Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMartin Poirier <theeth@yahoo.com>2008-12-29 04:41:28 +0300
committerMartin Poirier <theeth@yahoo.com>2008-12-29 04:41:28 +0300
commitb6b61681efd322bd800bcaba55099cdf147547b2 (patch)
treebf745c0c58ee608ac8c3c53aa97a14932fc9135f /source/blender/editors/transform/transform_constraints.c
parent97a82102d4d24a94d8360a6f5f054e44f6fb1993 (diff)
2.5
Transform: First working port of the transform code: - Object mode only (other conversions need to be ported) - Contraints (global and local only) working - Snap (no edit mode, obviously) working - Numinput working - Gears (Ctrl and Shift) working - Only grap, rotate, scale, shear, warp and to sphere have been added as hotkey, but the rest should work too once accessible - No manipulator - No drawn feedback other than moving stuff and header print (no constraint line, snap circle, ...) - No NDOF support I've only tested Scons support, though Makefil *should* work, I *think*. Misc: -QuatIsNull function in arith -Exporting project_* and view[line|ray] functions from view3d
Diffstat (limited to 'source/blender/editors/transform/transform_constraints.c')
-rw-r--r--source/blender/editors/transform/transform_constraints.c1070
1 files changed, 1070 insertions, 0 deletions
diff --git a/source/blender/editors/transform/transform_constraints.c b/source/blender/editors/transform/transform_constraints.c
new file mode 100644
index 00000000000..94c4ffa1497
--- /dev/null
+++ b/source/blender/editors/transform/transform_constraints.c
@@ -0,0 +1,1070 @@
+/**
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#ifndef WIN32
+#include <unistd.h>
+#else
+#include <io.h>
+#endif
+
+#include "MEM_guardedalloc.h"
+
+#include "DNA_action_types.h"
+#include "DNA_armature_types.h"
+#include "DNA_camera_types.h"
+#include "DNA_curve_types.h"
+#include "DNA_effect_types.h"
+#include "DNA_image_types.h"
+#include "DNA_ipo_types.h"
+#include "DNA_key_types.h"
+#include "DNA_lamp_types.h"
+#include "DNA_lattice_types.h"
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_meta_types.h"
+#include "DNA_object_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_screen_types.h"
+#include "DNA_space_types.h"
+#include "DNA_view3d_types.h"
+
+//#include "BIF_screen.h"
+//#include "BIF_resources.h"
+//#include "BIF_mywindow.h"
+#include "BIF_gl.h"
+#include "BIF_glutil.h"
+
+#include "BKE_global.h"
+#include "BKE_utildefines.h"
+
+#include "ED_view3d.h"
+
+#include "BLI_arithb.h"
+
+//#include "BDR_drawobject.h" /* drawcircball */
+//
+//#include "blendef.h"
+//
+//#include "mydevice.h"
+
+#include "WM_types.h"
+
+#include "transform.h"
+
+static void drawObjectConstraint(TransInfo *t);
+
+/* ************************** CONSTRAINTS ************************* */
+void constraintNumInput(TransInfo *t, float vec[3])
+{
+ int mode = t->con.mode;
+ if (mode & CON_APPLY) {
+ float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f;
+
+ if (getConstraintSpaceDimension(t) == 2) {
+ int axis = mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
+ if (axis == (CON_AXIS0|CON_AXIS1)) {
+ vec[2] = nval;
+ }
+ else if (axis == (CON_AXIS1|CON_AXIS2)) {
+ vec[2] = vec[1];
+ vec[1] = vec[0];
+ vec[0] = nval;
+ }
+ else if (axis == (CON_AXIS0|CON_AXIS2)) {
+ vec[2] = vec[1];
+ vec[1] = nval;
+ }
+ }
+ else if (getConstraintSpaceDimension(t) == 1) {
+ if (mode & CON_AXIS0) {
+ vec[1] = nval;
+ vec[2] = nval;
+ }
+ else if (mode & CON_AXIS1) {
+ vec[1] = vec[0];
+ vec[0] = nval;
+ vec[2] = nval;
+ }
+ else if (mode & CON_AXIS2) {
+ vec[2] = vec[0];
+ vec[0] = nval;
+ vec[1] = nval;
+ }
+ }
+ }
+}
+
+static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3]) {
+ int i = 0;
+
+ Mat3MulVecfl(t->con.imtx, vec);
+
+ snapGrid(t, vec);
+
+ if (t->num.flag & T_NULL_ONE) {
+ if (!(t->con.mode & CON_AXIS0))
+ vec[0] = 1.0f;
+
+ if (!(t->con.mode & CON_AXIS1))
+ vec[1] = 1.0f;
+
+ if (!(t->con.mode & CON_AXIS2))
+ vec[2] = 1.0f;
+ }
+
+ if (hasNumInput(&t->num)) {
+ applyNumInput(&t->num, vec);
+ constraintNumInput(t, vec);
+ }
+
+ if (t->con.mode & CON_AXIS0) {
+ pvec[i++] = vec[0];
+ }
+ if (t->con.mode & CON_AXIS1) {
+ pvec[i++] = vec[1];
+ }
+ if (t->con.mode & CON_AXIS2) {
+ pvec[i++] = vec[2];
+ }
+
+ Mat3MulVecfl(t->con.mtx, vec);
+}
+
+static void axisProjection(TransInfo *t, float axis[3], float in[3], float out[3]) {
+ float norm[3], vec[3], factor;
+
+ if(in[0]==0.0f && in[1]==0.0f && in[2]==0.0f)
+ return;
+
+ /* For when view is parallel to constraint... will cause NaNs otherwise
+ So we take vertical motion in 3D space and apply it to the
+ constraint axis. Nice for camera grab + MMB */
+ if(1.0f - fabs(Inpf(axis, t->viewinv[2])) < 0.000001f) {
+ Projf(vec, in, t->viewinv[1]);
+ factor = Inpf(t->viewinv[1], vec) * 2.0f;
+ /* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */
+ if(factor<0.0f) factor*= -factor;
+ else factor*= factor;
+
+ VECCOPY(out, axis);
+ Normalize(out);
+ VecMulf(out, -factor); /* -factor makes move down going backwards */
+ }
+ else {
+ float cb[3], ab[3];
+
+ VECCOPY(out, axis);
+
+ /* Get view vector on axis to define a plane */
+ VecAddf(vec, t->con.center, in);
+ getViewVector(t, vec, norm);
+
+ Crossf(vec, norm, axis);
+
+ /* Project input vector on the plane passing on axis */
+ Projf(vec, in, vec);
+ VecSubf(vec, in, vec);
+
+ /* intersect the two lines: axis and norm */
+ Crossf(cb, vec, norm);
+ Crossf(ab, axis, norm);
+
+ VecMulf(out, Inpf(cb, ab) / Inpf(ab, ab));
+ }
+}
+
+static void planeProjection(TransInfo *t, float in[3], float out[3]) {
+ float vec[3], factor, norm[3];
+
+ VecAddf(vec, in, t->con.center);
+ getViewVector(t, vec, norm);
+
+ VecSubf(vec, out, in);
+
+ factor = Inpf(vec, norm);
+ if (fabs(factor) <= 0.001) {
+ return; /* prevent divide by zero */
+ }
+ factor = Inpf(vec, vec) / factor;
+
+ VECCOPY(vec, norm);
+ VecMulf(vec, factor);
+
+ VecAddf(out, in, vec);
+}
+
+/*
+ * Generic callback for constant spacial constraints applied to linear motion
+ *
+ * The IN vector in projected into the constrained space and then further
+ * projected along the view vector.
+ * (in perspective mode, the view vector is relative to the position on screen)
+ *
+ */
+
+static void applyAxisConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
+{
+ VECCOPY(out, in);
+ if (!td && t->con.mode & CON_APPLY) {
+ Mat3MulVecfl(t->con.pmtx, out);
+
+ // With snap, a projection is alright, no need to correct for view alignment
+ if ((t->tsnap.status & SNAP_ON) == 0) {
+ if (getConstraintSpaceDimension(t) == 2) {
+ if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
+ planeProjection(t, in, out);
+ }
+ }
+ else if (getConstraintSpaceDimension(t) == 1) {
+ float c[3];
+
+ if (t->con.mode & CON_AXIS0) {
+ VECCOPY(c, t->con.mtx[0]);
+ }
+ else if (t->con.mode & CON_AXIS1) {
+ VECCOPY(c, t->con.mtx[1]);
+ }
+ else if (t->con.mode & CON_AXIS2) {
+ VECCOPY(c, t->con.mtx[2]);
+ }
+ axisProjection(t, c, in, out);
+ }
+ }
+ postConstraintChecks(t, out, pvec);
+ }
+}
+
+/*
+ * Generic callback for object based spacial constraints applied to linear motion
+ *
+ * At first, the following is applied to the first data in the array
+ * The IN vector in projected into the constrained space and then further
+ * projected along the view vector.
+ * (in perspective mode, the view vector is relative to the position on screen)
+ *
+ * Further down, that vector is mapped to each data's space.
+ */
+
+static void applyObjectConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
+{
+ VECCOPY(out, in);
+ if (t->con.mode & CON_APPLY) {
+ if (!td) {
+ Mat3MulVecfl(t->con.pmtx, out);
+ if (getConstraintSpaceDimension(t) == 2) {
+ if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
+ planeProjection(t, in, out);
+ }
+ }
+ else if (getConstraintSpaceDimension(t) == 1) {
+ float c[3];
+
+ if (t->con.mode & CON_AXIS0) {
+ VECCOPY(c, t->con.mtx[0]);
+ }
+ else if (t->con.mode & CON_AXIS1) {
+ VECCOPY(c, t->con.mtx[1]);
+ }
+ else if (t->con.mode & CON_AXIS2) {
+ VECCOPY(c, t->con.mtx[2]);
+ }
+ axisProjection(t, c, in, out);
+ }
+ postConstraintChecks(t, out, pvec);
+ VECCOPY(out, pvec);
+ }
+ else {
+ int i=0;
+
+ out[0] = out[1] = out[2] = 0.0f;
+ if (t->con.mode & CON_AXIS0) {
+ out[0] = in[i++];
+ }
+ if (t->con.mode & CON_AXIS1) {
+ out[1] = in[i++];
+ }
+ if (t->con.mode & CON_AXIS2) {
+ out[2] = in[i++];
+ }
+ Mat3MulVecfl(td->axismtx, out);
+ }
+ }
+}
+
+/*
+ * Generic callback for constant spacial constraints applied to resize motion
+ *
+ *
+ */
+
+static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
+{
+ if (!td && t->con.mode & CON_APPLY) {
+ float tmat[3][3];
+
+ if (!(t->con.mode & CON_AXIS0)) {
+ smat[0][0] = 1.0f;
+ }
+ if (!(t->con.mode & CON_AXIS1)) {
+ smat[1][1] = 1.0f;
+ }
+ if (!(t->con.mode & CON_AXIS2)) {
+ smat[2][2] = 1.0f;
+ }
+
+ Mat3MulMat3(tmat, smat, t->con.imtx);
+ Mat3MulMat3(smat, t->con.mtx, tmat);
+ }
+}
+
+/*
+ * Callback for object based spacial constraints applied to resize motion
+ *
+ *
+ */
+
+static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
+{
+ if (td && t->con.mode & CON_APPLY) {
+ float tmat[3][3];
+ float imat[3][3];
+
+ Mat3Inv(imat, td->axismtx);
+
+ if (!(t->con.mode & CON_AXIS0)) {
+ smat[0][0] = 1.0f;
+ }
+ if (!(t->con.mode & CON_AXIS1)) {
+ smat[1][1] = 1.0f;
+ }
+ if (!(t->con.mode & CON_AXIS2)) {
+ smat[2][2] = 1.0f;
+ }
+
+ Mat3MulMat3(tmat, smat, imat);
+ Mat3MulMat3(smat, td->axismtx, tmat);
+ }
+}
+
+/*
+ * Generic callback for constant spacial constraints applied to rotations
+ *
+ * The rotation axis is copied into VEC.
+ *
+ * In the case of single axis constraints, the rotation axis is directly the one constrained to.
+ * For planar constraints (2 axis), the rotation axis is the normal of the plane.
+ *
+ * The following only applies when CON_NOFLIP is not set.
+ * The vector is then modified to always point away from the screen (in global space)
+ * This insures that the rotation is always logically following the mouse.
+ * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
+ */
+
+static void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
+{
+ if (!td && t->con.mode & CON_APPLY) {
+ int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
+
+ switch(mode) {
+ case CON_AXIS0:
+ case (CON_AXIS1|CON_AXIS2):
+ VECCOPY(vec, t->con.mtx[0]);
+ break;
+ case CON_AXIS1:
+ case (CON_AXIS0|CON_AXIS2):
+ VECCOPY(vec, t->con.mtx[1]);
+ break;
+ case CON_AXIS2:
+ case (CON_AXIS0|CON_AXIS1):
+ VECCOPY(vec, t->con.mtx[2]);
+ break;
+ }
+ /* don't flip axis if asked to or if num input */
+ if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
+ if (Inpf(vec, t->viewinv[2]) > 0.0f) {
+ *angle = -(*angle);
+ }
+ }
+ }
+}
+
+/*
+ * Callback for object based spacial constraints applied to rotations
+ *
+ * The rotation axis is copied into VEC.
+ *
+ * In the case of single axis constraints, the rotation axis is directly the one constrained to.
+ * For planar constraints (2 axis), the rotation axis is the normal of the plane.
+ *
+ * The following only applies when CON_NOFLIP is not set.
+ * The vector is then modified to always point away from the screen (in global space)
+ * This insures that the rotation is always logically following the mouse.
+ * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
+ */
+
+static void applyObjectConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
+{
+ if (t->con.mode & CON_APPLY) {
+ int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
+
+ /* on setup call, use first object */
+ if (td == NULL) {
+ td= t->data;
+ }
+
+ switch(mode) {
+ case CON_AXIS0:
+ case (CON_AXIS1|CON_AXIS2):
+ VECCOPY(vec, td->axismtx[0]);
+ break;
+ case CON_AXIS1:
+ case (CON_AXIS0|CON_AXIS2):
+ VECCOPY(vec, td->axismtx[1]);
+ break;
+ case CON_AXIS2:
+ case (CON_AXIS0|CON_AXIS1):
+ VECCOPY(vec, td->axismtx[2]);
+ break;
+ }
+ if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
+ if (Inpf(vec, t->viewinv[2]) > 0.0f) {
+ *angle = -(*angle);
+ }
+ }
+ }
+}
+
+/*--------------------- INTERNAL SETUP CALLS ------------------*/
+
+void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[]) {
+ strncpy(t->con.text + 1, text, 48);
+ Mat3CpyMat3(t->con.mtx, space);
+ t->con.mode = mode;
+ getConstraintMatrix(t);
+
+ startConstraint(t);
+
+ t->con.drawExtra = NULL;
+ t->con.applyVec = applyAxisConstraintVec;
+ t->con.applySize = applyAxisConstraintSize;
+ t->con.applyRot = applyAxisConstraintRot;
+ t->redraw = 1;
+}
+
+void setLocalConstraint(TransInfo *t, int mode, const char text[]) {
+ if (t->flag & T_EDIT) {
+ float obmat[3][3];
+ Mat3CpyMat4(obmat, G.obedit->obmat);
+ setConstraint(t, obmat, mode|CON_LOCAL, text);
+ }
+ else {
+ if (t->total == 1) {
+ setConstraint(t, t->data->axismtx, mode|CON_LOCAL, text);
+ }
+ else {
+ strncpy(t->con.text + 1, text, 48);
+ Mat3CpyMat3(t->con.mtx, t->data->axismtx);
+ t->con.mode = mode|CON_LOCAL;
+ getConstraintMatrix(t);
+
+ startConstraint(t);
+
+ t->con.drawExtra = drawObjectConstraint;
+ t->con.applyVec = applyObjectConstraintVec;
+ t->con.applySize = applyObjectConstraintSize;
+ t->con.applyRot = applyObjectConstraintRot;
+ t->redraw = 1;
+ }
+ }
+}
+
+/*
+ Set the constraint according to the user defined orientation
+
+ ftext is a format string passed to sprintf. It will add the name of
+ the orientation where %s is (logically).
+*/
+void setUserConstraint(TransInfo *t, int mode, const char ftext[]) {
+ char text[40];
+ short twmode= (t->spacetype==SPACE_VIEW3D)? ((View3D*)t->view)->twmode: V3D_MANIP_GLOBAL;
+
+ switch(twmode) {
+ case V3D_MANIP_GLOBAL:
+ /*
+ sprintf(text, ftext, "global");
+ Mat3One(mtx);
+ setConstraint(t, mtx, mode, text);
+ break;
+ */
+ case V3D_MANIP_LOCAL:
+ sprintf(text, ftext, "local");
+ setLocalConstraint(t, mode, text);
+ break;
+ case V3D_MANIP_NORMAL:
+ sprintf(text, ftext, "normal");
+ setConstraint(t, t->spacemtx, mode, text);
+ break;
+ case V3D_MANIP_VIEW:
+ sprintf(text, ftext, "view");
+ setConstraint(t, t->spacemtx, mode, text);
+ break;
+ default: /* V3D_MANIP_CUSTOM */
+ sprintf(text, ftext, t->spacename);
+ setConstraint(t, t->spacemtx, mode, text);
+ break;
+ }
+
+ t->con.mode |= CON_USER;
+}
+
+/*--------------------- EXTERNAL SETUP CALLS ------------------*/
+
+void BIF_setLocalLockConstraint(char axis, char *text) {
+ TransInfo *t = BIF_GetTransInfo();
+
+ if (t->total == 0) {
+ return;
+ }
+
+ switch (axis) {
+ case 'x':
+ setLocalConstraint(t, (CON_AXIS1|CON_AXIS2), text);
+ break;
+ case 'y':
+ setLocalConstraint(t, (CON_AXIS0|CON_AXIS2), text);
+ break;
+ case 'z':
+ setLocalConstraint(t, (CON_AXIS0|CON_AXIS1), text);
+ break;
+ }
+}
+
+void BIF_setLocalAxisConstraint(char axis, char *text) {
+ TransInfo *t = BIF_GetTransInfo();
+
+ if (t->total == 0) {
+ return;
+ }
+
+ switch (axis) {
+ case 'X':
+ setLocalConstraint(t, CON_AXIS0, text);
+ break;
+ case 'Y':
+ setLocalConstraint(t, CON_AXIS1, text);
+ break;
+ case 'Z':
+ setLocalConstraint(t, CON_AXIS2, text);
+ break;
+ }
+}
+
+/* text is optional, for header print */
+void BIF_setSingleAxisConstraint(float vec[3], char *text) {
+ TransInfo *t = BIF_GetTransInfo();
+ float space[3][3], v[3];
+
+ if (t->total == 0) {
+ return;
+ }
+
+ VECCOPY(space[0], vec);
+
+ v[0] = vec[2];
+ v[1] = vec[0];
+ v[2] = vec[1];
+
+ Crossf(space[1], vec, v);
+ Crossf(space[2], vec, space[1]);
+ Mat3Ortho(space);
+
+ Mat3CpyMat3(t->con.mtx, space);
+ t->con.mode = CON_AXIS0;
+
+ getConstraintMatrix(t);
+
+ startConstraint(t);
+
+ /* start copying with an offset of 1, to reserve a spot for the SPACE char */
+ if(text)
+ {
+ strncpy(t->con.text+1, text, 48); /* 50 in struct */
+ }
+ else
+ {
+ t->con.text[1] = '\0'; /* No text */
+ }
+
+ t->con.drawExtra = NULL;
+ t->con.applyVec = applyAxisConstraintVec;
+ t->con.applySize = applyAxisConstraintSize;
+ t->con.applyRot = applyAxisConstraintRot;
+ t->redraw = 1;
+}
+
+void BIF_setDualAxisConstraint(float vec1[3], float vec2[3], char *text) {
+ TransInfo *t = BIF_GetTransInfo();
+ float space[3][3];
+
+ if (t->total == 0) {
+ return;
+ }
+
+ VECCOPY(space[0], vec1);
+ VECCOPY(space[1], vec2);
+ Crossf(space[2], space[0], space[1]);
+ Mat3Ortho(space);
+
+ Mat3CpyMat3(t->con.mtx, space);
+ t->con.mode = CON_AXIS0|CON_AXIS1;
+
+ getConstraintMatrix(t);
+
+ startConstraint(t);
+
+ /* start copying with an offset of 1, to reserve a spot for the SPACE char */
+ if(text)
+ {
+ strncpy(t->con.text+1, text, 48); /* 50 in struct */
+ }
+ else
+ {
+ t->con.text[1] = '\0'; /* No text */
+ }
+
+ t->con.drawExtra = NULL;
+ t->con.applyVec = applyAxisConstraintVec;
+ t->con.applySize = applyAxisConstraintSize;
+ t->con.applyRot = applyAxisConstraintRot;
+ t->redraw = 1;
+}
+
+/*----------------- DRAWING CONSTRAINTS -------------------*/
+
+void BIF_drawConstraint(void)
+{
+ TransInfo *t = BIF_GetTransInfo();
+ TransCon *tc = &(t->con);
+
+ if (t->spacetype!=SPACE_VIEW3D)
+ return;
+ if (!(tc->mode & CON_APPLY))
+ return;
+ if (t->flag & T_USES_MANIPULATOR)
+ return;
+ if (t->flag & T_NO_CONSTRAINT)
+ return;
+
+ /* nasty exception for Z constraint in camera view */
+ // TRANSFORM_FIX_ME
+// if((t->flag & T_OBJECT) && G.vd->camera==OBACT && G.vd->persp==V3D_CAMOB)
+// return;
+
+ if (tc->drawExtra) {
+ tc->drawExtra(t);
+ }
+ else {
+ if (tc->mode & CON_SELECT) {
+ float vec[3];
+ char col2[3] = {255,255,255};
+ convertViewVec(t, vec, (short)(t->mval[0] - t->con.imval[0]), (short)(t->mval[1] - t->con.imval[1]));
+ VecAddf(vec, vec, tc->center);
+
+ drawLine(tc->center, tc->mtx[0], 'x', 0);
+ drawLine(tc->center, tc->mtx[1], 'y', 0);
+ drawLine(tc->center, tc->mtx[2], 'z', 0);
+
+ glColor3ubv((GLubyte *)col2);
+
+ glDisable(GL_DEPTH_TEST);
+ setlinestyle(1);
+ glBegin(GL_LINE_STRIP);
+ glVertex3fv(tc->center);
+ glVertex3fv(vec);
+ glEnd();
+ setlinestyle(0);
+ // TRANSFORM_FIX_ME
+ //if(G.vd->zbuf)
+ glEnable(GL_DEPTH_TEST);
+ }
+
+ if (tc->mode & CON_AXIS0) {
+ drawLine(tc->center, tc->mtx[0], 'x', DRAWLIGHT);
+ }
+ if (tc->mode & CON_AXIS1) {
+ drawLine(tc->center, tc->mtx[1], 'y', DRAWLIGHT);
+ }
+ if (tc->mode & CON_AXIS2) {
+ drawLine(tc->center, tc->mtx[2], 'z', DRAWLIGHT);
+ }
+ }
+}
+
+/* called from drawview.c, as an extra per-window draw option */
+void BIF_drawPropCircle()
+{
+ TransInfo *t = BIF_GetTransInfo();
+
+ if (t->flag & T_PROP_EDIT) {
+ // TRANSFORM_FIX_ME
+#if 0
+ float tmat[4][4], imat[4][4];
+
+ BIF_ThemeColor(TH_GRID);
+
+ /* if editmode we need to go into object space */
+ if(G.obedit && t->spacetype == SPACE_VIEW3D)
+ mymultmatrix(G.obedit->obmat);
+
+ mygetmatrix(tmat);
+ Mat4Invert(imat, tmat);
+
+ set_inverted_drawing(1);
+ drawcircball(GL_LINE_LOOP, t->center, t->propsize, imat);
+ set_inverted_drawing(0);
+
+ /* if editmode we restore */
+ if(G.obedit && t->spacetype == SPACE_VIEW3D)
+ myloadmatrix(G.vd->viewmat);
+#endif
+ }
+}
+
+void BIF_getPropCenter(float *center)
+{
+ TransInfo *t = BIF_GetTransInfo();
+
+ if (t && t->flag & T_PROP_EDIT) {
+ VECCOPY(center, t->center);
+ }
+ else
+ center[0] = center[1] = center[2] = 0.0f;
+}
+static void drawObjectConstraint(TransInfo *t) {
+ int i;
+ TransData * td = t->data;
+
+ /* Draw the first one lighter because that's the one who controls the others.
+ Meaning the transformation is projected on that one and just copied on the others
+ constraint space.
+ In a nutshell, the object with light axis is controlled by the user and the others follow.
+ Without drawing the first light, users have little clue what they are doing.
+ */
+ if (t->con.mode & CON_AXIS0) {
+ drawLine(td->ob->obmat[3], td->axismtx[0], 'x', DRAWLIGHT);
+ }
+ if (t->con.mode & CON_AXIS1) {
+ drawLine(td->ob->obmat[3], td->axismtx[1], 'y', DRAWLIGHT);
+ }
+ if (t->con.mode & CON_AXIS2) {
+ drawLine(td->ob->obmat[3], td->axismtx[2], 'z', DRAWLIGHT);
+ }
+
+ td++;
+
+ for(i=1;i<t->total;i++,td++) {
+ if (t->con.mode & CON_AXIS0) {
+ drawLine(td->ob->obmat[3], td->axismtx[0], 'x', 0);
+ }
+ if (t->con.mode & CON_AXIS1) {
+ drawLine(td->ob->obmat[3], td->axismtx[1], 'y', 0);
+ }
+ if (t->con.mode & CON_AXIS2) {
+ drawLine(td->ob->obmat[3], td->axismtx[2], 'z', 0);
+ }
+ }
+}
+
+/*--------------------- START / STOP CONSTRAINTS ---------------------- */
+
+void startConstraint(TransInfo *t) {
+ t->con.mode |= CON_APPLY;
+ *t->con.text = ' ';
+ t->num.idx_max = MIN2(getConstraintSpaceDimension(t) - 1, t->idx_max);
+}
+
+void stopConstraint(TransInfo *t) {
+ t->con.mode &= ~(CON_APPLY|CON_SELECT);
+ *t->con.text = '\0';
+ t->num.idx_max = t->idx_max;
+}
+
+void getConstraintMatrix(TransInfo *t)
+{
+ float mat[3][3];
+ Mat3Inv(t->con.imtx, t->con.mtx);
+ Mat3One(t->con.pmtx);
+
+ if (!(t->con.mode & CON_AXIS0)) {
+ t->con.pmtx[0][0] =
+ t->con.pmtx[0][1] =
+ t->con.pmtx[0][2] = 0.0f;
+ }
+
+ if (!(t->con.mode & CON_AXIS1)) {
+ t->con.pmtx[1][0] =
+ t->con.pmtx[1][1] =
+ t->con.pmtx[1][2] = 0.0f;
+ }
+
+ if (!(t->con.mode & CON_AXIS2)) {
+ t->con.pmtx[2][0] =
+ t->con.pmtx[2][1] =
+ t->con.pmtx[2][2] = 0.0f;
+ }
+
+ Mat3MulMat3(mat, t->con.pmtx, t->con.imtx);
+ Mat3MulMat3(t->con.pmtx, t->con.mtx, mat);
+}
+
+/*------------------------- MMB Select -------------------------------*/
+
+void initSelectConstraint(TransInfo *t, float mtx[3][3])
+{
+ Mat3CpyMat3(t->con.mtx, mtx);
+ t->con.mode |= CON_APPLY;
+ t->con.mode |= CON_SELECT;
+ t->con.mode &= ~CON_LOCAL;
+
+ setNearestAxis(t);
+ t->con.drawExtra = NULL;
+ t->con.applyVec = applyAxisConstraintVec;
+ t->con.applySize = applyAxisConstraintSize;
+ t->con.applyRot = applyAxisConstraintRot;
+}
+
+void selectConstraint(TransInfo *t) {
+ if (t->con.mode & CON_SELECT) {
+ setNearestAxis(t);
+ startConstraint(t);
+ }
+}
+
+void postSelectConstraint(TransInfo *t)
+{
+ if (!(t->con.mode & CON_SELECT))
+ return;
+
+ t->con.mode &= ~CON_AXIS0;
+ t->con.mode &= ~CON_AXIS1;
+ t->con.mode &= ~CON_AXIS2;
+ t->con.mode &= ~CON_SELECT;
+
+ setNearestAxis(t);
+
+ startConstraint(t);
+ t->redraw = 1;
+}
+
+static void setNearestAxis2d(TransInfo *t)
+{
+ /* no correction needed... just use whichever one is lower */
+ if ( abs(t->mval[0]-t->con.imval[0]) < abs(t->mval[1]-t->con.imval[1]) ) {
+ t->con.mode |= CON_AXIS1;
+ sprintf(t->con.text, " along Y axis");
+ }
+ else {
+ t->con.mode |= CON_AXIS0;
+ sprintf(t->con.text, " along X axis");
+ }
+}
+
+static void setNearestAxis3d(TransInfo *t)
+{
+ wmEvent *event = t->event;
+ float zfac;
+ float mvec[3], axis[3], proj[3];
+ float len[3];
+ int i, icoord[2];
+
+ /* calculate mouse movement */
+ mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
+ mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
+ mvec[2] = 0.0f;
+
+ /* we need to correct axis length for the current zoomlevel of view,
+ this to prevent projected values to be clipped behind the camera
+ and to overflow the short integers.
+ The formula used is a bit stupid, just a simplification of the substraction
+ of two 2D points 30 pixels apart (that's the last factor in the formula) after
+ projecting them with window_to_3d and then get the length of that vector.
+ */
+ zfac= t->persmat[0][3]*t->center[0]+ t->persmat[1][3]*t->center[1]+ t->persmat[2][3]*t->center[2]+ t->persmat[3][3];
+ zfac = VecLength(t->persinv[0]) * 2.0f/t->ar->winx * zfac * 30.0f;
+
+ for (i = 0; i<3; i++) {
+ VECCOPY(axis, t->con.mtx[i]);
+
+ VecMulf(axis, zfac);
+ /* now we can project to get window coordinate */
+ VecAddf(axis, axis, t->con.center);
+ projectIntView(t, axis, icoord);
+
+ axis[0] = (float)(icoord[0] - t->center2d[0]);
+ axis[1] = (float)(icoord[1] - t->center2d[1]);
+ axis[2] = 0.0f;
+
+ if (Normalize(axis) != 0.0f) {
+ Projf(proj, mvec, axis);
+ VecSubf(axis, mvec, proj);
+ len[i] = Normalize(axis);
+ }
+ else {
+ len[i] = 10000000000.0f;
+ }
+ }
+
+ if (len[0] <= len[1] && len[0] <= len[2]) {
+ if (event->shift) {
+ t->con.mode |= (CON_AXIS1|CON_AXIS2);
+ sprintf(t->con.text, " locking %s X axis", t->spacename);
+ }
+ else {
+ t->con.mode |= CON_AXIS0;
+ sprintf(t->con.text, " along %s X axis", t->spacename);
+ }
+ }
+ else if (len[1] <= len[0] && len[1] <= len[2]) {
+ if (event->shift) {
+ t->con.mode |= (CON_AXIS0|CON_AXIS2);
+ sprintf(t->con.text, " locking %s Y axis", t->spacename);
+ }
+ else {
+ t->con.mode |= CON_AXIS1;
+ sprintf(t->con.text, " along %s Y axis", t->spacename);
+ }
+ }
+ else if (len[2] <= len[1] && len[2] <= len[0]) {
+ if (event->shift) {
+ t->con.mode |= (CON_AXIS0|CON_AXIS1);
+ sprintf(t->con.text, " locking %s Z axis", t->spacename);
+ }
+ else {
+ t->con.mode |= CON_AXIS2;
+ sprintf(t->con.text, " along %s Z axis", t->spacename);
+ }
+ }
+}
+
+void setNearestAxis(TransInfo *t)
+{
+ /* clear any prior constraint flags */
+ t->con.mode &= ~CON_AXIS0;
+ t->con.mode &= ~CON_AXIS1;
+ t->con.mode &= ~CON_AXIS2;
+
+ /* constraint setting - depends on spacetype */
+ if (t->spacetype == SPACE_VIEW3D) {
+ /* 3d-view */
+ setNearestAxis3d(t);
+ }
+ else {
+ /* assume that this means a 2D-Editor */
+ setNearestAxis2d(t);
+ }
+
+ getConstraintMatrix(t);
+}
+
+/*-------------- HELPER FUNCTIONS ----------------*/
+
+char constraintModeToChar(TransInfo *t) {
+ if ((t->con.mode & CON_APPLY)==0) {
+ return '\0';
+ }
+ switch (t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2)) {
+ case (CON_AXIS0):
+ case (CON_AXIS1|CON_AXIS2):
+ return 'X';
+ case (CON_AXIS1):
+ case (CON_AXIS0|CON_AXIS2):
+ return 'Y';
+ case (CON_AXIS2):
+ case (CON_AXIS0|CON_AXIS1):
+ return 'Z';
+ default:
+ return '\0';
+ }
+}
+
+
+int isLockConstraint(TransInfo *t) {
+ int mode = t->con.mode;
+
+ if ( (mode & (CON_AXIS0|CON_AXIS1)) == (CON_AXIS0|CON_AXIS1))
+ return 1;
+
+ if ( (mode & (CON_AXIS1|CON_AXIS2)) == (CON_AXIS1|CON_AXIS2))
+ return 1;
+
+ if ( (mode & (CON_AXIS0|CON_AXIS2)) == (CON_AXIS0|CON_AXIS2))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * Returns the dimension of the constraint space.
+ *
+ * For that reason, the flags always needs to be set to properly evaluate here,
+ * even if they aren't actually used in the callback function. (Which could happen
+ * for weird constraints not yet designed. Along a path for example.)
+ */
+
+int getConstraintSpaceDimension(TransInfo *t)
+{
+ int n = 0;
+
+ if (t->con.mode & CON_AXIS0)
+ n++;
+
+ if (t->con.mode & CON_AXIS1)
+ n++;
+
+ if (t->con.mode & CON_AXIS2)
+ n++;
+
+ return n;
+/*
+ Someone willing to do it criptically could do the following instead:
+
+ return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
+
+ Based on the assumptions that the axis flags are one after the other and start at 1
+*/
+}