Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Lucke <jacques@blender.org>2021-03-21 21:31:24 +0300
committerJacques Lucke <jacques@blender.org>2021-03-21 21:33:13 +0300
commit4fe8d0419c2f080a248f52b3924ce2a4e897e5cb (patch)
tree81aba45e26cca99578087835184ce5664362b791 /source/blender/functions/FN_generic_virtual_array.hh
parent68c31c41e52caa1ac5b527f835b16f8e298dfd86 (diff)
Functions: refactor virtual array data structures
When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
Diffstat (limited to 'source/blender/functions/FN_generic_virtual_array.hh')
-rw-r--r--source/blender/functions/FN_generic_virtual_array.hh275
1 files changed, 275 insertions, 0 deletions
diff --git a/source/blender/functions/FN_generic_virtual_array.hh b/source/blender/functions/FN_generic_virtual_array.hh
new file mode 100644
index 00000000000..c60476c4631
--- /dev/null
+++ b/source/blender/functions/FN_generic_virtual_array.hh
@@ -0,0 +1,275 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#pragma once
+
+/** \file
+ * \ingroup fn
+ *
+ * A generic virtual array is the same as a virtual array from blenlib, except for the fact that
+ * the data type is only known at runtime.
+ */
+
+#include "BLI_virtual_array.hh"
+
+#include "FN_generic_span.hh"
+
+namespace blender::fn {
+
+/* A generically typed version of `VArray<T>`. */
+class GVArray {
+ protected:
+ const CPPType *type_;
+ int64_t size_;
+
+ public:
+ GVArray(const CPPType &type, const int64_t size) : type_(&type), size_(size)
+ {
+ BLI_assert(size_ >= 0);
+ }
+
+ virtual ~GVArray() = default;
+
+ const CPPType &type() const
+ {
+ return *type_;
+ }
+
+ int64_t size() const
+ {
+ return size_;
+ }
+
+ bool is_empty() const
+ {
+ return size_;
+ }
+
+ /* Copies the value at the given index into the provided storage. The `r_value` pointer is
+ * expected to point to initialized memory. */
+ void get(const int64_t index, void *r_value) const
+ {
+ BLI_assert(index >= 0);
+ BLI_assert(index < size_);
+ this->get_impl(index, r_value);
+ }
+
+ /* Same as `get`, but `r_value` is expected to point to uninitialized memory. */
+ void get_to_uninitialized(const int64_t index, void *r_value) const
+ {
+ BLI_assert(index >= 0);
+ BLI_assert(index < size_);
+ this->get_to_uninitialized_impl(index, r_value);
+ }
+
+ /* Returns true when the virtual array is stored as a span internally. */
+ bool is_span() const
+ {
+ if (size_ == 0) {
+ return true;
+ }
+ return this->is_span_impl();
+ }
+
+ /* Returns the internally used span of the virtual array. This invokes undefined behavior is the
+ * virtual array is not stored as a span internally. */
+ GSpan get_span() const
+ {
+ BLI_assert(this->is_span());
+ if (size_ == 0) {
+ return GSpan(*type_);
+ }
+ return this->get_span_impl();
+ }
+
+ /* Returns true when the virtual array returns the same value for every index. */
+ bool is_single() const
+ {
+ if (size_ == 1) {
+ return true;
+ }
+ return this->is_single_impl();
+ }
+
+ /* Copies the value that is used for every element into `r_value`, which is expected to point to
+ * initialized memory. This invokes undefined behavior if the virtual array would not return the
+ * same value for every index. */
+ void get_single(void *r_value) const
+ {
+ BLI_assert(this->is_single());
+ if (size_ == 1) {
+ this->get(0, r_value);
+ }
+ this->get_single_impl(r_value);
+ }
+
+ /* Same as `get_single`, but `r_value` points to initialized memory. */
+ void get_single_to_uninitialized(void *r_value) const
+ {
+ type_->construct_default(r_value);
+ this->get_single(r_value);
+ }
+
+ void materialize_to_uninitialized(const IndexMask mask, void *dst) const;
+
+ protected:
+ virtual void get_impl(const int64_t index, void *r_value) const;
+ virtual void get_to_uninitialized_impl(const int64_t index, void *r_value) const = 0;
+
+ virtual bool is_span_impl() const;
+ virtual GSpan get_span_impl() const;
+
+ virtual bool is_single_impl() const;
+ virtual void get_single_impl(void *UNUSED(r_value)) const;
+};
+
+class GVArrayForGSpan : public GVArray {
+ protected:
+ const void *data_;
+ const int64_t element_size_;
+
+ public:
+ GVArrayForGSpan(const GSpan span)
+ : GVArray(span.type(), span.size()), data_(span.data()), element_size_(span.type().size())
+ {
+ }
+
+ protected:
+ void get_impl(const int64_t index, void *r_value) const override;
+ void get_to_uninitialized_impl(const int64_t index, void *r_value) const override;
+
+ bool is_span_impl() const override;
+ GSpan get_span_impl() const override;
+};
+
+class GVArrayForEmpty : public GVArray {
+ public:
+ GVArrayForEmpty(const CPPType &type) : GVArray(type, 0)
+ {
+ }
+
+ protected:
+ void get_to_uninitialized_impl(const int64_t UNUSED(index), void *UNUSED(r_value)) const override
+ {
+ BLI_assert(false);
+ }
+};
+
+class GVArrayForSingleValueRef : public GVArray {
+ private:
+ const void *value_;
+
+ public:
+ GVArrayForSingleValueRef(const CPPType &type, const int64_t size, const void *value)
+ : GVArray(type, size), value_(value)
+ {
+ }
+
+ protected:
+ void get_impl(const int64_t index, void *r_value) const override;
+ void get_to_uninitialized_impl(const int64_t index, void *r_value) const override;
+
+ bool is_span_impl() const override;
+ GSpan get_span_impl() const override;
+
+ bool is_single_impl() const override;
+ void get_single_impl(void *r_value) const override;
+};
+
+template<typename T> class GVArrayForVArray : public GVArray {
+ private:
+ const VArray<T> &array_;
+
+ public:
+ GVArrayForVArray(const VArray<T> &array)
+ : GVArray(CPPType::get<T>(), array.size()), array_(array)
+ {
+ }
+
+ protected:
+ void get_impl(const int64_t index, void *r_value) const override
+ {
+ *(T *)r_value = array_.get(index);
+ }
+
+ void get_to_uninitialized_impl(const int64_t index, void *r_value) const override
+ {
+ new (r_value) T(array_.get(index));
+ }
+
+ bool is_span_impl() const override
+ {
+ return array_.is_span();
+ }
+
+ GSpan get_span_impl() const override
+ {
+ return GSpan(array_.get_span());
+ }
+
+ bool is_single_impl() const override
+ {
+ return array_.is_single();
+ }
+
+ void get_single_impl(void *r_value) const override
+ {
+ *(T *)r_value = array_.get_single();
+ }
+};
+
+template<typename T> class VArrayForGVArray : public VArray<T> {
+ private:
+ const GVArray &array_;
+
+ public:
+ VArrayForGVArray(const GVArray &array) : VArray<T>(array.size()), array_(array)
+ {
+ BLI_assert(array_.type().is<T>());
+ }
+
+ protected:
+ T get_impl(const int64_t index) const override
+ {
+ T value;
+ array_.get(index, &value);
+ return value;
+ }
+
+ bool is_span_impl() const override
+ {
+ return array_.is_span();
+ }
+
+ Span<T> get_span_impl() const override
+ {
+ return array_.get_span().typed<T>();
+ }
+
+ bool is_single_impl() const override
+ {
+ return array_.is_single();
+ }
+
+ T get_single_impl() const override
+ {
+ T value;
+ array_.get_single(&value);
+ return value;
+ }
+};
+
+} // namespace blender::fn