Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2019-04-17 07:17:24 +0300
committerCampbell Barton <ideasman42@gmail.com>2019-04-17 07:21:24 +0300
commite12c08e8d170b7ca40f204a5b0423c23a9fbc2c1 (patch)
tree8cf3453d12edb177a218ef8009357518ec6cab6a /source/blender/freestyle/intern/python/BPy_Operators.cpp
parentb3dabc200a4b0399ec6b81f2ff2730d07b44fcaa (diff)
ClangFormat: apply to source, most of intern
Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat
Diffstat (limited to 'source/blender/freestyle/intern/python/BPy_Operators.cpp')
-rw-r--r--source/blender/freestyle/intern/python/BPy_Operators.cpp1347
1 files changed, 720 insertions, 627 deletions
diff --git a/source/blender/freestyle/intern/python/BPy_Operators.cpp b/source/blender/freestyle/intern/python/BPy_Operators.cpp
index 6bbdcd72052..e2afda63e14 100644
--- a/source/blender/freestyle/intern/python/BPy_Operators.cpp
+++ b/source/blender/freestyle/intern/python/BPy_Operators.cpp
@@ -41,724 +41,817 @@ extern "C" {
//-------------------MODULE INITIALIZATION--------------------------------
int Operators_Init(PyObject *module)
{
- if (module == NULL)
- return -1;
+ if (module == NULL)
+ return -1;
- if (PyType_Ready(&Operators_Type) < 0)
- return -1;
- Py_INCREF(&Operators_Type);
- PyModule_AddObject(module, "Operators", (PyObject *)&Operators_Type);
+ if (PyType_Ready(&Operators_Type) < 0)
+ return -1;
+ Py_INCREF(&Operators_Type);
+ PyModule_AddObject(module, "Operators", (PyObject *)&Operators_Type);
- return 0;
+ return 0;
}
//------------------------INSTANCE METHODS ----------------------------------
PyDoc_STRVAR(Operators_doc,
-"Class defining the operators used in a style module. There are five\n"
-"types of operators: Selection, chaining, splitting, sorting and\n"
-"creation. All these operators are user controlled through functors,\n"
-"predicates and shaders that are taken as arguments.");
+ "Class defining the operators used in a style module. There are five\n"
+ "types of operators: Selection, chaining, splitting, sorting and\n"
+ "creation. All these operators are user controlled through functors,\n"
+ "predicates and shaders that are taken as arguments.");
static void Operators_dealloc(BPy_Operators *self)
{
- Py_TYPE(self)->tp_free((PyObject *)self);
+ Py_TYPE(self)->tp_free((PyObject *)self);
}
PyDoc_STRVAR(Operators_select_doc,
-".. staticmethod:: select(pred)\n"
-"\n"
-" Selects the ViewEdges of the ViewMap verifying a specified\n"
-" condition.\n"
-"\n"
-" :arg pred: The predicate expressing this condition.\n"
-" :type pred: :class:`UnaryPredicate1D`");
+ ".. staticmethod:: select(pred)\n"
+ "\n"
+ " Selects the ViewEdges of the ViewMap verifying a specified\n"
+ " condition.\n"
+ "\n"
+ " :arg pred: The predicate expressing this condition.\n"
+ " :type pred: :class:`UnaryPredicate1D`");
static PyObject *Operators_select(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"pred", NULL};
- PyObject *obj = 0;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!", (char **)kwlist, &UnaryPredicate1D_Type, &obj))
- return NULL;
- if (!((BPy_UnaryPredicate1D *)obj)->up1D) {
- PyErr_SetString(PyExc_TypeError, "Operators.select(): 1st argument: invalid UnaryPredicate1D object");
- return NULL;
- }
- if (Operators::select(*(((BPy_UnaryPredicate1D *)obj)->up1D)) < 0) {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.select() failed");
- return NULL;
- }
- Py_RETURN_NONE;
+ static const char *kwlist[] = {"pred", NULL};
+ PyObject *obj = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(
+ args, kwds, "O!", (char **)kwlist, &UnaryPredicate1D_Type, &obj))
+ return NULL;
+ if (!((BPy_UnaryPredicate1D *)obj)->up1D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.select(): 1st argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::select(*(((BPy_UnaryPredicate1D *)obj)->up1D)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.select() failed");
+ return NULL;
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_chain_doc,
-".. staticmethod:: chain(it, pred, modifier)\n"
-"\n"
-" Builds a set of chains from the current set of ViewEdges. Each\n"
-" ViewEdge of the current list starts a new chain. The chaining\n"
-" operator then iterates over the ViewEdges of the ViewMap using the\n"
-" user specified iterator. This operator only iterates using the\n"
-" increment operator and is therefore unidirectional.\n"
-"\n"
-" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
-" the chaining rule.\n"
-" :type it: :class:`ViewEdgeIterator`\n"
-" :arg pred: The predicate on the ViewEdge that expresses the\n"
-" stopping condition.\n"
-" :type pred: :class:`UnaryPredicate1D`\n"
-" :arg modifier: A function that takes a ViewEdge as argument and\n"
-" that is used to modify the processed ViewEdge state (the\n"
-" timestamp incrementation is a typical illustration of such a\n"
-" modifier).\n"
-" :type modifier: :class:`UnaryFunction1DVoid`\n"
-"\n"
-".. staticmethod:: chain(it, pred)\n"
-"\n"
-" Builds a set of chains from the current set of ViewEdges. Each\n"
-" ViewEdge of the current list starts a new chain. The chaining\n"
-" operator then iterates over the ViewEdges of the ViewMap using the\n"
-" user specified iterator. This operator only iterates using the\n"
-" increment operator and is therefore unidirectional. This chaining\n"
-" operator is different from the previous one because it doesn't take\n"
-" any modifier as argument. Indeed, the time stamp (insuring that a\n"
-" ViewEdge is processed one time) is automatically managed in this\n"
-" case.\n"
-"\n"
-" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
-" the chaining rule. \n"
-" :type it: :class:`ViewEdgeIterator`\n"
-" :arg pred: The predicate on the ViewEdge that expresses the\n"
-" stopping condition.\n"
-" :type pred: :class:`UnaryPredicate1D`");
+ ".. staticmethod:: chain(it, pred, modifier)\n"
+ "\n"
+ " Builds a set of chains from the current set of ViewEdges. Each\n"
+ " ViewEdge of the current list starts a new chain. The chaining\n"
+ " operator then iterates over the ViewEdges of the ViewMap using the\n"
+ " user specified iterator. This operator only iterates using the\n"
+ " increment operator and is therefore unidirectional.\n"
+ "\n"
+ " :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
+ " the chaining rule.\n"
+ " :type it: :class:`ViewEdgeIterator`\n"
+ " :arg pred: The predicate on the ViewEdge that expresses the\n"
+ " stopping condition.\n"
+ " :type pred: :class:`UnaryPredicate1D`\n"
+ " :arg modifier: A function that takes a ViewEdge as argument and\n"
+ " that is used to modify the processed ViewEdge state (the\n"
+ " timestamp incrementation is a typical illustration of such a\n"
+ " modifier).\n"
+ " :type modifier: :class:`UnaryFunction1DVoid`\n"
+ "\n"
+ ".. staticmethod:: chain(it, pred)\n"
+ "\n"
+ " Builds a set of chains from the current set of ViewEdges. Each\n"
+ " ViewEdge of the current list starts a new chain. The chaining\n"
+ " operator then iterates over the ViewEdges of the ViewMap using the\n"
+ " user specified iterator. This operator only iterates using the\n"
+ " increment operator and is therefore unidirectional. This chaining\n"
+ " operator is different from the previous one because it doesn't take\n"
+ " any modifier as argument. Indeed, the time stamp (insuring that a\n"
+ " ViewEdge is processed one time) is automatically managed in this\n"
+ " case.\n"
+ "\n"
+ " :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
+ " the chaining rule. \n"
+ " :type it: :class:`ViewEdgeIterator`\n"
+ " :arg pred: The predicate on the ViewEdge that expresses the\n"
+ " stopping condition.\n"
+ " :type pred: :class:`UnaryPredicate1D`");
static PyObject *Operators_chain(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"it", "pred", "modifier", NULL};
- PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|O!", (char **)kwlist,
- &ChainingIterator_Type, &obj1,
- &UnaryPredicate1D_Type, &obj2,
- &UnaryFunction1DVoid_Type, &obj3))
- {
- return NULL;
- }
- if (!((BPy_ChainingIterator *)obj1)->c_it) {
- PyErr_SetString(PyExc_TypeError, "Operators.chain(): 1st argument: invalid ChainingIterator object");
- return NULL;
- }
- if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
- PyErr_SetString(PyExc_TypeError, "Operators.chain(): 2nd argument: invalid UnaryPredicate1D object");
- return NULL;
- }
- if (!obj3) {
- if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
- *(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0)
- {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
- return NULL;
- }
- }
- else {
- if (!((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void) {
- PyErr_SetString(PyExc_TypeError, "Operators.chain(): 3rd argument: invalid UnaryFunction1DVoid object");
- return NULL;
- }
- if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
- *(((BPy_UnaryPredicate1D *)obj2)->up1D),
- *(((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void)) < 0)
- {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
- return NULL;
- }
- }
- Py_RETURN_NONE;
+ static const char *kwlist[] = {"it", "pred", "modifier", NULL};
+ PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args,
+ kwds,
+ "O!O!|O!",
+ (char **)kwlist,
+ &ChainingIterator_Type,
+ &obj1,
+ &UnaryPredicate1D_Type,
+ &obj2,
+ &UnaryFunction1DVoid_Type,
+ &obj3)) {
+ return NULL;
+ }
+ if (!((BPy_ChainingIterator *)obj1)->c_it) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.chain(): 1st argument: invalid ChainingIterator object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.chain(): 2nd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (!obj3) {
+ if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
+ return NULL;
+ }
+ }
+ else {
+ if (!((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.chain(): 3rd argument: invalid UnaryFunction1DVoid object");
+ return NULL;
+ }
+ if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D),
+ *(((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
+ return NULL;
+ }
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_bidirectional_chain_doc,
-".. staticmethod:: bidirectional_chain(it, pred)\n"
-"\n"
-" Builds a set of chains from the current set of ViewEdges. Each\n"
-" ViewEdge of the current list potentially starts a new chain. The\n"
-" chaining operator then iterates over the ViewEdges of the ViewMap\n"
-" using the user specified iterator. This operator iterates both using\n"
-" the increment and decrement operators and is therefore bidirectional.\n"
-" This operator works with a ChainingIterator which contains the\n"
-" chaining rules. It is this last one which can be told to chain only\n"
-" edges that belong to the selection or not to process twice a ViewEdge\n"
-" during the chaining. Each time a ViewEdge is added to a chain, its\n"
-" chaining time stamp is incremented. This allows you to keep track of\n"
-" the number of chains to which a ViewEdge belongs to.\n"
-"\n"
-" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
-" contains the chaining rule.\n"
-" :type it: :class:`ChainingIterator`\n"
-" :arg pred: The predicate on the ViewEdge that expresses the\n"
-" stopping condition.\n"
-" :type pred: :class:`UnaryPredicate1D`\n"
-"\n"
-".. staticmethod:: bidirectional_chain(it)\n"
-"\n"
-" The only difference with the above bidirectional chaining algorithm\n"
-" is that we don't need to pass a stopping criterion. This might be\n"
-" desirable when the stopping criterion is already contained in the\n"
-" iterator definition. Builds a set of chains from the current set of\n"
-" ViewEdges. Each ViewEdge of the current list potentially starts a new\n"
-" chain. The chaining operator then iterates over the ViewEdges of the\n"
-" ViewMap using the user specified iterator. This operator iterates\n"
-" both using the increment and decrement operators and is therefore\n"
-" bidirectional. This operator works with a ChainingIterator which\n"
-" contains the chaining rules. It is this last one which can be told to\n"
-" chain only edges that belong to the selection or not to process twice\n"
-" a ViewEdge during the chaining. Each time a ViewEdge is added to a\n"
-" chain, its chaining time stamp is incremented. This allows you to\n"
-" keep track of the number of chains to which a ViewEdge belongs to.\n"
-"\n"
-" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
-" contains the chaining rule.\n"
-" :type it: :class:`ChainingIterator`");
-
-static PyObject *Operators_bidirectional_chain(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
+ ".. staticmethod:: bidirectional_chain(it, pred)\n"
+ "\n"
+ " Builds a set of chains from the current set of ViewEdges. Each\n"
+ " ViewEdge of the current list potentially starts a new chain. The\n"
+ " chaining operator then iterates over the ViewEdges of the ViewMap\n"
+ " using the user specified iterator. This operator iterates both using\n"
+ " the increment and decrement operators and is therefore bidirectional.\n"
+ " This operator works with a ChainingIterator which contains the\n"
+ " chaining rules. It is this last one which can be told to chain only\n"
+ " edges that belong to the selection or not to process twice a ViewEdge\n"
+ " during the chaining. Each time a ViewEdge is added to a chain, its\n"
+ " chaining time stamp is incremented. This allows you to keep track of\n"
+ " the number of chains to which a ViewEdge belongs to.\n"
+ "\n"
+ " :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
+ " contains the chaining rule.\n"
+ " :type it: :class:`ChainingIterator`\n"
+ " :arg pred: The predicate on the ViewEdge that expresses the\n"
+ " stopping condition.\n"
+ " :type pred: :class:`UnaryPredicate1D`\n"
+ "\n"
+ ".. staticmethod:: bidirectional_chain(it)\n"
+ "\n"
+ " The only difference with the above bidirectional chaining algorithm\n"
+ " is that we don't need to pass a stopping criterion. This might be\n"
+ " desirable when the stopping criterion is already contained in the\n"
+ " iterator definition. Builds a set of chains from the current set of\n"
+ " ViewEdges. Each ViewEdge of the current list potentially starts a new\n"
+ " chain. The chaining operator then iterates over the ViewEdges of the\n"
+ " ViewMap using the user specified iterator. This operator iterates\n"
+ " both using the increment and decrement operators and is therefore\n"
+ " bidirectional. This operator works with a ChainingIterator which\n"
+ " contains the chaining rules. It is this last one which can be told to\n"
+ " chain only edges that belong to the selection or not to process twice\n"
+ " a ViewEdge during the chaining. Each time a ViewEdge is added to a\n"
+ " chain, its chaining time stamp is incremented. This allows you to\n"
+ " keep track of the number of chains to which a ViewEdge belongs to.\n"
+ "\n"
+ " :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
+ " contains the chaining rule.\n"
+ " :type it: :class:`ChainingIterator`");
+
+static PyObject *Operators_bidirectional_chain(BPy_Operators * /*self*/,
+ PyObject *args,
+ PyObject *kwds)
{
- static const char *kwlist[] = {"it", "pred", NULL};
- PyObject *obj1 = 0, *obj2 = 0;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!|O!", (char **)kwlist,
- &ChainingIterator_Type, &obj1, &UnaryPredicate1D_Type, &obj2))
- {
- return NULL;
- }
- if (!((BPy_ChainingIterator *)obj1)->c_it) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.bidirectional_chain(): 1st argument: invalid ChainingIterator object");
- return NULL;
- }
- if (!obj2) {
- if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it)) < 0) {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
- return NULL;
- }
- }
- else {
- if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.bidirectional_chain(): 2nd argument: invalid UnaryPredicate1D object");
- return NULL;
- }
- if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it),
- *(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0)
- {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
- return NULL;
- }
- }
- Py_RETURN_NONE;
+ static const char *kwlist[] = {"it", "pred", NULL};
+ PyObject *obj1 = 0, *obj2 = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args,
+ kwds,
+ "O!|O!",
+ (char **)kwlist,
+ &ChainingIterator_Type,
+ &obj1,
+ &UnaryPredicate1D_Type,
+ &obj2)) {
+ return NULL;
+ }
+ if (!((BPy_ChainingIterator *)obj1)->c_it) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.bidirectional_chain(): 1st argument: invalid ChainingIterator object");
+ return NULL;
+ }
+ if (!obj2) {
+ if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
+ return NULL;
+ }
+ }
+ else {
+ if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.bidirectional_chain(): 2nd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
+ return NULL;
+ }
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_sequential_split_doc,
-".. staticmethod:: sequential_split(starting_pred, stopping_pred, sampling=0.0)\n"
-"\n"
-" Splits each chain of the current set of chains in a sequential way.\n"
-" The points of each chain are processed (with a specified sampling)\n"
-" sequentially. Each time a user specified starting condition is\n"
-" verified, a new chain begins and ends as soon as a user-defined\n"
-" stopping predicate is verified. This allows chains overlapping rather\n"
-" than chains partitioning. The first point of the initial chain is the\n"
-" first point of one of the resulting chains. The splitting ends when\n"
-" no more chain can start.\n"
-"\n"
-" :arg starting_pred: The predicate on a point that expresses the\n"
-" starting condition.\n"
-" :type starting_pred: :class:`UnaryPredicate0D`\n"
-" :arg stopping_pred: The predicate on a point that expresses the\n"
-" stopping condition.\n"
-" :type stopping_pred: :class:`UnaryPredicate0D`\n"
-" :arg sampling: The resolution used to sample the chain for the\n"
-" predicates evaluation. (The chain is not actually resampled;\n"
-" a virtual point only progresses along the curve using this\n"
-" resolution.)\n"
-" :type sampling: float\n"
-"\n"
-".. staticmethod:: sequential_split(pred, sampling=0.0)\n"
-"\n"
-" Splits each chain of the current set of chains in a sequential way.\n"
-" The points of each chain are processed (with a specified sampling)\n"
-" sequentially and each time a user specified condition is verified,\n"
-" the chain is split into two chains. The resulting set of chains is a\n"
-" partition of the initial chain\n"
-"\n"
-" :arg pred: The predicate on a point that expresses the splitting\n"
-" condition.\n"
-" :type pred: :class:`UnaryPredicate0D`\n"
-" :arg sampling: The resolution used to sample the chain for the\n"
-" predicate evaluation. (The chain is not actually resampled; a\n"
-" virtual point only progresses along the curve using this\n"
-" resolution.)\n"
-" :type sampling: float");
-
-static PyObject *Operators_sequential_split(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
+ ".. staticmethod:: sequential_split(starting_pred, stopping_pred, sampling=0.0)\n"
+ "\n"
+ " Splits each chain of the current set of chains in a sequential way.\n"
+ " The points of each chain are processed (with a specified sampling)\n"
+ " sequentially. Each time a user specified starting condition is\n"
+ " verified, a new chain begins and ends as soon as a user-defined\n"
+ " stopping predicate is verified. This allows chains overlapping rather\n"
+ " than chains partitioning. The first point of the initial chain is the\n"
+ " first point of one of the resulting chains. The splitting ends when\n"
+ " no more chain can start.\n"
+ "\n"
+ " :arg starting_pred: The predicate on a point that expresses the\n"
+ " starting condition.\n"
+ " :type starting_pred: :class:`UnaryPredicate0D`\n"
+ " :arg stopping_pred: The predicate on a point that expresses the\n"
+ " stopping condition.\n"
+ " :type stopping_pred: :class:`UnaryPredicate0D`\n"
+ " :arg sampling: The resolution used to sample the chain for the\n"
+ " predicates evaluation. (The chain is not actually resampled;\n"
+ " a virtual point only progresses along the curve using this\n"
+ " resolution.)\n"
+ " :type sampling: float\n"
+ "\n"
+ ".. staticmethod:: sequential_split(pred, sampling=0.0)\n"
+ "\n"
+ " Splits each chain of the current set of chains in a sequential way.\n"
+ " The points of each chain are processed (with a specified sampling)\n"
+ " sequentially and each time a user specified condition is verified,\n"
+ " the chain is split into two chains. The resulting set of chains is a\n"
+ " partition of the initial chain\n"
+ "\n"
+ " :arg pred: The predicate on a point that expresses the splitting\n"
+ " condition.\n"
+ " :type pred: :class:`UnaryPredicate0D`\n"
+ " :arg sampling: The resolution used to sample the chain for the\n"
+ " predicate evaluation. (The chain is not actually resampled; a\n"
+ " virtual point only progresses along the curve using this\n"
+ " resolution.)\n"
+ " :type sampling: float");
+
+static PyObject *Operators_sequential_split(BPy_Operators * /*self*/,
+ PyObject *args,
+ PyObject *kwds)
{
- static const char *kwlist_1[] = {"starting_pred", "stopping_pred", "sampling", NULL};
- static const char *kwlist_2[] = {"pred", "sampling", NULL};
- PyObject *obj1 = 0, *obj2 = 0;
- float f = 0.0f;
-
- if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|f", (char **)kwlist_1,
- &UnaryPredicate0D_Type, &obj1, &UnaryPredicate0D_Type, &obj2, &f))
- {
- if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
- return NULL;
- }
- if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.sequential_split(): 2nd argument: invalid UnaryPredicate0D object");
- return NULL;
- }
- if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D),
- *(((BPy_UnaryPredicate0D *)obj2)->up0D),
- f) < 0)
- {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
- return NULL;
- }
- }
- else if (PyErr_Clear(), (f = 0.0f),
- PyArg_ParseTupleAndKeywords(args, kwds, "O!|f", (char **)kwlist_2,
- &UnaryPredicate0D_Type, &obj1, &f))
- {
- if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
- return NULL;
- }
- if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D), f) < 0) {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
- return NULL;
- }
- }
- else {
- PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
- return NULL;
- }
- Py_RETURN_NONE;
+ static const char *kwlist_1[] = {"starting_pred", "stopping_pred", "sampling", NULL};
+ static const char *kwlist_2[] = {"pred", "sampling", NULL};
+ PyObject *obj1 = 0, *obj2 = 0;
+ float f = 0.0f;
+
+ if (PyArg_ParseTupleAndKeywords(args,
+ kwds,
+ "O!O!|f",
+ (char **)kwlist_1,
+ &UnaryPredicate0D_Type,
+ &obj1,
+ &UnaryPredicate0D_Type,
+ &obj2,
+ &f)) {
+ if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.sequential_split(): 2nd argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D),
+ *(((BPy_UnaryPredicate0D *)obj2)->up0D),
+ f) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
+ return NULL;
+ }
+ }
+ else if (PyErr_Clear(),
+ (f = 0.0f),
+ PyArg_ParseTupleAndKeywords(
+ args, kwds, "O!|f", (char **)kwlist_2, &UnaryPredicate0D_Type, &obj1, &f)) {
+ if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D), f) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
+ return NULL;
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_recursive_split_doc,
-".. staticmethod:: recursive_split(func, pred_1d, sampling=0.0)\n"
-"\n"
-" Splits the current set of chains in a recursive way. We process the\n"
-" points of each chain (with a specified sampling) to find the point\n"
-" minimizing a specified function. The chain is split in two at this\n"
-" point and the two new chains are processed in the same way. The\n"
-" recursivity level is controlled through a predicate 1D that expresses\n"
-" a stopping condition on the chain that is about to be processed.\n"
-"\n"
-" :arg func: The Unary Function evaluated at each point of the chain.\n"
-" The splitting point is the point minimizing this function.\n"
-" :type func: :class:`UnaryFunction0DDouble`\n"
-" :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
-" condition. This predicate is evaluated for each curve before it\n"
-" actually gets split. If pred_1d(chain) is true, the curve won't be\n"
-" split anymore.\n"
-" :type pred_1d: :class:`UnaryPredicate1D`\n"
-" :arg sampling: The resolution used to sample the chain for the\n"
-" predicates evaluation. (The chain is not actually resampled, a\n"
-" virtual point only progresses along the curve using this\n"
-" resolution.)\n"
-" :type sampling: float\n"
-"\n"
-".. staticmethod:: recursive_split(func, pred_0d, pred_1d, sampling=0.0)\n"
-"\n"
-" Splits the current set of chains in a recursive way. We process the\n"
-" points of each chain (with a specified sampling) to find the point\n"
-" minimizing a specified function. The chain is split in two at this\n"
-" point and the two new chains are processed in the same way. The user\n"
-" can specify a 0D predicate to make a first selection on the points\n"
-" that can potentially be split. A point that doesn't verify the 0D\n"
-" predicate won't be candidate in realizing the min. The recursivity\n"
-" level is controlled through a predicate 1D that expresses a stopping\n"
-" condition on the chain that is about to be processed.\n"
-"\n"
-" :arg func: The Unary Function evaluated at each point of the chain.\n"
-" The splitting point is the point minimizing this function.\n"
-" :type func: :class:`UnaryFunction0DDouble`\n"
-" :arg pred_0d: The Unary Predicate 0D used to select the candidate\n"
-" points where the split can occur. For example, it is very likely\n"
-" that would rather have your chain splitting around its middle\n"
-" point than around one of its extremities. A 0D predicate working\n"
-" on the curvilinear abscissa allows to add this kind of constraints.\n"
-" :type pred_0d: :class:`UnaryPredicate0D`\n"
-" :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
-" condition. This predicate is evaluated for each curve before it\n"
-" actually gets split. If pred_1d(chain) is true, the curve won't be\n"
-" split anymore.\n"
-" :type pred_1d: :class:`UnaryPredicate1D`\n"
-" :arg sampling: The resolution used to sample the chain for the\n"
-" predicates evaluation. (The chain is not actually resampled; a\n"
-" virtual point only progresses along the curve using this\n"
-" resolution.)\n"
-" :type sampling: float");
-
-static PyObject *Operators_recursive_split(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
+ ".. staticmethod:: recursive_split(func, pred_1d, sampling=0.0)\n"
+ "\n"
+ " Splits the current set of chains in a recursive way. We process the\n"
+ " points of each chain (with a specified sampling) to find the point\n"
+ " minimizing a specified function. The chain is split in two at this\n"
+ " point and the two new chains are processed in the same way. The\n"
+ " recursivity level is controlled through a predicate 1D that expresses\n"
+ " a stopping condition on the chain that is about to be processed.\n"
+ "\n"
+ " :arg func: The Unary Function evaluated at each point of the chain.\n"
+ " The splitting point is the point minimizing this function.\n"
+ " :type func: :class:`UnaryFunction0DDouble`\n"
+ " :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
+ " condition. This predicate is evaluated for each curve before it\n"
+ " actually gets split. If pred_1d(chain) is true, the curve won't be\n"
+ " split anymore.\n"
+ " :type pred_1d: :class:`UnaryPredicate1D`\n"
+ " :arg sampling: The resolution used to sample the chain for the\n"
+ " predicates evaluation. (The chain is not actually resampled, a\n"
+ " virtual point only progresses along the curve using this\n"
+ " resolution.)\n"
+ " :type sampling: float\n"
+ "\n"
+ ".. staticmethod:: recursive_split(func, pred_0d, pred_1d, sampling=0.0)\n"
+ "\n"
+ " Splits the current set of chains in a recursive way. We process the\n"
+ " points of each chain (with a specified sampling) to find the point\n"
+ " minimizing a specified function. The chain is split in two at this\n"
+ " point and the two new chains are processed in the same way. The user\n"
+ " can specify a 0D predicate to make a first selection on the points\n"
+ " that can potentially be split. A point that doesn't verify the 0D\n"
+ " predicate won't be candidate in realizing the min. The recursivity\n"
+ " level is controlled through a predicate 1D that expresses a stopping\n"
+ " condition on the chain that is about to be processed.\n"
+ "\n"
+ " :arg func: The Unary Function evaluated at each point of the chain.\n"
+ " The splitting point is the point minimizing this function.\n"
+ " :type func: :class:`UnaryFunction0DDouble`\n"
+ " :arg pred_0d: The Unary Predicate 0D used to select the candidate\n"
+ " points where the split can occur. For example, it is very likely\n"
+ " that would rather have your chain splitting around its middle\n"
+ " point than around one of its extremities. A 0D predicate working\n"
+ " on the curvilinear abscissa allows to add this kind of constraints.\n"
+ " :type pred_0d: :class:`UnaryPredicate0D`\n"
+ " :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
+ " condition. This predicate is evaluated for each curve before it\n"
+ " actually gets split. If pred_1d(chain) is true, the curve won't be\n"
+ " split anymore.\n"
+ " :type pred_1d: :class:`UnaryPredicate1D`\n"
+ " :arg sampling: The resolution used to sample the chain for the\n"
+ " predicates evaluation. (The chain is not actually resampled; a\n"
+ " virtual point only progresses along the curve using this\n"
+ " resolution.)\n"
+ " :type sampling: float");
+
+static PyObject *Operators_recursive_split(BPy_Operators * /*self*/,
+ PyObject *args,
+ PyObject *kwds)
{
- static const char *kwlist_1[] = {"func", "pred_1d", "sampling", NULL};
- static const char *kwlist_2[] = {"func", "pred_0d", "pred_1d", "sampling", NULL};
- PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
- float f = 0.0f;
-
- if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|f", (char **)kwlist_1,
- &UnaryFunction0DDouble_Type, &obj1, &UnaryPredicate1D_Type, &obj2, &f))
- {
- if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
- return NULL;
- }
- if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.recursive_split(): 2nd argument: invalid UnaryPredicate1D object");
- return NULL;
- }
- if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
- *(((BPy_UnaryPredicate1D *)obj2)->up1D),
- f) < 0)
- {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
- return NULL;
- }
- }
- else if (PyErr_Clear(), (f = 0.0f),
- PyArg_ParseTupleAndKeywords(args, kwds, "O!O!O!|f", (char **)kwlist_2,
- &UnaryFunction0DDouble_Type, &obj1, &UnaryPredicate0D_Type, &obj2,
- &UnaryPredicate1D_Type, &obj3, &f))
- {
- if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
- return NULL;
- }
- if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.recursive_split(): 2nd argument: invalid UnaryPredicate0D object");
- return NULL;
- }
- if (!((BPy_UnaryPredicate1D *)obj3)->up1D) {
- PyErr_SetString(PyExc_TypeError,
- "Operators.recursive_split(): 3rd argument: invalid UnaryPredicate1D object");
- return NULL;
- }
- if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
- *(((BPy_UnaryPredicate0D *)obj2)->up0D),
- *(((BPy_UnaryPredicate1D *)obj3)->up1D),
- f) < 0)
- {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
- return NULL;
- }
- }
- else {
- PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
- return NULL;
- }
- Py_RETURN_NONE;
+ static const char *kwlist_1[] = {"func", "pred_1d", "sampling", NULL};
+ static const char *kwlist_2[] = {"func", "pred_0d", "pred_1d", "sampling", NULL};
+ PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
+ float f = 0.0f;
+
+ if (PyArg_ParseTupleAndKeywords(args,
+ kwds,
+ "O!O!|f",
+ (char **)kwlist_1,
+ &UnaryFunction0DDouble_Type,
+ &obj1,
+ &UnaryPredicate1D_Type,
+ &obj2,
+ &f)) {
+ if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.recursive_split(): 2nd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
+ *(((BPy_UnaryPredicate1D *)obj2)->up1D),
+ f) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
+ return NULL;
+ }
+ }
+ else if (PyErr_Clear(),
+ (f = 0.0f),
+ PyArg_ParseTupleAndKeywords(args,
+ kwds,
+ "O!O!O!|f",
+ (char **)kwlist_2,
+ &UnaryFunction0DDouble_Type,
+ &obj1,
+ &UnaryPredicate0D_Type,
+ &obj2,
+ &UnaryPredicate1D_Type,
+ &obj3,
+ &f)) {
+ if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.recursive_split(): 2nd argument: invalid UnaryPredicate0D object");
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj3)->up1D) {
+ PyErr_SetString(
+ PyExc_TypeError,
+ "Operators.recursive_split(): 3rd argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
+ *(((BPy_UnaryPredicate0D *)obj2)->up0D),
+ *(((BPy_UnaryPredicate1D *)obj3)->up1D),
+ f) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
+ return NULL;
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_sort_doc,
-".. staticmethod:: sort(pred)\n"
-"\n"
-" Sorts the current set of chains (or viewedges) according to the\n"
-" comparison predicate given as argument.\n"
-"\n"
-" :arg pred: The binary predicate used for the comparison.\n"
-" :type pred: :class:`BinaryPredicate1D`");
+ ".. staticmethod:: sort(pred)\n"
+ "\n"
+ " Sorts the current set of chains (or viewedges) according to the\n"
+ " comparison predicate given as argument.\n"
+ "\n"
+ " :arg pred: The binary predicate used for the comparison.\n"
+ " :type pred: :class:`BinaryPredicate1D`");
static PyObject *Operators_sort(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"pred", NULL};
- PyObject *obj = 0;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!", (char **)kwlist, &BinaryPredicate1D_Type, &obj))
- return NULL;
- if (!((BPy_BinaryPredicate1D *)obj)->bp1D) {
- PyErr_SetString(PyExc_TypeError, "Operators.sort(): 1st argument: invalid BinaryPredicate1D object");
- return NULL;
- }
- if (Operators::sort(*(((BPy_BinaryPredicate1D *)obj)->bp1D)) < 0) {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.sort() failed");
- return NULL;
- }
- Py_RETURN_NONE;
+ static const char *kwlist[] = {"pred", NULL};
+ PyObject *obj = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(
+ args, kwds, "O!", (char **)kwlist, &BinaryPredicate1D_Type, &obj))
+ return NULL;
+ if (!((BPy_BinaryPredicate1D *)obj)->bp1D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.sort(): 1st argument: invalid BinaryPredicate1D object");
+ return NULL;
+ }
+ if (Operators::sort(*(((BPy_BinaryPredicate1D *)obj)->bp1D)) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.sort() failed");
+ return NULL;
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_create_doc,
-".. staticmethod:: create(pred, shaders)\n"
-"\n"
-" Creates and shades the strokes from the current set of chains. A\n"
-" predicate can be specified to make a selection pass on the chains.\n"
-"\n"
-" :arg pred: The predicate that a chain must verify in order to be\n"
-" transform as a stroke.\n"
-" :type pred: :class:`UnaryPredicate1D`\n"
-" :arg shaders: The list of shaders used to shade the strokes.\n"
-" :type shaders: list of :class:`StrokeShader` objects");
+ ".. staticmethod:: create(pred, shaders)\n"
+ "\n"
+ " Creates and shades the strokes from the current set of chains. A\n"
+ " predicate can be specified to make a selection pass on the chains.\n"
+ "\n"
+ " :arg pred: The predicate that a chain must verify in order to be\n"
+ " transform as a stroke.\n"
+ " :type pred: :class:`UnaryPredicate1D`\n"
+ " :arg shaders: The list of shaders used to shade the strokes.\n"
+ " :type shaders: list of :class:`StrokeShader` objects");
static PyObject *Operators_create(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"pred", "shaders", NULL};
- PyObject *obj1 = 0, *obj2 = 0;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!O!", (char **)kwlist,
- &UnaryPredicate1D_Type, &obj1, &PyList_Type, &obj2))
- {
- return NULL;
- }
- if (!((BPy_UnaryPredicate1D *)obj1)->up1D) {
- PyErr_SetString(PyExc_TypeError, "Operators.create(): 1st argument: invalid UnaryPredicate1D object");
- return NULL;
- }
- vector<StrokeShader *> shaders;
- shaders.reserve(PyList_Size(obj2));
- for (int i = 0; i < PyList_Size(obj2); i++) {
- PyObject *py_ss = PyList_GET_ITEM(obj2, i);
- if (!BPy_StrokeShader_Check(py_ss)) {
- PyErr_SetString(PyExc_TypeError, "Operators.create(): 2nd argument must be a list of StrokeShader objects");
- return NULL;
- }
- StrokeShader *shader = ((BPy_StrokeShader *)py_ss)->ss;
- if (!shader) {
- stringstream ss;
- ss << "Operators.create(): item " << (i + 1)
- << " of the shaders list is invalid likely due to missing call of StrokeShader.__init__()";
- PyErr_SetString(PyExc_TypeError, ss.str().c_str());
- return NULL;
- }
- shaders.push_back(shader);
- }
- if (Operators::create(*(((BPy_UnaryPredicate1D *)obj1)->up1D), shaders) < 0) {
- if (!PyErr_Occurred())
- PyErr_SetString(PyExc_RuntimeError, "Operators.create() failed");
- return NULL;
- }
- Py_RETURN_NONE;
+ static const char *kwlist[] = {"pred", "shaders", NULL};
+ PyObject *obj1 = 0, *obj2 = 0;
+
+ if (!PyArg_ParseTupleAndKeywords(args,
+ kwds,
+ "O!O!",
+ (char **)kwlist,
+ &UnaryPredicate1D_Type,
+ &obj1,
+ &PyList_Type,
+ &obj2)) {
+ return NULL;
+ }
+ if (!((BPy_UnaryPredicate1D *)obj1)->up1D) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.create(): 1st argument: invalid UnaryPredicate1D object");
+ return NULL;
+ }
+ vector<StrokeShader *> shaders;
+ shaders.reserve(PyList_Size(obj2));
+ for (int i = 0; i < PyList_Size(obj2); i++) {
+ PyObject *py_ss = PyList_GET_ITEM(obj2, i);
+ if (!BPy_StrokeShader_Check(py_ss)) {
+ PyErr_SetString(PyExc_TypeError,
+ "Operators.create(): 2nd argument must be a list of StrokeShader objects");
+ return NULL;
+ }
+ StrokeShader *shader = ((BPy_StrokeShader *)py_ss)->ss;
+ if (!shader) {
+ stringstream ss;
+ ss << "Operators.create(): item " << (i + 1)
+ << " of the shaders list is invalid likely due to missing call of "
+ "StrokeShader.__init__()";
+ PyErr_SetString(PyExc_TypeError, ss.str().c_str());
+ return NULL;
+ }
+ shaders.push_back(shader);
+ }
+ if (Operators::create(*(((BPy_UnaryPredicate1D *)obj1)->up1D), shaders) < 0) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_RuntimeError, "Operators.create() failed");
+ return NULL;
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_reset_doc,
-".. staticmethod:: reset(delete_strokes=True)\n"
-"\n"
-" Resets the line stylization process to the initial state. The results of\n"
-" stroke creation are accumulated if **delete_strokes** is set to False.\n"
-"\n"
-" :arg delete_strokes: Delete the strokes that are currently stored.\n"
-" :type delete_strokes: bool\n");
+ ".. staticmethod:: reset(delete_strokes=True)\n"
+ "\n"
+ " Resets the line stylization process to the initial state. The results of\n"
+ " stroke creation are accumulated if **delete_strokes** is set to False.\n"
+ "\n"
+ " :arg delete_strokes: Delete the strokes that are currently stored.\n"
+ " :type delete_strokes: bool\n");
static PyObject *Operators_reset(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
- static const char *kwlist[] = {"delete_strokes", NULL};
- PyObject *obj1 = 0;
- if (PyArg_ParseTupleAndKeywords(args, kwds, "|O!", (char **)kwlist, &PyBool_Type, &obj1)) {
- // true is the default
- Operators::reset(obj1 ? bool_from_PyBool(obj1) : true);
- }
- else {
- PyErr_SetString(PyExc_RuntimeError, "Operators.reset() failed");
- return NULL;
- }
- Py_RETURN_NONE;
+ static const char *kwlist[] = {"delete_strokes", NULL};
+ PyObject *obj1 = 0;
+ if (PyArg_ParseTupleAndKeywords(args, kwds, "|O!", (char **)kwlist, &PyBool_Type, &obj1)) {
+ // true is the default
+ Operators::reset(obj1 ? bool_from_PyBool(obj1) : true);
+ }
+ else {
+ PyErr_SetString(PyExc_RuntimeError, "Operators.reset() failed");
+ return NULL;
+ }
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_get_viewedge_from_index_doc,
-".. staticmethod:: get_viewedge_from_index(i)\n"
-"\n"
-" Returns the ViewEdge at the index in the current set of ViewEdges.\n"
-"\n"
-" :arg i: index (0 <= i < Operators.get_view_edges_size()).\n"
-" :type i: int\n"
-" :return: The ViewEdge object.\n"
-" :rtype: :class:`ViewEdge`");
-
-static PyObject *Operators_get_viewedge_from_index(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
+ ".. staticmethod:: get_viewedge_from_index(i)\n"
+ "\n"
+ " Returns the ViewEdge at the index in the current set of ViewEdges.\n"
+ "\n"
+ " :arg i: index (0 <= i < Operators.get_view_edges_size()).\n"
+ " :type i: int\n"
+ " :return: The ViewEdge object.\n"
+ " :rtype: :class:`ViewEdge`");
+
+static PyObject *Operators_get_viewedge_from_index(BPy_Operators * /*self*/,
+ PyObject *args,
+ PyObject *kwds)
{
- static const char *kwlist[] = {"i", NULL};
- unsigned int i;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
- return NULL;
- if (i >= Operators::getViewEdgesSize()) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
- }
- return BPy_ViewEdge_from_ViewEdge(*(Operators::getViewEdgeFromIndex(i)));
+ static const char *kwlist[] = {"i", NULL};
+ unsigned int i;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
+ return NULL;
+ if (i >= Operators::getViewEdgesSize()) {
+ PyErr_SetString(PyExc_IndexError, "index out of range");
+ return NULL;
+ }
+ return BPy_ViewEdge_from_ViewEdge(*(Operators::getViewEdgeFromIndex(i)));
}
PyDoc_STRVAR(Operators_get_chain_from_index_doc,
-".. staticmethod:: get_chain_from_index(i)\n"
-"\n"
-" Returns the Chain at the index in the current set of Chains.\n"
-"\n"
-" :arg i: index (0 <= i < Operators.get_chains_size()).\n"
-" :type i: int\n"
-" :return: The Chain object.\n"
-" :rtype: :class:`Chain`");
-
-static PyObject *Operators_get_chain_from_index(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
+ ".. staticmethod:: get_chain_from_index(i)\n"
+ "\n"
+ " Returns the Chain at the index in the current set of Chains.\n"
+ "\n"
+ " :arg i: index (0 <= i < Operators.get_chains_size()).\n"
+ " :type i: int\n"
+ " :return: The Chain object.\n"
+ " :rtype: :class:`Chain`");
+
+static PyObject *Operators_get_chain_from_index(BPy_Operators * /*self*/,
+ PyObject *args,
+ PyObject *kwds)
{
- static const char *kwlist[] = {"i", NULL};
- unsigned int i;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
- return NULL;
- if (i >= Operators::getChainsSize()) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
- }
- return BPy_Chain_from_Chain(*(Operators::getChainFromIndex(i)));
+ static const char *kwlist[] = {"i", NULL};
+ unsigned int i;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
+ return NULL;
+ if (i >= Operators::getChainsSize()) {
+ PyErr_SetString(PyExc_IndexError, "index out of range");
+ return NULL;
+ }
+ return BPy_Chain_from_Chain(*(Operators::getChainFromIndex(i)));
}
PyDoc_STRVAR(Operators_get_stroke_from_index_doc,
-".. staticmethod:: get_stroke_from_index(i)\n"
-"\n"
-" Returns the Stroke at the index in the current set of Strokes.\n"
-"\n"
-" :arg i: index (0 <= i < Operators.get_strokes_size()).\n"
-" :type i: int\n"
-" :return: The Stroke object.\n"
-" :rtype: :class:`Stroke`");
-
-static PyObject *Operators_get_stroke_from_index(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
+ ".. staticmethod:: get_stroke_from_index(i)\n"
+ "\n"
+ " Returns the Stroke at the index in the current set of Strokes.\n"
+ "\n"
+ " :arg i: index (0 <= i < Operators.get_strokes_size()).\n"
+ " :type i: int\n"
+ " :return: The Stroke object.\n"
+ " :rtype: :class:`Stroke`");
+
+static PyObject *Operators_get_stroke_from_index(BPy_Operators * /*self*/,
+ PyObject *args,
+ PyObject *kwds)
{
- static const char *kwlist[] = {"i", NULL};
- unsigned int i;
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
- return NULL;
- if (i >= Operators::getStrokesSize()) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
- }
- return BPy_Stroke_from_Stroke(*(Operators::getStrokeFromIndex(i)));
+ static const char *kwlist[] = {"i", NULL};
+ unsigned int i;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
+ return NULL;
+ if (i >= Operators::getStrokesSize()) {
+ PyErr_SetString(PyExc_IndexError, "index out of range");
+ return NULL;
+ }
+ return BPy_Stroke_from_Stroke(*(Operators::getStrokeFromIndex(i)));
}
PyDoc_STRVAR(Operators_get_view_edges_size_doc,
-".. staticmethod:: get_view_edges_size()\n"
-"\n"
-" Returns the number of ViewEdges.\n"
-"\n"
-" :return: The number of ViewEdges.\n"
-" :rtype: int");
+ ".. staticmethod:: get_view_edges_size()\n"
+ "\n"
+ " Returns the number of ViewEdges.\n"
+ "\n"
+ " :return: The number of ViewEdges.\n"
+ " :rtype: int");
static PyObject *Operators_get_view_edges_size(BPy_Operators * /*self*/)
{
- return PyLong_FromLong(Operators::getViewEdgesSize());
+ return PyLong_FromLong(Operators::getViewEdgesSize());
}
PyDoc_STRVAR(Operators_get_chains_size_doc,
-".. staticmethod:: get_chains_size()\n"
-"\n"
-" Returns the number of Chains.\n"
-"\n"
-" :return: The number of Chains.\n"
-" :rtype: int");
+ ".. staticmethod:: get_chains_size()\n"
+ "\n"
+ " Returns the number of Chains.\n"
+ "\n"
+ " :return: The number of Chains.\n"
+ " :rtype: int");
static PyObject *Operators_get_chains_size(BPy_Operators * /*self*/)
{
- return PyLong_FromLong(Operators::getChainsSize());
+ return PyLong_FromLong(Operators::getChainsSize());
}
PyDoc_STRVAR(Operators_get_strokes_size_doc,
-".. staticmethod:: get_strokes_size()\n"
-"\n"
-" Returns the number of Strokes.\n"
-"\n"
-" :return: The number of Strokes.\n"
-" :rtype: int");
+ ".. staticmethod:: get_strokes_size()\n"
+ "\n"
+ " Returns the number of Strokes.\n"
+ "\n"
+ " :return: The number of Strokes.\n"
+ " :rtype: int");
static PyObject *Operators_get_strokes_size(BPy_Operators * /*self*/)
{
- return PyLong_FromLong(Operators::getStrokesSize());
+ return PyLong_FromLong(Operators::getStrokesSize());
}
/*----------------------Operators instance definitions ----------------------------*/
static PyMethodDef BPy_Operators_methods[] = {
- {"select", (PyCFunction) Operators_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_select_doc},
- {"chain", (PyCFunction) Operators_chain, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_chain_doc},
- {"bidirectional_chain", (PyCFunction) Operators_bidirectional_chain, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
- Operators_bidirectional_chain_doc},
- {"sequential_split", (PyCFunction) Operators_sequential_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
- Operators_sequential_split_doc},
- {"recursive_split", (PyCFunction) Operators_recursive_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
- Operators_recursive_split_doc},
- {"sort", (PyCFunction) Operators_sort, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_sort_doc},
- {"create", (PyCFunction) Operators_create, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_create_doc},
- {"reset", (PyCFunction) Operators_reset, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_reset_doc},
- {"get_viewedge_from_index", (PyCFunction) Operators_get_viewedge_from_index,
- METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_get_viewedge_from_index_doc},
- {"get_chain_from_index", (PyCFunction) Operators_get_chain_from_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
- Operators_get_chain_from_index_doc},
- {"get_stroke_from_index", (PyCFunction) Operators_get_stroke_from_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
- Operators_get_stroke_from_index_doc},
- {"get_view_edges_size", (PyCFunction) Operators_get_view_edges_size, METH_NOARGS | METH_STATIC,
- Operators_get_view_edges_size_doc},
- {"get_chains_size", (PyCFunction) Operators_get_chains_size, METH_NOARGS | METH_STATIC,
- Operators_get_chains_size_doc},
- {"get_strokes_size", (PyCFunction) Operators_get_strokes_size, METH_NOARGS | METH_STATIC,
- Operators_get_strokes_size_doc},
- {NULL, NULL, 0, NULL},
+ {"select",
+ (PyCFunction)Operators_select,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_select_doc},
+ {"chain",
+ (PyCFunction)Operators_chain,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_chain_doc},
+ {"bidirectional_chain",
+ (PyCFunction)Operators_bidirectional_chain,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_bidirectional_chain_doc},
+ {"sequential_split",
+ (PyCFunction)Operators_sequential_split,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_sequential_split_doc},
+ {"recursive_split",
+ (PyCFunction)Operators_recursive_split,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_recursive_split_doc},
+ {"sort",
+ (PyCFunction)Operators_sort,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_sort_doc},
+ {"create",
+ (PyCFunction)Operators_create,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_create_doc},
+ {"reset",
+ (PyCFunction)Operators_reset,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_reset_doc},
+ {"get_viewedge_from_index",
+ (PyCFunction)Operators_get_viewedge_from_index,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_get_viewedge_from_index_doc},
+ {"get_chain_from_index",
+ (PyCFunction)Operators_get_chain_from_index,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_get_chain_from_index_doc},
+ {"get_stroke_from_index",
+ (PyCFunction)Operators_get_stroke_from_index,
+ METH_VARARGS | METH_KEYWORDS | METH_STATIC,
+ Operators_get_stroke_from_index_doc},
+ {"get_view_edges_size",
+ (PyCFunction)Operators_get_view_edges_size,
+ METH_NOARGS | METH_STATIC,
+ Operators_get_view_edges_size_doc},
+ {"get_chains_size",
+ (PyCFunction)Operators_get_chains_size,
+ METH_NOARGS | METH_STATIC,
+ Operators_get_chains_size_doc},
+ {"get_strokes_size",
+ (PyCFunction)Operators_get_strokes_size,
+ METH_NOARGS | METH_STATIC,
+ Operators_get_strokes_size_doc},
+ {NULL, NULL, 0, NULL},
};
/*-----------------------BPy_Operators type definition ------------------------------*/
PyTypeObject Operators_Type = {
- PyVarObject_HEAD_INIT(NULL, 0)
- "Operators", /* tp_name */
- sizeof(BPy_Operators), /* tp_basicsize */
- 0, /* tp_itemsize */
- (destructor)Operators_dealloc, /* tp_dealloc */
- 0, /* tp_print */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_reserved */
- 0, /* tp_repr */
- 0, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- 0, /* tp_hash */
- 0, /* tp_call */
- 0, /* tp_str */
- 0, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT, /* tp_flags */
- Operators_doc, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- 0, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- BPy_Operators_methods, /* tp_methods */
- 0, /* tp_members */
- 0, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- PyType_GenericNew, /* tp_new */
+ PyVarObject_HEAD_INIT(NULL, 0) "Operators", /* tp_name */
+ sizeof(BPy_Operators), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ (destructor)Operators_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_reserved */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ 0, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT, /* tp_flags */
+ Operators_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ BPy_Operators_methods, /* tp_methods */
+ 0, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ PyType_GenericNew, /* tp_new */
};
///////////////////////////////////////////////////////////////////////////////////////////