 2) out vec4 hitData2;
-layout(location = 3) out vec4 hitData3;
+layout(location = 0) out ivec2 hitData;
+layout(location = 1) out float pdfData;
-vec4 do_planar_ssr(int index, vec3 V, vec3 N, vec3 T, vec3 B, vec3 planeNormal, vec3 viewPosition, float a2, vec3 rand, float ofs)
+void do_planar_ssr(int index, vec3 V, vec3 N, vec3 T, vec3 B, vec3 planeNormal, vec3 viewPosition, float a2, vec4 rand)
{
- float pdf, NH;
- float jitter = fract(rand.x + ofs);
-
- /* Importance sampling bias */
- rand.x = mix(rand.x, 0.0, BRDF_BIAS);
-
- vec3 H = sample_ggx(rand, a2, N, T, B, NH); /* Microfacet normal */
- pdf = pdf_ggx_reflect(NH, a2);
+ float NH;
+ vec3 H = sample_ggx(rand.xzw, a2, N, T, B, NH); /* Microfacet normal */
+ float pdf = pdf_ggx_reflect(NH, a2);
vec3 R = reflect(-V, H);
R = reflect(R, planeNormal);
/* If ray is bad (i.e. going below the plane) regenerate. */
if (dot(R, planeNormal) > 0.0) {
- vec3 H = sample_ggx(rand * vec3(1.0, -1.0, -1.0), a2, N, T, B, NH); /* Microfacet normal */
+ vec3 H = sample_ggx(rand.xzw * vec3(1.0, -1.0, -1.0), a2, N, T, B, NH); /* Microfacet normal */
pdf = pdf_ggx_reflect(NH, a2);
R = reflect(-V, H);
R = reflect(R, planeNormal);
}
- pdf = min(1024e32, pdf); /* Theoretical limit of 16bit float */
- pdf *= -1.0; /* Tag as planar ray. */
+ pdfData = min(1024e32, pdf); /* Theoretical limit of 16bit float */
/* Since viewspace hit position can land behind the camera in this case,
* we save the reflected view position (visualize it as the hit position
* below the reflection plane). This way it's garanted that the hit will
* be in front of the camera. That let us tag the bad rays with a negative
* sign in the Z component. */
- vec3 hit_pos = raycast(index, viewPosition, R * 1e16, 1e16, jitter, ssrQuality, a2, false);
+ vec3 hit_pos = raycast(index, viewPosition, R * 1e16, 1e16, rand.y, ssrQuality, a2, false);
- return vec4(hit_pos, pdf);
+ hitData = encode_hit_data(hit_pos.xy, (hit_pos.z > 0.0), true);
}
-vec4 do_ssr(vec3 V, vec3 N, vec3 T, vec3 B, vec3 viewPosition, float a2, vec3 rand, float ofs)
+void do_ssr(vec3 V, vec3 N, vec3 T, vec3 B, vec3 viewPosition, float a2, vec4 rand)
{
- float pdf, NH;
- float jitter = fract(rand.x + ofs);
-
- /* Importance sampling bias */
- rand.x = mix(rand.x, 0.0, BRDF_BIAS);
-
- vec3 H = sample_ggx(rand, a2, N, T, B, NH); /* Microfacet normal */
- pdf = pdf_ggx_reflect(NH, a2);
+ float NH;
+ vec3 H = sample_ggx(rand.xzw, a2, N, T, B, NH); /* Microfacet normal */
+ float pdf = pdf_ggx_reflect(NH, a2);
vec3 R = reflect(-V, H);
- pdf = min(1024e32, pdf); /* Theoretical limit of 16bit float */
+ pdfData = min(1024e32, pdf); /* Theoretical limit of 16bit float */
- vec3 hit_pos = raycast(-1, viewPosition, R * 1e16, ssrThickness, jitter, ssrQuality, a2, true);
+ vec3 hit_pos = raycast(-1, viewPosition, R * 1e16, ssrThickness, rand.y, ssrQuality, a2, true);
- return vec4(hit_pos, pdf);
+ hitData = encode_hit_data(hit_pos.xy, (hit_pos.z > 0.0), false);
}
void main()
@@ -87,20 +85,22 @@ void main()
ivec2 fullres_texel = ivec2(gl_FragCoord.xy);
ivec2 halfres_texel = fullres_texel;
#else
- ivec2 fullres_texel = ivec2(gl_FragCoord.xy) * 2;
+ ivec2 fullres_texel = ivec2(gl_FragCoord.xy) * 2 + halfresOffset;
ivec2 halfres_texel = ivec2(gl_FragCoord.xy);
#endif
float depth = texelFetch(depthBuffer, fullres_texel, 0).r;
+ /* Default: not hits. */
+ hitData = encode_hit_data(vec2(0.5), false, false);
+ pdfData = 0.0;
+
/* Early out */
+ /* We can't do discard because we don't clear the render target. */
if (depth == 1.0)
- discard;
+ return;
- vec2 uvs = gl_FragCoord.xy / vec2(textureSize(depthBuffer, 0));
-#ifndef FULLRES
- uvs *= 2.0;
-#endif
+ vec2 uvs = vec2(fullres_texel) / vec2(textureSize(depthBuffer, 0));
/* Using view space */
vec3 viewPosition = get_view_space_from_depth(uvs, depth);
@@ -112,18 +112,24 @@ void main()
/* Early out */
if (dot(speccol_roughness.rgb, vec3(1.0)) == 0.0)
- discard;
+ return;
float roughness = speccol_roughness.a;
float roughnessSquared = max(1e-3, roughness * roughness);
float a2 = roughnessSquared * roughnessSquared;
- if (roughness > maxRoughness + 0.2) {
- hitData0 = hitData1 = hitData2 = hitData3 = vec4(0.0);
+ /* Early out */
+ if (roughness > ssrMaxRoughness + 0.2)
return;
- }
- vec3 rand = texelFetch(utilTex, ivec3(halfres_texel % LUT_SIZE, 2), 0).rba;
+ vec4 rand = texelFetch(utilTex, ivec3(halfres_texel % LUT_SIZE, 2), 0);
+
+ /* Gives *perfect* reflection for very small roughness */
+ if (roughness < 0.04) {
+ rand.xzw *= 0.0;
+ }
+ /* Importance sampling bias */
+ rand.x = mix(rand.x, 0.0, ssrBrdfBias);
vec3 worldPosition = transform_point(ViewMatrixInverse, viewPosition);
vec3 wN = transform_direction(ViewMatrixInverse, N);
@@ -132,7 +138,7 @@ void main()
make_orthonormal_basis(N, T, B); /* Generate tangent space */
/* Planar Reflections */
- for (int i = 0; i < MAX_PLANAR && i < planar_count; ++i) {
+ for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar; ++i) {
PlanarData pd = planars_data[i];
float fade = probe_attenuation_planar(pd, worldPosition, wN, 0.0);
@@ -144,31 +150,12 @@ void main()
tracePosition = transform_point(ViewMatrix, tracePosition);
vec3 planeNormal = transform_direction(ViewMatrix, pd.pl_normal);
- hitData0 = do_planar_ssr(i, V, N, T, B, planeNormal, tracePosition, a2, rand, 0.0);
-#if (RAY_COUNT > 1)
- hitData1 = do_planar_ssr(i, V, N, T, B, planeNormal, tracePosition, a2, rand.xyz * vec3(1.0, -1.0, -1.0), 1.0 / float(RAY_COUNT));
-#endif
-#if (RAY_COUNT > 2)
- hitData2 = do_planar_ssr(i, V, N, T, B, planeNormal, tracePosition, a2, rand.xzy * vec3(1.0, 1.0, -1.0), 2.0 / float(RAY_COUNT));
-#endif
-#if (RAY_COUNT > 3)
- hitData3 = do_planar_ssr(i, V, N, T, B, planeNormal, tracePosition, a2, rand.xzy * vec3(1.0, -1.0, 1.0), 3.0 / float(RAY_COUNT));
-#endif
+ do_planar_ssr(i, V, N, T, B, planeNormal, tracePosition, a2, rand);
return;
}
}
- /* TODO : Raytrace together if textureGather is supported. */
- hitData0 = do_ssr(V, N, T, B, viewPosition, a2, rand, 0.0);
-#if (RAY_COUNT > 1)
- hitData1 = do_ssr(V, N, T, B, viewPosition, a2, rand.xyz * vec3(1.0, -1.0, -1.0), 1.0 / float(RAY_COUNT));
-#endif
-#if (RAY_COUNT > 2)
- hitData2 = do_ssr(V, N, T, B, viewPosition, a2, rand.xzy * vec3(1.0, 1.0, -1.0), 2.0 / float(RAY_COUNT));
-#endif
-#if (RAY_COUNT > 3)
- hitData3 = do_ssr(V, N, T, B, viewPosition, a2, rand.xzy * vec3(1.0, -1.0, 1.0), 3.0 / float(RAY_COUNT));
-#endif
+ do_ssr(V, N, T, B, viewPosition, a2, rand);
}
#else /* STEP_RESOLVE */
@@ -177,30 +164,42 @@ uniform sampler2D prevColorBuffer; /* previous frame */
uniform sampler2D normalBuffer;
uniform sampler2D specroughBuffer;
-uniform sampler2D hitBuffer0;
-uniform sampler2D hitBuffer1;
-uniform sampler2D hitBuffer2;
-uniform sampler2D hitBuffer3;
+uniform isampler2D hitBuffer;
+uniform sampler2D pdfBuffer;
+
+uniform int neighborOffset;
-uniform int probe_count;
-uniform int planar_count;
+const ivec2 neighbors[32] = ivec2[32](
+ ivec2( 0, 0), ivec2( 1, 1), ivec2(-2, 0), ivec2( 0, -2),
+ ivec2( 0, 0), ivec2( 1, -1), ivec2(-2, 0), ivec2( 0, 2),
+ ivec2( 0, 0), ivec2(-1, -1), ivec2( 2, 0), ivec2( 0, 2),
+ ivec2( 0, 0), ivec2(-1, 1), ivec2( 2, 0), ivec2( 0, -2),
-uniform mat4 PastViewProjectionMatrix;
+ ivec2( 0, 0), ivec2( 2, 2), ivec2(-2, 2), ivec2( 0, -1),
+ ivec2( 0, 0), ivec2( 2, -2), ivec2(-2, -2), ivec2( 0, 1),
+ ivec2( 0, 0), ivec2(-2, -2), ivec2(-2, 2), ivec2( 1, 0),
+ ivec2( 0, 0), ivec2( 2, 2), ivec2( 2, -2), ivec2(-1, 0)
+);
out vec4 fragColor;
-void fallback_cubemap(vec3 N, vec3 V, vec3 W, vec3 viewPosition, float roughness, float roughnessSquared, inout vec4 spec_accum)
+void fallback_cubemap(
+ vec3 N, vec3 V, vec3 W, vec3 viewPosition, float roughness, float roughnessSquared, inout vec4 spec_accum)
{
/* Specular probes */
vec3 spec_dir = get_specular_reflection_dominant_dir(N, V, roughnessSquared);
- vec4 rand = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0));
+ vec4 rand = texelfetch_noise_tex(gl_FragCoord.xy);
vec3 bent_normal;
- float final_ao = occlusion_compute(N, viewPosition, 1.0, rand.rg, bent_normal);
+#ifdef SSR_AO
+ float final_ao = occlusion_compute(N, viewPosition, 1.0, rand, bent_normal);
final_ao = specular_occlusion(dot(N, V), final_ao, roughness);
+#else
+ const float final_ao = 1.0;
+#endif
/* Starts at 1 because 0 is world probe */
- for (int i = 1; i < MAX_PROBE && i < probe_count && spec_accum.a < 0.999; ++i) {
+ for (int i = 1; i < MAX_PROBE && i < prbNumRenderCube && spec_accum.a < 0.999; ++i) {
CubeData cd = probes_data[i];
float fade = probe_attenuation_cube(cd, W);
@@ -251,90 +250,177 @@ float brightness(vec3 c)
vec2 get_reprojected_reflection(vec3 hit, vec3 pos, vec3 N)
{
/* TODO real reprojection with motion vectors, etc... */
- return project_point(PastViewProjectionMatrix, hit).xy * 0.5 + 0.5;
+ return project_point(pastViewProjectionMatrix, hit).xy * 0.5 + 0.5;
}
-vec4 get_ssr_sample(
- sampler2D hitBuffer, PlanarData pd, float planar_index, vec3 worldPosition, vec3 N, vec3 V, float roughnessSquared,
- float cone_tan, vec2 source_uvs, vec2 texture_size, ivec2 target_texel,
- inout float weight_acc)
+float get_sample_depth(vec2 hit_co, bool is_planar, float planar_index)
{
- vec4 hit_co_pdf = texelFetch(hitBuffer, target_texel, 0).rgba;
- bool has_hit = (hit_co_pdf.z > 0.0);
- bool is_planar = (hit_co_pdf.w < 0.0);
- hit_co_pdf.z = abs(hit_co_pdf.z);
- hit_co_pdf.w = abs(hit_co_pdf.w);
-
- /* Hit position in world space. */
- hit_co_pdf.xyz = get_view_space_from_depth(hit_co_pdf.xy, hit_co_pdf.z);
- vec3 hit_pos = transform_point(ViewMatrixInverse, hit_co_pdf.xyz);
+ if (is_planar) {
+ return textureLod(planarDepth, vec3(hit_co, planar_index), 0.0).r;
+ }
+ else {
+ return textureLod(depthBuffer, hit_co, 0.0).r;
+ }
+}
- vec2 ref_uvs;
+vec3 get_hit_vector(
+ vec3 hit_pos, PlanarData pd, vec3 worldPosition, vec3 N, vec3 V, bool is_planar,
+ inout vec2 hit_co, inout float mask)
+{
vec3 hit_vec;
- float mask = 1.0;
+
if (is_planar) {
/* Reflect back the hit position to have it in non-reflected world space */
vec3 trace_pos = line_plane_intersect(worldPosition, V, pd.pl_plane_eq);
hit_vec = hit_pos - trace_pos;
hit_vec = reflect(hit_vec, pd.pl_normal);
- ref_uvs = project_point(ProjectionMatrix, hit_co_pdf.xyz).xy * 0.5 + 0.5;
}
else {
/* Find hit position in previous frame. */
- ref_uvs = get_reprojected_reflection(hit_pos, worldPosition, N);
+ mask = screen_border_mask(gl_FragCoord.xy / vec2(textureSize(depthBuffer, 0)));
+ hit_co = get_reprojected_reflection(hit_pos, worldPosition, N);
hit_vec = hit_pos - worldPosition;
- mask = screen_border_mask(gl_FragCoord.xy / texture_size);
}
- mask = min(mask, screen_border_mask(ref_uvs));
- mask *= float(has_hit);
- float hit_dist = max(1e-8, length(hit_vec));
- vec3 L = hit_vec / hit_dist;
+ mask = min(mask, screen_border_mask(hit_co));
+ return hit_vec;
+}
- float cone_footprint = hit_dist * cone_tan;
+vec3 get_scene_color(vec2 ref_uvs, float mip, float planar_index, bool is_planar)
+{
+ if (is_planar) {
+ return textureLod(probePlanars, vec3(ref_uvs, planar_index), min(mip, prbLodPlanarMax)).rgb;
+ }
+ else {
+ return textureLod(prevColorBuffer, ref_uvs, mip).rgb;
+ }
+}
+
+vec4 get_ssr_samples(
+ vec4 hit_pdf, ivec4 hit_data[2],
+ PlanarData pd, float planar_index, vec3 worldPosition, vec3 N, vec3 V,
+ float roughnessSquared, float cone_tan, vec2 source_uvs,
+ inout float weight_acc)
+{
+ bvec4 is_planar, has_hit;
+ vec4 hit_co[2];
+ hit_co[0].xy = decode_hit_data(hit_data[0].xy, has_hit.x, is_planar.x);
+ hit_co[0].zw = decode_hit_data(hit_data[0].zw, has_hit.y, is_planar.y);
+ hit_co[1].xy = decode_hit_data(hit_data[1].xy, has_hit.z, is_planar.z);
+ hit_co[1].zw = decode_hit_data(hit_data[1].zw, has_hit.w, is_planar.w);
+
+ vec4 hit_depth;
+ hit_depth.x = get_sample_depth(hit_co[0].xy, is_planar.x, planar_index);
+ hit_depth.y = get_sample_depth(hit_co[0].zw, is_planar.y, planar_index);
+ hit_depth.z = get_sample_depth(hit_co[1].xy, is_planar.z, planar_index);
+ hit_depth.w = get_sample_depth(hit_co[1].zw, is_planar.w, planar_index);
+
+ /* Hit position in view space. */
+ vec3 hit_view[4];
+ hit_view[0] = get_view_space_from_depth(hit_co[0].xy, hit_depth.x);
+ hit_view[1] = get_view_space_from_depth(hit_co[0].zw, hit_depth.y);
+ hit_view[2] = get_view_space_from_depth(hit_co[1].xy, hit_depth.z);
+ hit_view[3] = get_view_space_from_depth(hit_co[1].zw, hit_depth.w);
+
+ vec4 homcoord = vec4(hit_view[0].z, hit_view[1].z, hit_view[2].z, hit_view[3].z);
+ homcoord = ProjectionMatrix[2][3] * homcoord + ProjectionMatrix[3][3];
+
+ /* Hit position in world space. */
+ vec3 hit_pos[4];
+ hit_pos[0] = transform_point(ViewMatrixInverse, hit_view[0]);
+ hit_pos[1] = transform_point(ViewMatrixInverse, hit_view[1]);
+ hit_pos[2] = transform_point(ViewMatrixInverse, hit_view[2]);
+ hit_pos[3] = transform_point(ViewMatrixInverse, hit_view[3]);
+
+ /* Get actual hit vector and hit coordinate (from last frame). */
+ vec4 mask = vec4(1.0);
+ hit_pos[0] = get_hit_vector(hit_pos[0], pd, worldPosition, N, V, is_planar.x, hit_co[0].xy, mask.x);
+ hit_pos[1] = get_hit_vector(hit_pos[1], pd, worldPosition, N, V, is_planar.y, hit_co[0].zw, mask.y);
+ hit_pos[2] = get_hit_vector(hit_pos[2], pd, worldPosition, N, V, is_planar.z, hit_co[1].xy, mask.z);
+ hit_pos[3] = get_hit_vector(hit_pos[3], pd, worldPosition, N, V, is_planar.w, hit_co[1].zw, mask.w);
+
+ vec4 hit_dist;
+ hit_dist.x = length(hit_pos[0]);
+ hit_dist.y = length(hit_pos[1]);
+ hit_dist.z = length(hit_pos[2]);
+ hit_dist.w = length(hit_pos[3]);
+ hit_dist = max(vec4(1e-8), hit_dist);
+
+ /* Normalize */
+ hit_pos[0] /= hit_dist.x;
+ hit_pos[1] /= hit_dist.y;
+ hit_pos[2] /= hit_dist.z;
+ hit_pos[3] /= hit_dist.w;
/* Compute cone footprint in screen space. */
- float homcoord = ProjectionMatrix[2][3] * hit_co_pdf.z + ProjectionMatrix[3][3];
- cone_footprint = BRDF_BIAS * 0.5 * cone_footprint * max(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) / homcoord;
+ vec4 cone_footprint = hit_dist * cone_tan;
+ cone_footprint = ssrBrdfBias * 0.5 * cone_footprint * max(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) / homcoord;
/* Estimate a cone footprint to sample a corresponding mipmap level. */
- float mip = clamp(log2(cone_footprint * max(texture_size.x, texture_size.y)), 0.0, MAX_MIP);
+ vec4 mip = log2(cone_footprint * max_v2(vec2(textureSize(depthBuffer, 0))));
+ mip = clamp(mip, 0.0, MAX_MIP);
/* Correct UVs for mipmaping mis-alignment */
- ref_uvs *= mip_ratio_interp(mip);
+ hit_co[0].xy *= mip_ratio_interp(mip.x);
+ hit_co[0].zw *= mip_ratio_interp(mip.y);
+ hit_co[1].xy *= mip_ratio_interp(mip.z);
+ hit_co[1].zw *= mip_ratio_interp(mip.w);
/* Slide 54 */
- float bsdf = bsdf_ggx(N, L, V, roughnessSquared);
- float weight = step(1e-8, hit_co_pdf.w) * bsdf / max(1e-8, hit_co_pdf.w);
- weight_acc += weight;
+ vec4 bsdf;
+ bsdf.x = bsdf_ggx(N, hit_pos[0], V, roughnessSquared);
+ bsdf.y = bsdf_ggx(N, hit_pos[1], V, roughnessSquared);
+ bsdf.z = bsdf_ggx(N, hit_pos[2], V, roughnessSquared);
+ bsdf.w = bsdf_ggx(N, hit_pos[3], V, roughnessSquared);
- vec3 sample;
- if (is_planar) {
- sample = textureLod(probePlanars, vec3(ref_uvs, planar_index), min(mip, lodPlanarMax)).rgb;
- }
- else {
- sample = textureLod(prevColorBuffer, ref_uvs, mip).rgb;
- }
+ vec4 weight = step(1e-8, hit_pdf) * bsdf / max(vec4(1e-8), hit_pdf);
- /* Clamped brightness. */
- float luma = max(1e-8, brightness(sample));
- sample *= 1.0 - max(0.0, luma - fireflyFactor) / luma;
+ vec3 sample[4];
+ sample[0] = get_scene_color(hit_co[0].xy, mip.x, planar_index, is_planar.x);
+ sample[1] = get_scene_color(hit_co[0].zw, mip.y, planar_index, is_planar.y);
+ sample[2] = get_scene_color(hit_co[1].xy, mip.z, planar_index, is_planar.z);
+ sample[3] = get_scene_color(hit_co[1].zw, mip.w, planar_index, is_planar.w);
- /* Do not add light if ray has failed. */
- sample *= float(has_hit);
+ /* Clamped brightness. */
+ vec4 luma;
+ luma.x = brightness(sample[0]);
+ luma.y = brightness(sample[1]);
+ luma.z = brightness(sample[2]);
+ luma.w = brightness(sample[3]);
+ luma = max(vec4(1e-8), luma);
+ luma = 1.0 - max(vec4(0.0), luma - ssrFireflyFac) / luma;
+
+ sample[0] *= luma.x;
+ sample[1] *= luma.y;
+ sample[2] *= luma.z;
+ sample[3] *= luma.w;
/* Protection against NaNs in the history buffer.
* This could be removed if some previous pass has already
* sanitized the input. */
- if (any(isnan(sample))) {
- sample = vec3(0.0);
- weight = 0.0;
+ if (any(isnan(sample[0]))) {
+ sample[0] = vec3(0.0); weight.x = 0.0;
+ }
+ if (any(isnan(sample[1]))) {
+ sample[1] = vec3(0.0); weight.y = 0.0;
+ }
+ if (any(isnan(sample[2]))) {
+ sample[2] = vec3(0.0); weight.z = 0.0;
+ }
+ if (any(isnan(sample[3]))) {
+ sample[3] = vec3(0.0); weight.w = 0.0;
}
- return vec4(sample, mask) * weight;
-}
+ weight_acc += sum(weight);
-#define NUM_NEIGHBORS 4
+ /* Do not add light if ray has failed. */
+ vec4 accum;
+ accum = vec4(sample[0], mask.x) * weight.x * float(has_hit.x);
+ accum += vec4(sample[1], mask.y) * weight.y * float(has_hit.y);
+ accum += vec4(sample[2], mask.z) * weight.z * float(has_hit.z);
+ accum += vec4(sample[3], mask.w) * weight.w * float(has_hit.w);
+ return accum;
+}
void main()
{
@@ -344,9 +430,7 @@ void main()
#else
ivec2 halfres_texel = ivec2(gl_FragCoord.xy / 2.0);
#endif
- vec2 texture_size = vec2(textureSize(depthBuffer, 0));
- vec2 uvs = gl_FragCoord.xy / texture_size;
- vec3 rand = texelFetch(utilTex, ivec3(fullres_texel % LUT_SIZE, 2), 0).rba;
+ vec2 uvs = gl_FragCoord.xy / vec2(textureSize(depthBuffer, 0));
float depth = textureLod(depthBuffer, uvs, 0.0).r;
@@ -366,10 +450,24 @@ void main()
if (dot(speccol_roughness.rgb, vec3(1.0)) == 0.0)
discard;
+ /* TODO optimize with textureGather */
+ /* Doing these fetches early to hide latency. */
+ vec4 hit_pdf;
+ hit_pdf.x = texelFetch(pdfBuffer, halfres_texel + neighbors[0 + neighborOffset], 0).r;
+ hit_pdf.y = texelFetch(pdfBuffer, halfres_texel + neighbors[1 + neighborOffset], 0).r;
+ hit_pdf.z = texelFetch(pdfBuffer, halfres_texel + neighbors[2 + neighborOffset], 0).r;
+ hit_pdf.w = texelFetch(pdfBuffer, halfres_texel + neighbors[3 + neighborOffset], 0).r;
+
+ ivec4 hit_data[2];
+ hit_data[0].xy = texelFetch(hitBuffer, halfres_texel + neighbors[0 + neighborOffset], 0).rg;
+ hit_data[0].zw = texelFetch(hitBuffer, halfres_texel + neighbors[1 + neighborOffset], 0).rg;
+ hit_data[1].xy = texelFetch(hitBuffer, halfres_texel + neighbors[2 + neighborOffset], 0).rg;
+ hit_data[1].zw = texelFetch(hitBuffer, halfres_texel + neighbors[3 + neighborOffset], 0).rg;
+
/* Find Planar Reflections affecting this pixel */
PlanarData pd;
float planar_index;
- for (int i = 0; i < MAX_PLANAR && i < planar_count; ++i) {
+ for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar; ++i) {
pd = planars_data[i];
float fade = probe_attenuation_planar(pd, worldPosition, N, 0.0);
@@ -390,55 +488,21 @@ void main()
float cone_tan = sqrt(1 - cone_cos * cone_cos) / cone_cos;
cone_tan *= mix(saturate(dot(N, -V) * 2.0), 1.0, roughness); /* Elongation fit */
- vec2 source_uvs = project_point(PastViewProjectionMatrix, worldPosition).xy * 0.5 + 0.5;
+ vec2 source_uvs = project_point(pastViewProjectionMatrix, worldPosition).xy * 0.5 + 0.5;
vec4 ssr_accum = vec4(0.0);
float weight_acc = 0.0;
- const ivec2 neighbors[9] = ivec2[9](
- ivec2(0, 0),
-
- ivec2(0, 1),
- ivec2(-1, -1), ivec2(1, -1),
-
- ivec2(-1, 1), ivec2(1, 1),
- ivec2(0, -1),
-
- ivec2(-1, 0), ivec2(1, 0)
- );
- ivec2 invert_neighbor;
- invert_neighbor.x = ((fullres_texel.x & 0x1) == 0) ? 1 : -1;
- invert_neighbor.y = ((fullres_texel.y & 0x1) == 0) ? 1 : -1;
-
- if (roughness < maxRoughness + 0.2) {
- for (int i = 0; i < NUM_NEIGHBORS; i++) {
- ivec2 target_texel = halfres_texel + neighbors[i] * invert_neighbor;
-
- ssr_accum += get_ssr_sample(hitBuffer0, pd, planar_index, worldPosition, N, V,
- roughnessSquared, cone_tan, source_uvs,
- texture_size, target_texel, weight_acc);
-#if (RAY_COUNT > 1)
- ssr_accum += get_ssr_sample(hitBuffer1, pd, planar_index, worldPosition, N, V,
- roughnessSquared, cone_tan, source_uvs,
- texture_size, target_texel, weight_acc);
-#endif
-#if (RAY_COUNT > 2)
- ssr_accum += get_ssr_sample(hitBuffer2, pd, planar_index, worldPosition, N, V,
- roughnessSquared, cone_tan, source_uvs,
- texture_size, target_texel, weight_acc);
-#endif
-#if (RAY_COUNT > 3)
- ssr_accum += get_ssr_sample(hitBuffer3, pd, planar_index, worldPosition, N, V,
- roughnessSquared, cone_tan, source_uvs,
- texture_size, target_texel, weight_acc);
-#endif
- }
+
+ if (roughness < ssrMaxRoughness + 0.2) {
+ ssr_accum += get_ssr_samples(hit_pdf, hit_data, pd, planar_index, worldPosition, N, V,
+ roughnessSquared, cone_tan, source_uvs, weight_acc);
}
/* Compute SSR contribution */
if (weight_acc > 0.0) {
ssr_accum /= weight_acc;
/* fade between 0.5 and 1.0 roughness */
- ssr_accum.a *= smoothstep(maxRoughness + 0.2, maxRoughness, roughness);
+ ssr_accum.a *= smoothstep(ssrMaxRoughness + 0.2, ssrMaxRoughness, roughness);
accumulate_light(ssr_accum.rgb, ssr_accum.a, spec_accum);
}
diff --git a/source/blender/draw/engines/eevee/shaders/effect_subsurface_frag.glsl b/source/blender/draw/engines/eevee/shaders/effect_subsurface_frag.glsl
index 88e71a060c5..184eac54c26 100644
--- a/source/blender/draw/engines/eevee/shaders/effect_subsurface_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/effect_subsurface_frag.glsl
@@ -8,16 +8,19 @@ layout(std140) uniform sssProfile {
int sss_samples;
};
-uniform float jitterThreshold;
uniform sampler2D depthBuffer;
uniform sampler2D sssData;
uniform sampler2D sssAlbedo;
+
+#ifndef UTIL_TEX
+#define UTIL_TEX
uniform sampler2DArray utilTex;
+#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
+#endif /* UTIL_TEX */
out vec4 FragColor;
uniform mat4 ProjectionMatrix;
-uniform vec4 viewvecs[2];
float get_view_z_from_depth(float depth)
{
@@ -26,7 +29,7 @@ float get_view_z_from_depth(float depth)
return -ProjectionMatrix[3][2] / (d + ProjectionMatrix[2][2]);
}
else {
- return viewvecs[0].z + depth * viewvecs[1].z;
+ return viewVecs[0].z + depth * viewVecs[1].z;
}
}
@@ -41,7 +44,7 @@ void main(void)
vec4 sss_data = texture(sssData, uvs).rgba;
float depth_view = get_view_z_from_depth(texture(depthBuffer, uvs).r);
- float rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2), 0).r;
+ float rand = texelfetch_noise_tex(gl_FragCoord.xy).r;
#ifdef FIRST_PASS
float angle = M_2PI * rand + M_PI_2;
vec2 dir = vec2(1.0, 0.0);
@@ -61,7 +64,7 @@ void main(void)
vec3 accum = sss_data.rgb * kernel[0].rgb;
for (int i = 1; i < sss_samples && i < MAX_SSS_SAMPLES; i++) {
- vec2 sample_uv = uvs + kernel[i].a * finalStep * ((abs(kernel[i].a) > jitterThreshold) ? dir : dir_rand);
+ vec2 sample_uv = uvs + kernel[i].a * finalStep * ((abs(kernel[i].a) > sssJitterThreshold) ? dir : dir_rand);
vec3 color = texture(sssData, sample_uv).rgb;
float sample_depth = texture(depthBuffer, sample_uv).r;
sample_depth = get_view_z_from_depth(sample_depth);
diff --git a/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl b/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl
index 76d20486d3d..132cc16fcbd 100644
--- a/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl
@@ -1,6 +1,5 @@
uniform sampler2DArray irradianceGrid;
-uniform int irradianceVisibilitySize;
#define IRRADIANCE_LIB
@@ -81,8 +80,8 @@ IrradianceData load_irradiance_cell(int cell, vec3 N)
float load_visibility_cell(int cell, vec3 L, float dist, float bias, float bleed_bias, float range)
{
/* Keep in sync with diffuse_filter_probe() */
- ivec2 cell_co = ivec2(irradianceVisibilitySize);
- ivec2 cell_per_row_col = textureSize(irradianceGrid, 0).xy / irradianceVisibilitySize;
+ ivec2 cell_co = ivec2(prbIrradianceVisSize);
+ ivec2 cell_per_row_col = textureSize(irradianceGrid, 0).xy / prbIrradianceVisSize;
cell_co.x *= (cell % cell_per_row_col.x);
cell_co.y *= (cell / cell_per_row_col.x) % cell_per_row_col.y;
float layer = 1.0 + float((cell / cell_per_row_col.x) / cell_per_row_col.y);
@@ -90,8 +89,8 @@ float load_visibility_cell(int cell, vec3 L, float dist, float bias, float bleed
vec2 texel_size = 1.0 / vec2(textureSize(irradianceGrid, 0).xy);
vec2 co = vec2(cell_co) * texel_size;
- vec2 uv = mapping_octahedron(-L, vec2(1.0 / float(irradianceVisibilitySize)));
- uv *= vec2(irradianceVisibilitySize) * texel_size;
+ vec2 uv = mapping_octahedron(-L, vec2(1.0 / float(prbIrradianceVisSize)));
+ uv *= vec2(prbIrradianceVisSize) * texel_size;
vec4 data = texture(irradianceGrid, vec3(co + uv, layer));
diff --git a/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl b/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl
index 933f056c401..1c7956bb807 100644
--- a/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl
@@ -161,7 +161,7 @@ float light_visibility(LightData ld, vec3 W,
float x = dot(ld.l_right, lL) / ld.l_sizex;
float y = dot(ld.l_up, lL) / ld.l_sizey;
- float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);
+ float ellipse = inversesqrt(1.0 + x * x + y * y);
float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);
@@ -203,14 +203,13 @@ float light_visibility(LightData ld, vec3 W,
vec3 T, B;
make_orthonormal_basis(L.xyz / L.w, T, B);
- vec3 rand = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0)).xzw;
- /* XXX This is a hack to not have noise correlation artifacts.
- * A better solution to have better noise is welcome. */
- rand.yz *= fast_sqrt(fract(rand.x * 7919.0)) * data.sh_contact_spread;
+ vec4 rand = texelfetch_noise_tex(gl_FragCoord.xy);
+ /* WATCH THIS : This still seems to have correlation artifacts for low samples. */
+ rand.zw *= fast_sqrt(rand.y) * data.sh_contact_spread;
/* We use the full l_vector.xyz so that the spread is minimize
* if the shading point is further away from the light source */
- vec3 ray_dir = L.xyz + T * rand.y + B * rand.z;
+ vec3 ray_dir = L.xyz + T * rand.z + B * rand.w;
ray_dir = transform_direction(ViewMatrix, ray_dir);
ray_dir = normalize(ray_dir);
vec3 ray_origin = viewPosition + viewNormal * data.sh_contact_offset;
@@ -235,8 +234,7 @@ float light_diffuse(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
#ifdef USE_LTC
if (ld.l_type == SUN) {
- /* TODO disk area light */
- return direct_diffuse_sun(ld, N);
+ return direct_diffuse_unit_disc(ld, N, V);
}
else if (ld.l_type == AREA) {
return direct_diffuse_rectangle(ld, N, V, l_vector);
@@ -258,8 +256,7 @@ vec3 light_specular(LightData ld, vec3 N, vec3 V, vec4 l_vector, float roughness
{
#ifdef USE_LTC
if (ld.l_type == SUN) {
- /* TODO disk area light */
- return direct_ggx_sun(ld, N, V, roughness, f0);
+ return direct_ggx_unit_disc(ld, N, V, roughness, f0);
}
else if (ld.l_type == AREA) {
return direct_ggx_rectangle(ld, N, V, l_vector, roughness, f0);
@@ -298,9 +295,7 @@ vec3 light_translucent(LightData ld, vec3 W, vec3 N, vec4 l_vector, float scale)
{
#if !defined(USE_TRANSLUCENCY) || defined(VOLUMETRICS)
return vec3(0.0);
-#endif
-
-#ifndef VOLUMETRICS
+#else
vec3 vis = vec3(1.0);
/* Only shadowed light can produce translucency */
@@ -313,14 +308,13 @@ vec3 light_translucent(LightData ld, vec3 W, vec3 N, vec4 l_vector, float scale)
vec3 T, B;
make_orthonormal_basis(L.xyz / L.w, T, B);
- vec3 rand = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0)).xzw;
- /* XXX This is a hack to not have noise correlation artifacts.
- * A better solution to have better noise is welcome. */
- rand.yz *= fast_sqrt(fract(rand.x * 7919.0)) * data.sh_blur;
+ vec4 rand = texelfetch_noise_tex(gl_FragCoord.xy);
+ /* WATCH THIS : This still seems to have correlation artifacts for low samples. */
+ rand.zw *= fast_sqrt(rand.y) * data.sh_blur;
/* We use the full l_vector.xyz so that the spread is minimize
* if the shading point is further away from the light source */
- W = W + T * rand.y + B * rand.z;
+ W = W + T * rand.z + B * rand.w;
if (ld.l_type == SUN) {
ShadowCascadeData scd = shadows_cascade_data[int(data.sh_data_start)];
@@ -374,19 +368,24 @@ vec3 light_translucent(LightData ld, vec3 W, vec3 N, vec4 l_vector, float scale)
/* TODO : put this out of the shader. */
float falloff;
if (ld.l_type == AREA) {
- vis *= 0.0962 * (ld.l_sizex * ld.l_sizey * 4.0 * M_PI);
+ vis *= (ld.l_sizex * ld.l_sizey * 4.0 * M_PI) * (1.0 / 80.0);
+ vis *= 0.3 * 20.0 * max(0.0, dot(-ld.l_forward, l_vector.xyz / l_vector.w)); /* XXX ad hoc, empirical */
vis /= (l_vector.w * l_vector.w);
falloff = dot(N, l_vector.xyz / l_vector.w);
}
else if (ld.l_type == SUN) {
+ vis *= (4.0f * ld.l_radius * ld.l_radius * M_2PI) * (1.0 / 12.5); /* Removing area light power*/
+ vis *= M_2PI * 0.78; /* Matching cycles with point light. */
+ vis *= 0.082; /* XXX ad hoc, empirical */
falloff = dot(N, -ld.l_forward);
}
else {
- vis *= 0.0248 * (4.0 * ld.l_radius * ld.l_radius * M_PI * M_PI);
+ vis *= (4.0 * ld.l_radius * ld.l_radius) * (1.0 /10.0);
+ vis *= 1.5; /* XXX ad hoc, empirical */
vis /= (l_vector.w * l_vector.w);
falloff = dot(N, l_vector.xyz / l_vector.w);
}
- vis *= M_1_PI; /* Normalize */
+ // vis *= M_1_PI; /* Normalize */
/* Applying profile */
vis *= sss_profile(abs(delta) / scale);
@@ -400,7 +399,7 @@ vec3 light_translucent(LightData ld, vec3 W, vec3 N, vec4 l_vector, float scale)
float x = dot(ld.l_right, lL) / ld.l_sizex;
float y = dot(ld.l_up, lL) / ld.l_sizey;
- float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);
+ float ellipse = inversesqrt(1.0 + x * x + y * y);
float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);
diff --git a/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl b/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl
index fc0b5b9548b..d10f4bc0d42 100644
--- a/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl
@@ -11,5 +11,5 @@ void main()
? normalize(cameraPos - worldPosition)
: cameraForward;
vec3 N = normalize(worldNormal);
- FragColor = vec4(textureLod_octahedron(probeCubes, vec4(reflect(-V, N), pid), 0.0, lodCubeMax).rgb, 1.0);
+ FragColor = vec4(textureLod_octahedron(probeCubes, vec4(reflect(-V, N), pid), 0.0, prbLodCubeMax).rgb, 1.0);
}
diff --git a/source/blender/draw/engines/eevee/shaders/lightprobe_filter_diffuse_frag.glsl b/source/blender/draw/engines/eevee/shaders/lightprobe_filter_diffuse_frag.glsl
index eb4315c93a3..b19ee7a9ea3 100644
--- a/source/blender/draw/engines/eevee/shaders/lightprobe_filter_diffuse_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lightprobe_filter_diffuse_frag.glsl
@@ -3,6 +3,7 @@ uniform samplerCube probeHdr;
uniform int probeSize;
uniform float lodFactor;
uniform float lodMax;
+uniform float intensityFac;
in vec3 worldPosition;
@@ -192,6 +193,6 @@ void main()
}
}
- FragColor = irradiance_encode(out_radiance / weight);
+ FragColor = irradiance_encode(intensityFac * out_radiance / weight);
#endif
} \ No newline at end of file
diff --git a/source/blender/draw/engines/eevee/shaders/lightprobe_filter_glossy_frag.glsl b/source/blender/draw/engines/eevee/shaders/lightprobe_filter_glossy_frag.glsl
index 33714c5293c..3aec3ce4642 100644
--- a/source/blender/draw/engines/eevee/shaders/lightprobe_filter_glossy_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lightprobe_filter_glossy_frag.glsl
@@ -5,6 +5,7 @@ uniform float texelSize;
uniform float lodFactor;
uniform float lodMax;
uniform float paddingSize;
+uniform float intensityFac;
in vec3 worldPosition;
@@ -82,5 +83,5 @@ void main() {
}
}
- FragColor = vec4(out_radiance / weight, 1.0);
+ FragColor = vec4(intensityFac * out_radiance / weight, 1.0);
} \ No newline at end of file
diff --git a/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl b/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl
index e914228aded..429f6ea92e4 100644
--- a/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl
@@ -1,10 +1,7 @@
/* ----------- Uniforms --------- */
uniform sampler2DArray probePlanars;
-uniform float lodPlanarMax;
-
uniform sampler2DArray probeCubes;
-uniform float lodCubeMax;
/* ----------- Structures --------- */
@@ -162,12 +159,12 @@ vec3 probe_evaluate_cube(float id, CubeData cd, vec3 W, vec3 R, float roughness)
float fac = saturate(original_roughness * 2.0 - 1.0);
R = mix(intersection, R, fac * fac);
- return textureLod_octahedron(probeCubes, vec4(R, id), roughness * lodCubeMax, lodCubeMax).rgb;
+ return textureLod_octahedron(probeCubes, vec4(R, id), roughness * prbLodCubeMax, prbLodCubeMax).rgb;
}
vec3 probe_evaluate_world_spec(vec3 R, float roughness)
{
- return textureLod_octahedron(probeCubes, vec4(R, 0.0), roughness * lodCubeMax, lodCubeMax).rgb;
+ return textureLod_octahedron(probeCubes, vec4(R, 0.0), roughness * prbLodCubeMax, prbLodCubeMax).rgb;
}
vec3 probe_evaluate_planar(
diff --git a/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl b/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl
index 6ecaf0a627b..cc66b477da0 100644
--- a/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl
@@ -2,19 +2,12 @@
#ifndef LIT_SURFACE_UNIFORM
#define LIT_SURFACE_UNIFORM
-uniform int light_count;
-uniform int probe_count;
-uniform int grid_count;
-uniform int planar_count;
-
-uniform bool specToggle;
-uniform bool ssrToggle;
-
uniform float refractionDepth;
#ifndef UTIL_TEX
#define UTIL_TEX
uniform sampler2DArray utilTex;
+#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */
in vec3 worldPosition;
@@ -28,9 +21,6 @@ in vec3 worldNormal;
in vec3 viewNormal;
#endif
-uniform float maxRoughness;
-uniform int rayCount;
-
#endif /* LIT_SURFACE_UNIFORM */
/** AUTO CONFIG
@@ -176,7 +166,7 @@ void CLOSURE_NAME(
vec3 V = cameraVec;
- vec4 rand = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0));
+ vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
/* ---------------------------------------------------------------- */
/* -------------------- SCENE LAMPS LIGHTING ---------------------- */
@@ -187,7 +177,7 @@ void CLOSURE_NAME(
norm_view = normalize(cross(norm_view, N)); /* Normal facing view */
#endif
- for (int i = 0; i < MAX_LIGHT && i < light_count; ++i) {
+ for (int i = 0; i < MAX_LIGHT && i < laNumLight; ++i) {
LightData ld = lights_data[i];
vec4 l_vector; /* Non-Normalized Light Vector with length in last component. */
@@ -266,7 +256,7 @@ void CLOSURE_NAME(
/* Planar Reflections */
/* ---------------------------- */
- for (int i = 0; i < MAX_PLANAR && i < planar_count && spec_accum.a < 0.999; ++i) {
+ for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar && spec_accum.a < 0.999; ++i) {
PlanarData pd = planars_data[i];
/* Fade on geometric normal. */
@@ -312,17 +302,11 @@ void CLOSURE_NAME(
/* Screen Space Refraction */
/* ---------------------------- */
#ifdef USE_REFRACTION
- if (ssrToggle && roughness < maxRoughness + 0.2) {
+ if (ssrToggle && roughness < ssrMaxRoughness + 0.2) {
/* Find approximated position of the 2nd refraction event. */
vec3 refr_vpos = (refractionDepth > 0.0) ? transform_point(ViewMatrix, refr_pos) : viewPosition;
-
- float ray_ofs = 1.0 / float(rayCount);
- vec4 trans = screen_space_refraction(refr_vpos, N, refr_V, final_ior, roughnessSquared, rand.xzw, 0.0);
- if (rayCount > 1) trans += screen_space_refraction(refr_vpos, N, refr_V, final_ior, roughnessSquared, rand.xzw * vec3(1.0, -1.0, -1.0), 1.0 * ray_ofs);
- if (rayCount > 2) trans += screen_space_refraction(refr_vpos, N, refr_V, final_ior, roughnessSquared, rand.xwz * vec3(1.0, 1.0, -1.0), 2.0 * ray_ofs);
- if (rayCount > 3) trans += screen_space_refraction(refr_vpos, N, refr_V, final_ior, roughnessSquared, rand.xwz * vec3(1.0, -1.0, 1.0), 3.0 * ray_ofs);
- trans /= float(rayCount);
- trans.a *= smoothstep(maxRoughness + 0.2, maxRoughness, roughness);
+ vec4 trans = screen_space_refraction(refr_vpos, N, refr_V, final_ior, roughnessSquared, rand);
+ trans.a *= smoothstep(ssrMaxRoughness + 0.2, ssrMaxRoughness, roughness);
accumulate_light(trans.rgb, trans.a, refr_accum);
}
#endif
@@ -342,7 +326,7 @@ void CLOSURE_NAME(
#endif
/* Starts at 1 because 0 is world probe */
- for (int i = 1; ACCUM.a < 0.999 && i < probe_count && i < MAX_PROBE; ++i) {
+ for (int i = 1; ACCUM.a < 0.999 && i < prbNumRenderCube && i < MAX_PROBE; ++i) {
CubeData cd = probes_data[i];
float fade = probe_attenuation_cube(cd, worldPosition);
@@ -402,7 +386,7 @@ void CLOSURE_NAME(
/* ---------------------------- */
#if defined(CLOSURE_GLOSSY) || defined(CLOSURE_DIFFUSE)
vec3 bent_normal;
- float final_ao = occlusion_compute(N, viewPosition, ao, rand.rg, bent_normal);
+ float final_ao = occlusion_compute(N, viewPosition, ao, rand, bent_normal);
#endif
@@ -417,12 +401,14 @@ void CLOSURE_NAME(
/* This factor is outputed to be used by SSR in order
* to match the intensity of the regular reflections. */
ssr_spec = F_ibl(f0, brdf_lut);
- if (!(ssrToggle && ssr_id == outputSsrId)) {
- /* The SSR pass recompute the occlusion to not apply it to the SSR */
- ssr_spec *= specular_occlusion(NV, final_ao, roughness);
+ float spec_occlu = specular_occlusion(NV, final_ao, roughness);
+
+ /* The SSR pass recompute the occlusion to not apply it to the SSR */
+ if (ssrToggle && ssr_id == outputSsrId) {
+ spec_occlu = 1.0;
}
- out_spec += spec_accum.rgb * ssr_spec * float(specToggle);
+ out_spec += spec_accum.rgb * ssr_spec * spec_occlu * float(specToggle);
#endif
#ifdef CLOSURE_REFRACTION
@@ -452,7 +438,7 @@ void CLOSURE_NAME(
/* Irradiance Grids */
/* ---------------------------- */
/* Start at 1 because 0 is world irradiance */
- for (int i = 1; i < MAX_GRID && i < grid_count && diff_accum.a < 0.999; ++i) {
+ for (int i = 1; i < MAX_GRID && i < prbNumRenderGrid && diff_accum.a < 0.999; ++i) {
GridData gd = grids_data[i];
vec3 localpos;
@@ -467,7 +453,7 @@ void CLOSURE_NAME(
/* ---------------------------- */
/* World Diffuse */
/* ---------------------------- */
- if (diff_accum.a < 0.999 && grid_count > 0) {
+ if (diff_accum.a < 0.999 && prbNumRenderGrid > 0) {
vec3 diff = probe_evaluate_world_diff(bent_normal);
accumulate_light(diff, 1.0, diff_accum);
}
diff --git a/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl b/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl
index ffaa81c3638..5c62cb19152 100644
--- a/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/ltc_lib.glsl
@@ -1,150 +1,140 @@
-/* Mainly From https://eheitzresearch.wordpress.com/415-2/ */
+/**
+ * Adapted from :
+ * Real-Time Polygonal-Light Shading with Linearly Transformed Cosines.
+ * Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt.
+ * ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2016) 35(4), 2016.
+ * Project page: https://eheitzresearch.wordpress.com/415-2/
+ **/
#define USE_LTC
#ifndef UTIL_TEX
#define UTIL_TEX
uniform sampler2DArray utilTex;
+#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */
-/* from Real-Time Area Lighting: a Journey from Research to Production
- * Stephen Hill and Eric Heitz */
-float edge_integral(vec3 p1, vec3 p2)
+/* Diffuse *clipped* sphere integral. */
+float diffuse_sphere_integral_lut(float avg_dir_z, float form_factor)
{
-#if 0
- /* more accurate replacement of acos */
- float x = dot(p1, p2);
- float y = abs(x);
+ vec2 uv = vec2(avg_dir_z * 0.5 + 0.5, form_factor);
+ uv = uv * (LUT_SIZE - 1.0) / LUT_SIZE + 0.5 / LUT_SIZE;
- float a = 5.42031 + (3.12829 + 0.0902326 * y) * y;
- float b = 3.45068 + (4.18814 + y) * y;
- float theta_sintheta = a / b;
-
- if (x < 0.0) {
- theta_sintheta = (M_PI / sqrt(1.0 - x * x)) - theta_sintheta;
- }
- vec3 u = cross(p1, p2);
- return theta_sintheta * dot(u, N);
-#endif
- float cos_theta = dot(p1, p2);
- cos_theta = clamp(cos_theta, -0.9999, 0.9999);
+ return texture(utilTex, vec3(uv, 1.0)).w;
+}
- float theta = acos(cos_theta);
- vec3 u = normalize(cross(p1, p2));
- return theta * cross(p1, p2).z / sin(theta);
+float diffuse_sphere_integral_cheap(float avg_dir_z, float form_factor)
+{
+ return max((form_factor * form_factor + avg_dir_z) / (form_factor + 1.0), 0.0);
}
-int clip_quad_to_horizon(inout vec3 L[5])
+/**
+ * An extended version of the implementation from
+ * "How to solve a cubic equation, revisited"
+ * http://momentsingraphics.de/?p=105
+ **/
+vec3 solve_cubic(vec4 coefs)
{
- /* detect clipping config */
- int config = 0;
- if (L[0].z > 0.0) config += 1;
- if (L[1].z > 0.0) config += 2;
- if (L[2].z > 0.0) config += 4;
- if (L[3].z > 0.0) config += 8;
+ /* Normalize the polynomial */
+ coefs.xyz /= coefs.w;
+ /* Divide middle coefficients by three */
+ coefs.yz /= 3.0;
- /* clip */
- int n = 0;
+ float A = coefs.w;
+ float B = coefs.z;
+ float C = coefs.y;
+ float D = coefs.x;
- if (config == 0)
- {
- /* clip all */
- }
- else if (config == 1) /* V1 clip V2 V3 V4 */
- {
- n = 3;
- L[1] = -L[1].z * L[0] + L[0].z * L[1];
- L[2] = -L[3].z * L[0] + L[0].z * L[3];
- }
- else if (config == 2) /* V2 clip V1 V3 V4 */
- {
- n = 3;
- L[0] = -L[0].z * L[1] + L[1].z * L[0];
- L[2] = -L[2].z * L[1] + L[1].z * L[2];
- }
- else if (config == 3) /* V1 V2 clip V3 V4 */
- {
- n = 4;
- L[2] = -L[2].z * L[1] + L[1].z * L[2];
- L[3] = -L[3].z * L[0] + L[0].z * L[3];
- }
- else if (config == 4) /* V3 clip V1 V2 V4 */
- {
- n = 3;
- L[0] = -L[3].z * L[2] + L[2].z * L[3];
- L[1] = -L[1].z * L[2] + L[2].z * L[1];
- }
- else if (config == 5) /* V1 V3 clip V2 V4) impossible */
- {
- n = 0;
- }
- else if (config == 6) /* V2 V3 clip V1 V4 */
- {
- n = 4;
- L[0] = -L[0].z * L[1] + L[1].z * L[0];
- L[3] = -L[3].z * L[2] + L[2].z * L[3];
- }
- else if (config == 7) /* V1 V2 V3 clip V4 */
- {
- n = 5;
- L[4] = -L[3].z * L[0] + L[0].z * L[3];
- L[3] = -L[3].z * L[2] + L[2].z * L[3];
- }
- else if (config == 8) /* V4 clip V1 V2 V3 */
- {
- n = 3;
- L[0] = -L[0].z * L[3] + L[3].z * L[0];
- L[1] = -L[2].z * L[3] + L[3].z * L[2];
- L[2] = L[3];
- }
- else if (config == 9) /* V1 V4 clip V2 V3 */
- {
- n = 4;
- L[1] = -L[1].z * L[0] + L[0].z * L[1];
- L[2] = -L[2].z * L[3] + L[3].z * L[2];
- }
- else if (config == 10) /* V2 V4 clip V1 V3) impossible */
- {
- n = 0;
- }
- else if (config == 11) /* V1 V2 V4 clip V3 */
- {
- n = 5;
- L[4] = L[3];
- L[3] = -L[2].z * L[3] + L[3].z * L[2];
- L[2] = -L[2].z * L[1] + L[1].z * L[2];
- }
- else if (config == 12) /* V3 V4 clip V1 V2 */
+ /* Compute the Hessian and the discriminant */
+ vec3 delta = vec3(
+ -coefs.z*coefs.z + coefs.y,
+ -coefs.y*coefs.z + coefs.x,
+ dot(vec2(coefs.z, -coefs.y), coefs.xy)
+ );
+
+ /* Discriminant */
+ float discr = dot(vec2(4.0 * delta.x, -delta.y), delta.zy);
+
+ vec2 xlc, xsc;
+
+ /* Algorithm A */
{
- n = 4;
- L[1] = -L[1].z * L[2] + L[2].z * L[1];
- L[0] = -L[0].z * L[3] + L[3].z * L[0];
+ float A_a = 1.0;
+ float C_a = delta.x;
+ float D_a = -2.0 * B * delta.x + delta.y;
+
+ /* Take the cubic root of a normalized complex number */
+ float theta = atan(sqrt(discr), -D_a) / 3.0;
+
+ float x_1a = 2.0 * sqrt(-C_a) * cos(theta);
+ float x_3a = 2.0 * sqrt(-C_a) * cos(theta + (2.0 / 3.0) * M_PI);
+
+ float xl;
+ if ((x_1a + x_3a) > 2.0 * B) {
+ xl = x_1a;
+ }
+ else {
+ xl = x_3a;
+ }
+
+ xlc = vec2(xl - B, A);
}
- else if (config == 13) /* V1 V3 V4 clip V2 */
+
+ /* Algorithm D */
{
- n = 5;
- L[4] = L[3];
- L[3] = L[2];
- L[2] = -L[1].z * L[2] + L[2].z * L[1];
- L[1] = -L[1].z * L[0] + L[0].z * L[1];
+ float A_d = D;
+ float C_d = delta.z;
+ float D_d = -D * delta.y + 2.0 * C * delta.z;
+
+ /* Take the cubic root of a normalized complex number */
+ float theta = atan(D * sqrt(discr), -D_d) / 3.0;
+
+ float x_1d = 2.0 * sqrt(-C_d) * cos(theta);
+ float x_3d = 2.0 * sqrt(-C_d) * cos(theta + (2.0 / 3.0) * M_PI);
+
+ float xs;
+ if (x_1d + x_3d < 2.0 * C)
+ xs = x_1d;
+ else
+ xs = x_3d;
+
+ xsc = vec2(-D, xs + C);
}
- else if (config == 14) /* V2 V3 V4 clip V1 */
- {
- n = 5;
- L[4] = -L[0].z * L[3] + L[3].z * L[0];
- L[0] = -L[0].z * L[1] + L[1].z * L[0];
+
+ float E = xlc.y * xsc.y;
+ float F = -xlc.x * xsc.y - xlc.y * xsc.x;
+ float G = xlc.x * xsc.x;
+
+ vec2 xmc = vec2(C * F - B * G, -B * F + C * E);
+
+ vec3 root = vec3(xsc.x / xsc.y,
+ xmc.x / xmc.y,
+ xlc.x / xlc.y);
+
+ if (root.x < root.y && root.x < root.z) {
+ root.xyz = root.yxz;
}
- else if (config == 15) /* V1 V2 V3 V4 */
- {
- n = 4;
+ else if (root.z < root.x && root.z < root.y) {
+ root.xyz = root.xzy;
}
- if (n == 3)
- L[3] = L[0];
- if (n == 4)
- L[4] = L[0];
+ return root;
+}
+
+/* from Real-Time Area Lighting: a Journey from Research to Production
+ * Stephen Hill and Eric Heitz */
+vec3 edge_integral_vec(vec3 v1, vec3 v2)
+{
+ float x = dot(v1, v2);
+ float y = abs(x);
+
+ float a = 0.8543985 + (0.4965155 + 0.0145206 * y) * y;
+ float b = 3.4175940 + (4.1616724 + y) * y;
+ float v = a / b;
- return n;
+ float theta_sintheta = (x > 0.0) ? v : 0.5 * inversesqrt(max(1.0 - x * x, 1e-7)) - v;
+
+ return cross(v1, v2) * theta_sintheta;
}
mat3 ltc_matrix(vec4 lut)
@@ -159,7 +149,7 @@ mat3 ltc_matrix(vec4 lut)
return Minv;
}
-float ltc_evaluate(vec3 N, vec3 V, mat3 Minv, vec3 corners[4])
+void ltc_transform_quad(vec3 N, vec3 V, mat3 Minv, inout vec3 corners[4])
{
/* Avoid dot(N, V) == 1 in ortho mode, leading T1 normalize to fail. */
V = normalize(V + 1e-8);
@@ -172,42 +162,51 @@ float ltc_evaluate(vec3 N, vec3 V, mat3 Minv, vec3 corners[4])
/* rotate area light in (T1, T2, R) basis */
Minv = Minv * transpose(mat3(T1, T2, N));
- /* polygon (allocate 5 vertices for clipping) */
- vec3 L[5];
- L[0] = Minv * corners[0];
- L[1] = Minv * corners[1];
- L[2] = Minv * corners[2];
- L[3] = Minv * corners[3];
-
- int n = clip_quad_to_horizon(L);
-
- if (n == 0)
- return 0.0;
-
- /* project onto sphere */
- L[0] = normalize(L[0]);
- L[1] = normalize(L[1]);
- L[2] = normalize(L[2]);
- L[3] = normalize(L[3]);
- L[4] = normalize(L[4]);
-
- /* integrate */
- float sum = 0.0;
-
- sum += edge_integral(L[0], L[1]);
- sum += edge_integral(L[1], L[2]);
- sum += edge_integral(L[2], L[3]);
- if (n >= 4)
- sum += edge_integral(L[3], L[4]);
- if (n == 5)
- sum += edge_integral(L[4], L[0]);
-
- return abs(sum);
+ /* Apply LTC inverse matrix. */
+ corners[0] = normalize(Minv * corners[0]);
+ corners[1] = normalize(Minv * corners[1]);
+ corners[2] = normalize(Minv * corners[2]);
+ corners[3] = normalize(Minv * corners[3]);
}
-/* Aproximate circle with an octogone */
-#define LTC_CIRCLE_RES 8
-float ltc_evaluate_circle(vec3 N, vec3 V, mat3 Minv, vec3 p[LTC_CIRCLE_RES])
+/* If corners have already pass through ltc_transform_quad(), then N **MUST** be vec3(0.0, 0.0, 1.0),
+ * corresponding to the Up axis of the shading basis. */
+float ltc_evaluate_quad(vec3 corners[4], vec3 N)
+{
+ /* Approximation using a sphere of the same solid angle than the quad.
+ * Finding the clipped sphere diffuse integral is easier than clipping the quad. */
+ vec3 avg_dir;
+ avg_dir = edge_integral_vec(corners[0], corners[1]);
+ avg_dir += edge_integral_vec(corners[1], corners[2]);
+ avg_dir += edge_integral_vec(corners[2], corners[3]);
+ avg_dir += edge_integral_vec(corners[3], corners[0]);
+
+ float form_factor = length(avg_dir);
+ float avg_dir_z = dot(N, avg_dir / form_factor);
+
+#if 1 /* use tabulated horizon-clipped sphere */
+ return form_factor * diffuse_sphere_integral_lut(avg_dir_z, form_factor);
+#else /* Less accurate version, a bit cheaper. */
+ return form_factor * diffuse_sphere_integral_cheap(avg_dir_z, form_factor);
+#endif
+}
+
+/* If disk does not need to be transformed and is already front facing. */
+float ltc_evaluate_disk_simple(float disk_radius, float NL)
+{
+ float r_sqr = disk_radius * disk_radius;
+ float one_r_sqr = 1.0 + r_sqr;
+ float form_factor = r_sqr * inversesqrt(one_r_sqr * one_r_sqr);
+
+#if 1 /* use tabulated horizon-clipped sphere */
+ return form_factor * diffuse_sphere_integral_lut(NL, form_factor);
+#else /* Less accurate version, a bit cheaper. */
+ return form_factor * diffuse_sphere_integral_cheap(NL, form_factor);
+#endif
+}
+
+/* disk_points are WS vectors from the shading point to the disk "bounding domain" */
+float ltc_evaluate_disk(vec3 N, vec3 V, mat3 Minv, vec3 disk_points[3])
{
/* Avoid dot(N, V) == 1 in ortho mode, leading T1 normalize to fail. */
V = normalize(V + 1e-8);
@@ -218,23 +217,106 @@ float ltc_evaluate_circle(vec3 N, vec3 V, mat3 Minv, vec3 p[LTC_CIRCLE_RES])
T2 = cross(N, T1);
/* rotate area light in (T1, T2, R) basis */
- Minv = Minv * transpose(mat3(T1, T2, N));
+ mat3 R = transpose(mat3(T1, T2, N));
- for (int i = 0; i < LTC_CIRCLE_RES; ++i) {
- p[i] = Minv * p[i];
- /* clip to horizon */
- p[i].z = max(0.0, p[i].z);
- /* project onto sphere */
- p[i] = normalize(p[i]);
- }
+ /* Intermediate step: init ellipse. */
+ vec3 L_[3];
+ L_[0] = mul(R, disk_points[0]);
+ L_[1] = mul(R, disk_points[1]);
+ L_[2] = mul(R, disk_points[2]);
+
+ vec3 C = 0.5 * (L_[0] + L_[2]);
+ vec3 V1 = 0.5 * (L_[1] - L_[2]);
+ vec3 V2 = 0.5 * (L_[1] - L_[0]);
+
+ /* Transform ellipse by Minv. */
+ C = Minv * C;
+ V1 = Minv * V1;
+ V2 = Minv * V2;
+
+ /* Compute eigenvectors of new ellipse. */
- /* integrate */
- float sum = 0.0;
- for (int i = 0; i < LTC_CIRCLE_RES - 1; ++i) {
- sum += edge_integral(p[i], p[i + 1]);
+ float d11 = dot(V1, V1);
+ float d22 = dot(V2, V2);
+ float d12 = dot(V1, V2);
+ float a, b; /* Eigenvalues */
+ const float threshold = 0.0007; /* Can be adjusted. Fix artifacts. */
+ if (abs(d12) / sqrt(d11 * d22) > threshold) {
+ float tr = d11 + d22;
+ float det = -d12 * d12 + d11 * d22;
+
+ /* use sqrt matrix to solve for eigenvalues */
+ det = sqrt(det);
+ float u = 0.5 * sqrt(tr - 2.0 * det);
+ float v = 0.5 * sqrt(tr + 2.0 * det);
+ float e_max = (u + v);
+ float e_min = (u - v);
+ e_max *= e_max;
+ e_min *= e_min;
+
+ vec3 V1_, V2_;
+ if (d11 > d22) {
+ V1_ = d12 * V1 + (e_max - d11) * V2;
+ V2_ = d12 * V1 + (e_min - d11) * V2;
+ }
+ else {
+ V1_ = d12 * V2 + (e_max - d22) * V1;
+ V2_ = d12 * V2 + (e_min - d22) * V1;
+ }
+
+ a = 1.0 / e_max;
+ b = 1.0 / e_min;
+ V1 = normalize(V1_);
+ V2 = normalize(V2_);
}
- sum += edge_integral(p[LTC_CIRCLE_RES - 1], p[0]);
+ else {
+ a = 1.0 / d11;
+ b = 1.0 / d22;
+ V1 *= sqrt(a);
+ V2 *= sqrt(b);
+ }
+
+ /* Now find front facing ellipse with same solid angle. */
- return max(0.0, sum);
+ vec3 V3 = normalize(cross(V1, V2));
+ if (dot(C, V3) < 0.0)
+ V3 *= -1.0;
+
+ float L = dot(V3, C);
+ float x0 = dot(V1, C) / L;
+ float y0 = dot(V2, C) / L;
+
+ a *= L*L;
+ b *= L*L;
+
+ float c0 = a * b;
+ float c1 = a * b * (1.0 + x0 * x0 + y0 * y0) - a - b;
+ float c2 = 1.0 - a * (1.0 + x0 * x0) - b * (1.0 + y0 * y0);
+ float c3 = 1.0;
+
+ vec3 roots = solve_cubic(vec4(c0, c1, c2, c3));
+ float e1 = roots.x;
+ float e2 = roots.y;
+ float e3 = roots.z;
+
+ vec3 avg_dir = vec3(a * x0 / (a - e2), b * y0 / (b - e2), 1.0);
+
+ mat3 rotate = mat3(V1, V2, V3);
+
+ avg_dir = rotate * avg_dir;
+ avg_dir = normalize(avg_dir);
+
+ /* L1, L2 are the extends of the front facing ellipse. */
+ float L1 = sqrt(-e2/e3);
+ float L2 = sqrt(-e2/e1);
+
+ /* Find the sphere and compute lighting. */
+ float form_factor = max(0.0, L1 * L2 * inversesqrt((1.0 + L1 * L1) * (1.0 + L2 * L2)));
+
+#if 1 /* use tabulated horizon-clipped sphere */
+ return form_factor * diffuse_sphere_integral_lut(avg_dir.z, form_factor);
+#else /* Less accurate version, a bit cheaper. */
+ return form_factor * diffuse_sphere_integral_cheap(avg_dir.z, form_factor);
+#endif
}
diff --git a/source/blender/draw/engines/eevee/shaders/prepass_frag.glsl b/source/blender/draw/engines/eevee/shaders/prepass_frag.glsl
index f921d56e3bc..1c0e65f0613 100644
--- a/source/blender/draw/engines/eevee/shaders/prepass_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/prepass_frag.glsl
@@ -10,14 +10,15 @@ float hash3d(vec3 a) {
return hash(vec2(hash(a.xy), a.z));
}
-//uniform float hashScale;
-float hashScale = 0.001;
+uniform float hashAlphaOffset;
float hashed_alpha_threshold(vec3 co)
{
+ const float hash_scale = 1.0; /* Roughly in pixel */
+
/* Find the discretized derivatives of our coordinates. */
float max_deriv = max(length(dFdx(co)), length(dFdy(co)));
- float pix_scale = 1.0 / (hashScale * max_deriv);
+ float pix_scale = 1.0 / (hash_scale * max_deriv);
/* Find two nearest log-discretized noise scales. */
float pix_scale_log = log2(pix_scale);
@@ -53,7 +54,8 @@ float hashed_alpha_threshold(vec3 co)
/* Avoids threshold == 0. */
threshold = clamp(threshold, 1.0e-6, 1.0);
- return threshold;
+ /* Jitter the threshold for TAA accumulation. */
+ return fract(threshold + hashAlphaOffset);
}
#endif
diff --git a/source/blender/draw/engines/eevee/shaders/raytrace_lib.glsl b/source/blender/draw/engines/eevee/shaders/raytrace_lib.glsl
index c593081ce91..cb75731b7da 100644
--- a/source/blender/draw/engines/eevee/shaders/raytrace_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/raytrace_lib.glsl
@@ -1,13 +1,5 @@
#define MAX_STEP 256
-uniform vec4 ssrParameters;
-
-#define ssrQuality ssrParameters.x
-#define ssrThickness ssrParameters.y
-#define ssrPixelSize ssrParameters.zw
-
-uniform float borderFadeFactor;
-
float sample_depth(vec2 uv, int index, float lod)
{
#ifdef PLANAR_PROBE_RAYTRACE
@@ -233,7 +225,7 @@ vec3 raycast(
float screen_border_mask(vec2 hit_co)
{
const float margin = 0.003;
- float atten = borderFadeFactor + margin; /* Screen percentage */
+ float atten = ssrBorderFac + margin; /* Screen percentage */
hit_co = smoothstep(margin, atten, hit_co) * (1 - smoothstep(1.0 - atten, 1.0 - margin, hit_co));
float screenfade = hit_co.x * hit_co.y;
diff --git a/source/blender/draw/engines/eevee/shaders/ssr_lib.glsl b/source/blender/draw/engines/eevee/shaders/ssr_lib.glsl
index 92287d2ecbc..6c7bfeb6b82 100644
--- a/source/blender/draw/engines/eevee/shaders/ssr_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/ssr_lib.glsl
@@ -2,10 +2,9 @@
#define BTDF_BIAS 0.85
-vec4 screen_space_refraction(vec3 viewPosition, vec3 N, vec3 V, float ior, float roughnessSquared, vec3 rand, float ofs)
+vec4 screen_space_refraction(vec3 viewPosition, vec3 N, vec3 V, float ior, float roughnessSquared, vec4 rand)
{
float a2 = max(5e-6, roughnessSquared * roughnessSquared);
- float jitter = fract(rand.x + ofs);
/* Importance sampling bias */
rand.x = mix(rand.x, 0.0, BTDF_BIAS);
@@ -13,12 +12,12 @@ vec4 screen_space_refraction(vec3 viewPosition, vec3 N, vec3 V, float ior, float
vec3 T, B;
float NH;
make_orthonormal_basis(N, T, B);
- vec3 H = sample_ggx(rand, a2, N, T, B, NH); /* Microfacet normal */
+ vec3 H = sample_ggx(rand.xzw, a2, N, T, B, NH); /* Microfacet normal */
float pdf = pdf_ggx_reflect(NH, a2);
/* If ray is bad (i.e. going below the plane) regenerate. */
if (F_eta(ior, dot(H, V)) < 1.0) {
- H = sample_ggx(rand * vec3(1.0, -1.0, -1.0), a2, N, T, B, NH); /* Microfacet normal */
+ H = sample_ggx(rand.xzw * vec3(1.0, -1.0, -1.0), a2, N, T, B, NH); /* Microfacet normal */
pdf = pdf_ggx_reflect(NH, a2);
}
@@ -33,7 +32,7 @@ vec4 screen_space_refraction(vec3 viewPosition, vec3 N, vec3 V, float ior, float
R = transform_direction(ViewMatrix, R);
- vec3 hit_pos = raycast(-1, viewPosition, R * 1e16, ssrThickness, jitter, ssrQuality, roughnessSquared, false);
+ vec3 hit_pos = raycast(-1, viewPosition, R * 1e16, ssrThickness, rand.y, ssrQuality, roughnessSquared, false);
if ((hit_pos.z > 0.0) && (F_eta(ior, dot(H, V)) < 1.0)) {
hit_pos = get_view_space_from_depth(hit_pos.xy, hit_pos.z);
diff --git a/source/blender/draw/engines/eevee/shaders/update_noise_frag.glsl b/source/blender/draw/engines/eevee/shaders/update_noise_frag.glsl
new file mode 100644
index 00000000000..13ffe02eb0d
--- /dev/null
+++ b/source/blender/draw/engines/eevee/shaders/update_noise_frag.glsl
@@ -0,0 +1,18 @@
+
+uniform sampler2D blueNoise;
+uniform vec3 offsets;
+
+out vec4 FragColor;
+
+#define M_2PI 6.28318530717958647692
+
+void main(void)
+{
+ vec2 blue_noise = texelFetch(blueNoise, ivec2(gl_FragCoord.xy), 0).xy;
+
+ float noise = fract(blue_noise.y + offsets.z);
+ FragColor.x = fract(blue_noise.x + offsets.x);
+ FragColor.y = fract(blue_noise.y + offsets.y);
+ FragColor.z = cos(noise * M_2PI);
+ FragColor.w = sin(noise * M_2PI);
+}
diff --git a/source/blender/draw/engines/eevee/shaders/volumetric_frag.glsl b/source/blender/draw/engines/eevee/shaders/volumetric_frag.glsl
index 00e01e753f9..3a293647f84 100644
--- a/source/blender/draw/engines/eevee/shaders/volumetric_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/volumetric_frag.glsl
@@ -4,9 +4,6 @@
#define NODETREE_EXEC
-uniform ivec3 volumeTextureSize;
-uniform vec3 volume_jitter;
-
#ifdef MESH_SHADER
uniform mat4 volumeObjectMatrix;
uniform vec3 volumeOrcoLoc;
@@ -33,7 +30,7 @@ layout(location = 3) out vec4 volumePhase;
void main()
{
ivec3 volume_cell = ivec3(gl_FragCoord.xy, slice);
- vec3 ndc_cell = volume_to_ndc((vec3(volume_cell) + volume_jitter) / volumeTextureSize);
+ vec3 ndc_cell = volume_to_ndc((vec3(volume_cell) + volJitter.xyz) * volInvTexSize.xyz);
viewPosition = get_view_space_from_depth(ndc_cell.xy, ndc_cell.z);
worldPosition = transform_point(ViewMatrixInverse, viewPosition);
diff --git a/source/blender/draw/engines/eevee/shaders/volumetric_lib.glsl b/source/blender/draw/engines/eevee/shaders/volumetric_lib.glsl
index 1376c53d633..1a8167c2830 100644
--- a/source/blender/draw/engines/eevee/shaders/volumetric_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/volumetric_lib.glsl
@@ -2,22 +2,16 @@
/* Based on Frosbite Unified Volumetric.
* https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite */
-uniform float volume_light_clamp;
-
-uniform vec3 volume_param; /* Parameters to the volume Z equation */
-
-uniform vec2 volume_uv_ratio; /* To convert volume uvs to screen uvs */
-
/* Volume slice to view space depth. */
float volume_z_to_view_z(float z)
{
if (ProjectionMatrix[3][3] == 0.0) {
/* Exponential distribution */
- return (exp2(z / volume_param.z) - volume_param.x) / volume_param.y;
+ return (exp2(z / volDepthParameters.z) - volDepthParameters.x) / volDepthParameters.y;
}
else {
/* Linear distribution */
- return mix(volume_param.x, volume_param.y, z);
+ return mix(volDepthParameters.x, volDepthParameters.y, z);
}
}
@@ -25,11 +19,11 @@ float view_z_to_volume_z(float depth)
{
if (ProjectionMatrix[3][3] == 0.0) {
/* Exponential distribution */
- return volume_param.z * log2(depth * volume_param.y + volume_param.x);
+ return volDepthParameters.z * log2(depth * volDepthParameters.y + volDepthParameters.x);
}
else {
/* Linear distribution */
- return (depth - volume_param.x) * volume_param.z;
+ return (depth - volDepthParameters.x) * volDepthParameters.z;
}
}
@@ -38,7 +32,7 @@ vec3 volume_to_ndc(vec3 cos)
{
cos.z = volume_z_to_view_z(cos.z);
cos.z = get_depth_from_view_z(cos.z);
- cos.xy /= volume_uv_ratio;
+ cos.xy /= volCoordScale.xy;
return cos;
}
@@ -46,7 +40,7 @@ vec3 ndc_to_volume(vec3 cos)
{
cos.z = get_view_z_from_depth(cos.z);
cos.z = view_z_to_volume_z(cos.z);
- cos.xy *= volume_uv_ratio;
+ cos.xy *= volCoordScale.xy;
return cos;
}
@@ -71,14 +65,17 @@ vec3 light_volume(LightData ld, vec4 l_vector)
/* TODO : Area lighting ? */
/* XXX : Removing Area Power. */
/* TODO : put this out of the shader. */
+ /* See eevee_light_setup(). */
if (ld.l_type == AREA) {
- power = 0.0962 * (ld.l_sizex * ld.l_sizey * 4.0 * M_PI);
+ power = (ld.l_sizex * ld.l_sizey * 4.0 * M_PI) * (1.0 / 80.0);
+ power *= 20.0 * max(0.0, dot(-ld.l_forward, l_vector.xyz / l_vector.w)); /* XXX ad hoc, empirical */
}
else if (ld.l_type == SUN) {
- power = 1.0;
+ power = (4.0f * ld.l_radius * ld.l_radius * M_2PI) * (1.0 / 12.5); /* Removing area light power*/
+ power *= M_2PI * 0.78; /* Matching cycles with point light. */
}
else {
- power = 0.0248 * (4.0 * ld.l_radius * ld.l_radius * M_PI * M_PI);
+ power = (4.0 * ld.l_radius * ld.l_radius) * (1.0 /10.0);
}
/* OPTI: find a better way than calculating this on the fly */
@@ -87,15 +84,13 @@ vec3 light_volume(LightData ld, vec4 l_vector)
power /= (l_vector.w * l_vector.w);
- lum = min(lum * power, volume_light_clamp);
+ lum = min(lum * power, volLightClamp);
return tint * lum;
}
#define VOLUMETRIC_SHADOW_MAX_STEP 32.0
-uniform float volume_shadows_steps;
-
vec3 participating_media_extinction(vec3 wpos, sampler3D volume_extinction)
{
/* Waiting for proper volume shadowmaps and out of frustum shadow map. */
@@ -110,11 +105,11 @@ vec3 light_volume_shadow(LightData ld, vec3 ray_wpos, vec4 l_vector, sampler3D v
{
#if defined(VOLUME_SHADOW)
/* Heterogeneous volume shadows */
- float dd = l_vector.w / volume_shadows_steps;
+ float dd = l_vector.w / volShadowSteps;
vec3 L = l_vector.xyz * l_vector.w;
vec3 shadow = vec3(1.0);
- for (float s = 0.5; s < VOLUMETRIC_SHADOW_MAX_STEP && s < (volume_shadows_steps - 0.1); s += 1.0) {
- vec3 pos = ray_wpos + L * (s / volume_shadows_steps);
+ for (float s = 0.5; s < VOLUMETRIC_SHADOW_MAX_STEP && s < (volShadowSteps - 0.1); s += 1.0) {
+ vec3 pos = ray_wpos + L * (s / volShadowSteps);
vec3 s_extinction = participating_media_extinction(pos, volume_extinction);
shadow *= exp(-s_extinction * dd);
}
diff --git a/source/blender/draw/engines/eevee/shaders/volumetric_scatter_frag.glsl b/source/blender/draw/engines/eevee/shaders/volumetric_scatter_frag.glsl
index ea402ff3d99..fcbb6661b14 100644
--- a/source/blender/draw/engines/eevee/shaders/volumetric_scatter_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/volumetric_scatter_frag.glsl
@@ -13,28 +13,20 @@ uniform sampler3D volumePhase;
uniform sampler3D historyScattering;
uniform sampler3D historyTransmittance;
-uniform vec3 volume_jitter;
-uniform float volume_history_alpha;
-uniform int light_count;
-uniform mat4 PastViewProjectionMatrix;
-
flat in int slice;
layout(location = 0) out vec4 outScattering;
layout(location = 1) out vec4 outTransmittance;
-#define VOLUME_LIGHTING
-
void main()
{
- vec3 volume_tex_size = vec3(textureSize(volumeScattering, 0));
ivec3 volume_cell = ivec3(gl_FragCoord.xy, slice);
/* Emission */
outScattering = texelFetch(volumeEmission, volume_cell, 0);
outTransmittance = texelFetch(volumeExtinction, volume_cell, 0);
vec3 s_scattering = texelFetch(volumeScattering, volume_cell, 0).rgb;
- vec3 volume_ndc = volume_to_ndc((vec3(volume_cell) + volume_jitter) / volume_tex_size);
+ vec3 volume_ndc = volume_to_ndc((vec3(volume_cell) + volJitter.xyz) * volInvTexSize.xyz);
vec3 worldPosition = get_world_space_from_depth(volume_ndc.xy, volume_ndc.z);
vec3 wdir = cameraVec;
@@ -45,7 +37,7 @@ void main()
outScattering.rgb += irradiance_volumetric(worldPosition) * s_scattering * phase_function_isotropic();
#ifdef VOLUME_LIGHTING /* Lights */
- for (int i = 0; i < MAX_LIGHT && i < light_count; ++i) {
+ for (int i = 0; i < MAX_LIGHT && i < laNumLight; ++i) {
LightData ld = lights_data[i];
@@ -63,16 +55,16 @@ void main()
/* Temporal supersampling */
/* Note : this uses the cell non-jittered position (texel center). */
- vec3 curr_ndc = volume_to_ndc(vec3(gl_FragCoord.xy, float(slice) + 0.5) / volume_tex_size);
+ vec3 curr_ndc = volume_to_ndc(vec3(gl_FragCoord.xy, float(slice) + 0.5) * volInvTexSize.xyz);
vec3 wpos = get_world_space_from_depth(curr_ndc.xy, curr_ndc.z);
- vec3 prev_ndc = project_point(PastViewProjectionMatrix, wpos);
+ vec3 prev_ndc = project_point(pastViewProjectionMatrix, wpos);
vec3 prev_volume = ndc_to_volume(prev_ndc * 0.5 + 0.5);
- if ((volume_history_alpha > 0.0) && all(greaterThan(prev_volume, vec3(0.0))) && all(lessThan(prev_volume, vec3(1.0)))) {
+ if ((volHistoryAlpha > 0.0) && all(greaterThan(prev_volume, vec3(0.0))) && all(lessThan(prev_volume, vec3(1.0)))) {
vec4 h_Scattering = texture(historyScattering, prev_volume);
vec4 h_Transmittance = texture(historyTransmittance, prev_volume);
- outScattering = mix(outScattering, h_Scattering, volume_history_alpha);
- outTransmittance = mix(outTransmittance, h_Transmittance, volume_history_alpha);
+ outScattering = mix(outScattering, h_Scattering, volHistoryAlpha);
+ outTransmittance = mix(outTransmittance, h_Transmittance, volHistoryAlpha);
}
/* Catch NaNs */