Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Lucke <jacques@blender.org>2021-09-09 13:54:20 +0300
committerJacques Lucke <jacques@blender.org>2021-09-09 13:54:20 +0300
commitbf47fb40fd6f0ee9386e9936cf213a1049c55b61 (patch)
treec8bbe7c00b27ac845e4adbc214b7f29ec670a9f3 /source/blender/functions/intern/multi_function_procedure_executor.cc
parent0f6be4e1520087bfe6d1dc98b61d65686ae09b3f (diff)
Geometry Nodes: fields and anonymous attributes
This implements the initial core framework for fields and anonymous attributes (also see T91274). The new functionality is hidden behind the "Geometry Nodes Fields" feature flag. When enabled in the user preferences, the following new nodes become available: `Position`, `Index`, `Normal`, `Set Position` and `Attribute Capture`. Socket inspection has not been updated to work with fields yet. Besides these changes at the user level, this patch contains the ground work for: * building and evaluating fields at run-time (`FN_fields.hh`) and * creating and accessing anonymous attributes on geometry (`BKE_anonymous_attribute.h`). For evaluating fields we use a new so called multi-function procedure (`FN_multi_function_procedure.hh`). It allows composing multi-functions in arbitrary ways and supports efficient evaluation as is required by fields. See `FN_multi_function_procedure.hh` for more details on how this evaluation mechanism can be used. A new `AttributeIDRef` has been added which allows handling named and anonymous attributes in the same way in many places. Hans and I worked on this patch together. Differential Revision: https://developer.blender.org/D12414
Diffstat (limited to 'source/blender/functions/intern/multi_function_procedure_executor.cc')
-rw-r--r--source/blender/functions/intern/multi_function_procedure_executor.cc1212
1 files changed, 1212 insertions, 0 deletions
diff --git a/source/blender/functions/intern/multi_function_procedure_executor.cc b/source/blender/functions/intern/multi_function_procedure_executor.cc
new file mode 100644
index 00000000000..38b26415779
--- /dev/null
+++ b/source/blender/functions/intern/multi_function_procedure_executor.cc
@@ -0,0 +1,1212 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include "FN_multi_function_procedure_executor.hh"
+
+#include "BLI_stack.hh"
+
+namespace blender::fn {
+
+MFProcedureExecutor::MFProcedureExecutor(std::string name, const MFProcedure &procedure)
+ : procedure_(procedure)
+{
+ MFSignatureBuilder signature(std::move(name));
+
+ for (const ConstMFParameter &param : procedure.params()) {
+ signature.add(param.variable->name(), MFParamType(param.type, param.variable->data_type()));
+ }
+
+ signature_ = signature.build();
+ this->set_signature(&signature_);
+}
+
+using IndicesSplitVectors = std::array<Vector<int64_t>, 2>;
+
+namespace {
+enum class ValueType {
+ GVArray = 0,
+ Span = 1,
+ GVVectorArray = 2,
+ GVectorArray = 3,
+ OneSingle = 4,
+ OneVector = 5,
+};
+constexpr int tot_variable_value_types = 6;
+} // namespace
+
+/**
+ * During evaluation, a variable may be stored in various different forms, depending on what
+ * instructions do with the variables.
+ */
+struct VariableValue {
+ ValueType type;
+
+ VariableValue(ValueType type) : type(type)
+ {
+ }
+};
+
+/* This variable is the unmodified virtual array from the caller. */
+struct VariableValue_GVArray : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::GVArray;
+ const GVArray &data;
+
+ VariableValue_GVArray(const GVArray &data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+/* This variable has a different value for every index. Some values may be uninitialized. The span
+ * may be owned by the caller. */
+struct VariableValue_Span : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::Span;
+ void *data;
+ bool owned;
+
+ VariableValue_Span(void *data, bool owned) : VariableValue(static_type), data(data), owned(owned)
+ {
+ }
+};
+
+/* This variable is the unmodified virtual vector array from the caller. */
+struct VariableValue_GVVectorArray : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::GVVectorArray;
+ const GVVectorArray &data;
+
+ VariableValue_GVVectorArray(const GVVectorArray &data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+/* This variable has a different vector for every index. */
+struct VariableValue_GVectorArray : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::GVectorArray;
+ GVectorArray &data;
+ bool owned;
+
+ VariableValue_GVectorArray(GVectorArray &data, bool owned)
+ : VariableValue(static_type), data(data), owned(owned)
+ {
+ }
+};
+
+/* This variable has the same value for every index. */
+struct VariableValue_OneSingle : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::OneSingle;
+ void *data;
+ bool is_initialized = false;
+
+ VariableValue_OneSingle(void *data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+/* This variable has the same vector for every index. */
+struct VariableValue_OneVector : public VariableValue {
+ static inline constexpr ValueType static_type = ValueType::OneVector;
+ GVectorArray &data;
+
+ VariableValue_OneVector(GVectorArray &data) : VariableValue(static_type), data(data)
+ {
+ }
+};
+
+static_assert(std::is_trivially_destructible_v<VariableValue_GVArray>);
+static_assert(std::is_trivially_destructible_v<VariableValue_Span>);
+static_assert(std::is_trivially_destructible_v<VariableValue_GVVectorArray>);
+static_assert(std::is_trivially_destructible_v<VariableValue_GVectorArray>);
+static_assert(std::is_trivially_destructible_v<VariableValue_OneSingle>);
+static_assert(std::is_trivially_destructible_v<VariableValue_OneVector>);
+
+class VariableState;
+
+/**
+ * The #ValueAllocator is responsible for providing memory for variables and their values. It also
+ * manages the reuse of buffers to improve performance.
+ */
+class ValueAllocator : NonCopyable, NonMovable {
+ private:
+ /* Allocate with 64 byte alignment for better reusability of buffers and improved cache
+ * performance. */
+ static constexpr inline int min_alignment = 64;
+
+ /* Use stacks so that the most recently used buffers are reused first. This improves cache
+ * efficiency. */
+ std::array<Stack<VariableValue *>, tot_variable_value_types> values_free_lists_;
+ /* The integer key is the size of one element (e.g. 4 for an integer buffer). All buffers are
+ * aligned to #min_alignment bytes. */
+ Map<int, Stack<void *>> span_buffers_free_list_;
+
+ public:
+ ValueAllocator() = default;
+
+ ~ValueAllocator()
+ {
+ for (Stack<VariableValue *> &stack : values_free_lists_) {
+ while (!stack.is_empty()) {
+ MEM_freeN(stack.pop());
+ }
+ }
+ for (Stack<void *> &stack : span_buffers_free_list_.values()) {
+ while (!stack.is_empty()) {
+ MEM_freeN(stack.pop());
+ }
+ }
+ }
+
+ template<typename... Args> VariableState *obtain_variable_state(Args &&...args);
+
+ void release_variable_state(VariableState *state);
+
+ VariableValue_GVArray *obtain_GVArray(const GVArray &varray)
+ {
+ return this->obtain<VariableValue_GVArray>(varray);
+ }
+
+ VariableValue_GVVectorArray *obtain_GVVectorArray(const GVVectorArray &varray)
+ {
+ return this->obtain<VariableValue_GVVectorArray>(varray);
+ }
+
+ VariableValue_Span *obtain_Span_not_owned(void *buffer)
+ {
+ return this->obtain<VariableValue_Span>(buffer, false);
+ }
+
+ VariableValue_Span *obtain_Span(const CPPType &type, int size)
+ {
+ void *buffer = nullptr;
+
+ const int element_size = type.size();
+ const int alignment = type.alignment();
+
+ if (alignment > min_alignment) {
+ /* In this rare case we fallback to not reusing existing buffers. */
+ buffer = MEM_mallocN_aligned(element_size * size, alignment, __func__);
+ }
+ else {
+ Stack<void *> *stack = span_buffers_free_list_.lookup_ptr(element_size);
+ if (stack == nullptr || stack->is_empty()) {
+ buffer = MEM_mallocN_aligned(element_size * size, min_alignment, __func__);
+ }
+ else {
+ /* Reuse existing buffer. */
+ buffer = stack->pop();
+ }
+ }
+
+ return this->obtain<VariableValue_Span>(buffer, true);
+ }
+
+ VariableValue_GVectorArray *obtain_GVectorArray_not_owned(GVectorArray &data)
+ {
+ return this->obtain<VariableValue_GVectorArray>(data, false);
+ }
+
+ VariableValue_GVectorArray *obtain_GVectorArray(const CPPType &type, int size)
+ {
+ GVectorArray *vector_array = new GVectorArray(type, size);
+ return this->obtain<VariableValue_GVectorArray>(*vector_array, true);
+ }
+
+ VariableValue_OneSingle *obtain_OneSingle(const CPPType &type)
+ {
+ void *buffer = MEM_mallocN_aligned(type.size(), type.alignment(), __func__);
+ return this->obtain<VariableValue_OneSingle>(buffer);
+ }
+
+ VariableValue_OneVector *obtain_OneVector(const CPPType &type)
+ {
+ GVectorArray *vector_array = new GVectorArray(type, 1);
+ return this->obtain<VariableValue_OneVector>(*vector_array);
+ }
+
+ void release_value(VariableValue *value, const MFDataType &data_type)
+ {
+ switch (value->type) {
+ case ValueType::GVArray: {
+ break;
+ }
+ case ValueType::Span: {
+ auto *value_typed = static_cast<VariableValue_Span *>(value);
+ if (value_typed->owned) {
+ const CPPType &type = data_type.single_type();
+ /* Assumes all values in the buffer are uninitialized already. */
+ Stack<void *> &buffers = span_buffers_free_list_.lookup_or_add_default(type.size());
+ buffers.push(value_typed->data);
+ }
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ break;
+ }
+ case ValueType::GVectorArray: {
+ auto *value_typed = static_cast<VariableValue_GVectorArray *>(value);
+ if (value_typed->owned) {
+ delete &value_typed->data;
+ }
+ break;
+ }
+ case ValueType::OneSingle: {
+ auto *value_typed = static_cast<VariableValue_OneSingle *>(value);
+ if (value_typed->is_initialized) {
+ const CPPType &type = data_type.single_type();
+ type.destruct(value_typed->data);
+ }
+ MEM_freeN(value_typed->data);
+ break;
+ }
+ case ValueType::OneVector: {
+ auto *value_typed = static_cast<VariableValue_OneVector *>(value);
+ delete &value_typed->data;
+ break;
+ }
+ }
+
+ Stack<VariableValue *> &stack = values_free_lists_[(int)value->type];
+ stack.push(value);
+ }
+
+ private:
+ template<typename T, typename... Args> T *obtain(Args &&...args)
+ {
+ static_assert(std::is_base_of_v<VariableValue, T>);
+ Stack<VariableValue *> &stack = values_free_lists_[(int)T::static_type];
+ if (stack.is_empty()) {
+ void *buffer = MEM_mallocN(sizeof(T), __func__);
+ return new (buffer) T(std::forward<Args>(args)...);
+ }
+ return new (stack.pop()) T(std::forward<Args>(args)...);
+ }
+};
+
+/**
+ * This class keeps track of a single variable during evaluation.
+ */
+class VariableState : NonCopyable, NonMovable {
+ private:
+ /** The current value of the variable. The storage format may change over time. */
+ VariableValue *value_;
+ /** Number of indices that are currently initialized in this variable. */
+ int tot_initialized_;
+ /* This a non-owning pointer to either span buffer or #GVectorArray or null. */
+ void *caller_provided_storage_ = nullptr;
+
+ public:
+ VariableState(VariableValue &value, int tot_initialized, void *caller_provided_storage = nullptr)
+ : value_(&value),
+ tot_initialized_(tot_initialized),
+ caller_provided_storage_(caller_provided_storage)
+ {
+ }
+
+ void destruct_self(ValueAllocator &value_allocator, const MFDataType &data_type)
+ {
+ value_allocator.release_value(value_, data_type);
+ value_allocator.release_variable_state(this);
+ }
+
+ /* True if this contains only one value for all indices, i.e. the value for all indices is
+ * the same. */
+ bool is_one() const
+ {
+ switch (value_->type) {
+ case ValueType::GVArray:
+ return this->value_as<VariableValue_GVArray>()->data.is_single();
+ case ValueType::Span:
+ return tot_initialized_ == 0;
+ case ValueType::GVVectorArray:
+ return this->value_as<VariableValue_GVVectorArray>()->data.is_single_vector();
+ case ValueType::GVectorArray:
+ return tot_initialized_ == 0;
+ case ValueType::OneSingle:
+ return true;
+ case ValueType::OneVector:
+ return true;
+ }
+ BLI_assert_unreachable();
+ return false;
+ }
+
+ bool is_fully_initialized(const IndexMask full_mask)
+ {
+ return tot_initialized_ == full_mask.size();
+ }
+
+ bool is_fully_uninitialized(const IndexMask full_mask)
+ {
+ UNUSED_VARS(full_mask);
+ return tot_initialized_ == 0;
+ }
+
+ void add_as_input(MFParamsBuilder &params, IndexMask mask, const MFDataType &data_type) const
+ {
+ /* Sanity check to make sure that enough values are initialized. */
+ BLI_assert(mask.size() <= tot_initialized_);
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
+ break;
+ }
+ case ValueType::Span: {
+ const void *data = this->value_as<VariableValue_Span>()->data;
+ const GSpan span{data_type.single_type(), data, mask.min_array_size()};
+ params.add_readonly_single_input(span);
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
+ break;
+ }
+ case ValueType::GVectorArray: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_GVectorArray>()->data);
+ break;
+ }
+ case ValueType::OneSingle: {
+ const auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ const GPointer gpointer{data_type.single_type(), value_typed->data};
+ params.add_readonly_single_input(gpointer);
+ break;
+ }
+ case ValueType::OneVector: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data[0]);
+ break;
+ }
+ }
+ }
+
+ void ensure_is_mutable(IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ if (ELEM(value_->type, ValueType::Span, ValueType::GVectorArray)) {
+ return;
+ }
+
+ const int array_size = full_mask.min_array_size();
+
+ switch (data_type.category()) {
+ case MFDataType::Single: {
+ const CPPType &type = data_type.single_type();
+ VariableValue_Span *new_value = nullptr;
+ if (caller_provided_storage_ == nullptr) {
+ new_value = value_allocator.obtain_Span(type, array_size);
+ }
+ else {
+ /* Reuse the storage provided caller when possible. */
+ new_value = value_allocator.obtain_Span_not_owned(caller_provided_storage_);
+ }
+ if (value_->type == ValueType::GVArray) {
+ /* Fill new buffer with data from virtual array. */
+ this->value_as<VariableValue_GVArray>()->data.materialize_to_uninitialized(
+ full_mask, new_value->data);
+ }
+ else if (value_->type == ValueType::OneSingle) {
+ auto *old_value_typed_ = this->value_as<VariableValue_OneSingle>();
+ if (old_value_typed_->is_initialized) {
+ /* Fill the buffer with a single value. */
+ type.fill_construct_indices(old_value_typed_->data, new_value->data, full_mask);
+ }
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ case MFDataType::Vector: {
+ const CPPType &type = data_type.vector_base_type();
+ VariableValue_GVectorArray *new_value = nullptr;
+ if (caller_provided_storage_ == nullptr) {
+ new_value = value_allocator.obtain_GVectorArray(type, array_size);
+ }
+ else {
+ new_value = value_allocator.obtain_GVectorArray_not_owned(
+ *(GVectorArray *)caller_provided_storage_);
+ }
+ if (value_->type == ValueType::GVVectorArray) {
+ /* Fill new vector array with data from virtual vector array. */
+ new_value->data.extend(full_mask, this->value_as<VariableValue_GVVectorArray>()->data);
+ }
+ else if (value_->type == ValueType::OneVector) {
+ /* Fill all indices with the same value. */
+ const GSpan vector = this->value_as<VariableValue_OneVector>()->data[0];
+ new_value->data.extend(full_mask, GVVectorArray_For_SingleGSpan{vector, array_size});
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ }
+ }
+
+ void add_as_mutable(MFParamsBuilder &params,
+ IndexMask mask,
+ IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ /* Sanity check to make sure that enough values are initialized. */
+ BLI_assert(mask.size() <= tot_initialized_);
+
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::Span: {
+ void *data = this->value_as<VariableValue_Span>()->data;
+ const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
+ params.add_single_mutable(span);
+ break;
+ }
+ case ValueType::GVectorArray: {
+ params.add_vector_mutable(this->value_as<VariableValue_GVectorArray>()->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::GVVectorArray:
+ case ValueType::OneSingle:
+ case ValueType::OneVector: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ void add_as_output(MFParamsBuilder &params,
+ IndexMask mask,
+ IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ /* Sanity check to make sure that enough values are not initialized. */
+ BLI_assert(mask.size() <= full_mask.size() - tot_initialized_);
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::Span: {
+ void *data = this->value_as<VariableValue_Span>()->data;
+ const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
+ params.add_uninitialized_single_output(span);
+ break;
+ }
+ case ValueType::GVectorArray: {
+ params.add_vector_output(this->value_as<VariableValue_GVectorArray>()->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::GVVectorArray:
+ case ValueType::OneSingle:
+ case ValueType::OneVector: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+
+ tot_initialized_ += mask.size();
+ }
+
+ void add_as_input__one(MFParamsBuilder &params, const MFDataType &data_type) const
+ {
+ BLI_assert(this->is_one());
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
+ break;
+ }
+ case ValueType::OneSingle: {
+ const auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ GPointer ptr{data_type.single_type(), value_typed->data};
+ params.add_readonly_single_input(ptr);
+ break;
+ }
+ case ValueType::OneVector: {
+ params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data);
+ break;
+ }
+ case ValueType::Span:
+ case ValueType::GVectorArray: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ void ensure_is_mutable__one(const MFDataType &data_type, ValueAllocator &value_allocator)
+ {
+ BLI_assert(this->is_one());
+ if (ELEM(value_->type, ValueType::OneSingle, ValueType::OneVector)) {
+ return;
+ }
+
+ switch (data_type.category()) {
+ case MFDataType::Single: {
+ const CPPType &type = data_type.single_type();
+ VariableValue_OneSingle *new_value = value_allocator.obtain_OneSingle(type);
+ if (value_->type == ValueType::GVArray) {
+ this->value_as<VariableValue_GVArray>()->data.get_internal_single_to_uninitialized(
+ new_value->data);
+ new_value->is_initialized = true;
+ }
+ else if (value_->type == ValueType::Span) {
+ BLI_assert(tot_initialized_ == 0);
+ /* Nothing to do, the single value is uninitialized already. */
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ case MFDataType::Vector: {
+ const CPPType &type = data_type.vector_base_type();
+ VariableValue_OneVector *new_value = value_allocator.obtain_OneVector(type);
+ if (value_->type == ValueType::GVVectorArray) {
+ const GVVectorArray &old_vector_array =
+ this->value_as<VariableValue_GVVectorArray>()->data;
+ new_value->data.extend(IndexRange(1), old_vector_array);
+ }
+ else if (value_->type == ValueType::GVectorArray) {
+ BLI_assert(tot_initialized_ == 0);
+ /* Nothing to do. */
+ }
+ else {
+ BLI_assert_unreachable();
+ }
+ value_allocator.release_value(value_, data_type);
+ value_ = new_value;
+ break;
+ }
+ }
+ }
+
+ void add_as_mutable__one(MFParamsBuilder &params,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ BLI_assert(this->is_one());
+ this->ensure_is_mutable__one(data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ params.add_single_mutable(GMutableSpan{data_type.single_type(), value_typed->data, 1});
+ break;
+ }
+ case ValueType::OneVector: {
+ params.add_vector_mutable(this->value_as<VariableValue_OneVector>()->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::Span:
+ case ValueType::GVVectorArray:
+ case ValueType::GVectorArray: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ void add_as_output__one(MFParamsBuilder &params,
+ IndexMask mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ BLI_assert(this->is_one());
+ this->ensure_is_mutable__one(data_type, value_allocator);
+
+ switch (value_->type) {
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(!value_typed->is_initialized);
+ params.add_uninitialized_single_output(
+ GMutableSpan{data_type.single_type(), value_typed->data, 1});
+ /* It becomes initialized when the multi-function is called. */
+ value_typed->is_initialized = true;
+ break;
+ }
+ case ValueType::OneVector: {
+ auto *value_typed = this->value_as<VariableValue_OneVector>();
+ BLI_assert(value_typed->data[0].is_empty());
+ params.add_vector_output(value_typed->data);
+ break;
+ }
+ case ValueType::GVArray:
+ case ValueType::Span:
+ case ValueType::GVVectorArray:
+ case ValueType::GVectorArray: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+
+ tot_initialized_ += mask.size();
+ }
+
+ void destruct(IndexMask mask,
+ IndexMask full_mask,
+ const MFDataType &data_type,
+ ValueAllocator &value_allocator)
+ {
+ int new_tot_initialized = tot_initialized_ - mask.size();
+
+ /* Sanity check to make sure that enough indices can be destructed. */
+ BLI_assert(new_tot_initialized >= 0);
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ if (mask.size() == full_mask.size()) {
+ /* All elements are destructed. The elements are owned by the caller, so we don't
+ * actually destruct them. */
+ value_allocator.release_value(value_, data_type);
+ value_ = value_allocator.obtain_OneSingle(data_type.single_type());
+ }
+ else {
+ /* Not all elements are destructed. Since we can't work on the original array, we have to
+ * create a copy first. */
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+ BLI_assert(value_->type == ValueType::Span);
+ const CPPType &type = data_type.single_type();
+ type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
+ }
+ break;
+ }
+ case ValueType::Span: {
+ const CPPType &type = data_type.single_type();
+ type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
+ if (new_tot_initialized == 0) {
+ /* Release span when all values are initialized. */
+ value_allocator.release_value(value_, data_type);
+ value_ = value_allocator.obtain_OneSingle(data_type.single_type());
+ }
+ break;
+ }
+ case ValueType::GVVectorArray: {
+ if (mask.size() == full_mask.size()) {
+ /* All elements are cleared. The elements are owned by the caller, so don't actually
+ * destruct them. */
+ value_allocator.release_value(value_, data_type);
+ value_ = value_allocator.obtain_OneVector(data_type.vector_base_type());
+ }
+ else {
+ /* Not all elements are cleared. Since we can't work on the original vector array, we
+ * have to create a copy first. A possible future optimization is to create the partial
+ * copy directly. */
+ this->ensure_is_mutable(full_mask, data_type, value_allocator);
+ BLI_assert(value_->type == ValueType::GVectorArray);
+ this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
+ }
+ break;
+ }
+ case ValueType::GVectorArray: {
+ this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
+ break;
+ }
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ if (mask.size() == tot_initialized_) {
+ const CPPType &type = data_type.single_type();
+ type.destruct(value_typed->data);
+ value_typed->is_initialized = false;
+ }
+ break;
+ }
+ case ValueType::OneVector: {
+ auto *value_typed = this->value_as<VariableValue_OneVector>();
+ if (mask.size() == tot_initialized_) {
+ value_typed->data.clear({0});
+ }
+ break;
+ }
+ }
+
+ tot_initialized_ = new_tot_initialized;
+ }
+
+ void indices_split(IndexMask mask, IndicesSplitVectors &r_indices)
+ {
+ BLI_assert(mask.size() <= tot_initialized_);
+
+ switch (value_->type) {
+ case ValueType::GVArray: {
+ const GVArray_Typed<bool> varray{this->value_as<VariableValue_GVArray>()->data};
+ for (const int i : mask) {
+ r_indices[varray[i]].append(i);
+ }
+ break;
+ }
+ case ValueType::Span: {
+ const Span<bool> span((bool *)this->value_as<VariableValue_Span>()->data,
+ mask.min_array_size());
+ for (const int i : mask) {
+ r_indices[span[i]].append(i);
+ }
+ break;
+ }
+ case ValueType::OneSingle: {
+ auto *value_typed = this->value_as<VariableValue_OneSingle>();
+ BLI_assert(value_typed->is_initialized);
+ const bool condition = *(bool *)value_typed->data;
+ r_indices[condition].extend(mask);
+ break;
+ }
+ case ValueType::GVVectorArray:
+ case ValueType::GVectorArray:
+ case ValueType::OneVector: {
+ BLI_assert_unreachable();
+ break;
+ }
+ }
+ }
+
+ template<typename T> T *value_as()
+ {
+ BLI_assert(value_->type == T::static_type);
+ return static_cast<T *>(value_);
+ }
+
+ template<typename T> const T *value_as() const
+ {
+ BLI_assert(value_->type == T::static_type);
+ return static_cast<T *>(value_);
+ }
+};
+
+template<typename... Args> VariableState *ValueAllocator::obtain_variable_state(Args &&...args)
+{
+ return new VariableState(std::forward<Args>(args)...);
+}
+
+void ValueAllocator::release_variable_state(VariableState *state)
+{
+ delete state;
+}
+
+/** Keeps track of the states of all variables during evaluation. */
+class VariableStates {
+ private:
+ ValueAllocator value_allocator_;
+ Map<const MFVariable *, VariableState *> variable_states_;
+ IndexMask full_mask_;
+
+ public:
+ VariableStates(IndexMask full_mask) : full_mask_(full_mask)
+ {
+ }
+
+ ~VariableStates()
+ {
+ for (auto &&item : variable_states_.items()) {
+ const MFVariable *variable = item.key;
+ VariableState *state = item.value;
+ state->destruct_self(value_allocator_, variable->data_type());
+ }
+ }
+
+ ValueAllocator &value_allocator()
+ {
+ return value_allocator_;
+ }
+
+ const IndexMask &full_mask() const
+ {
+ return full_mask_;
+ }
+
+ void add_initial_variable_states(const MFProcedureExecutor &fn,
+ const MFProcedure &procedure,
+ MFParams &params)
+ {
+ for (const int param_index : fn.param_indices()) {
+ MFParamType param_type = fn.param_type(param_index);
+ const MFVariable *variable = procedure.params()[param_index].variable;
+
+ auto add_state = [&](VariableValue *value,
+ bool input_is_initialized,
+ void *caller_provided_storage = nullptr) {
+ const int tot_initialized = input_is_initialized ? full_mask_.size() : 0;
+ variable_states_.add_new(variable,
+ value_allocator_.obtain_variable_state(
+ *value, tot_initialized, caller_provided_storage));
+ };
+
+ switch (param_type.category()) {
+ case MFParamType::SingleInput: {
+ const GVArray &data = params.readonly_single_input(param_index);
+ add_state(value_allocator_.obtain_GVArray(data), true);
+ break;
+ }
+ case MFParamType::VectorInput: {
+ const GVVectorArray &data = params.readonly_vector_input(param_index);
+ add_state(value_allocator_.obtain_GVVectorArray(data), true);
+ break;
+ }
+ case MFParamType::SingleOutput: {
+ GMutableSpan data = params.uninitialized_single_output(param_index);
+ add_state(value_allocator_.obtain_Span_not_owned(data.data()), false, data.data());
+ break;
+ }
+ case MFParamType::VectorOutput: {
+ GVectorArray &data = params.vector_output(param_index);
+ add_state(value_allocator_.obtain_GVectorArray_not_owned(data), false, &data);
+ break;
+ }
+ case MFParamType::SingleMutable: {
+ GMutableSpan data = params.single_mutable(param_index);
+ add_state(value_allocator_.obtain_Span_not_owned(data.data()), true, data.data());
+ break;
+ }
+ case MFParamType::VectorMutable: {
+ GVectorArray &data = params.vector_mutable(param_index);
+ add_state(value_allocator_.obtain_GVectorArray_not_owned(data), true, &data);
+ break;
+ }
+ }
+ }
+ }
+
+ void add_as_param(VariableState &variable_state,
+ MFParamsBuilder &params,
+ const MFParamType &param_type,
+ const IndexMask &mask)
+ {
+ const MFDataType data_type = param_type.data_type();
+ switch (param_type.interface_type()) {
+ case MFParamType::Input: {
+ variable_state.add_as_input(params, mask, data_type);
+ break;
+ }
+ case MFParamType::Mutable: {
+ variable_state.add_as_mutable(params, mask, full_mask_, data_type, value_allocator_);
+ break;
+ }
+ case MFParamType::Output: {
+ variable_state.add_as_output(params, mask, full_mask_, data_type, value_allocator_);
+ break;
+ }
+ }
+ }
+
+ void add_as_param__one(VariableState &variable_state,
+ MFParamsBuilder &params,
+ const MFParamType &param_type,
+ const IndexMask &mask)
+ {
+ const MFDataType data_type = param_type.data_type();
+ switch (param_type.interface_type()) {
+ case MFParamType::Input: {
+ variable_state.add_as_input__one(params, data_type);
+ break;
+ }
+ case MFParamType::Mutable: {
+ variable_state.add_as_mutable__one(params, data_type, value_allocator_);
+ break;
+ }
+ case MFParamType::Output: {
+ variable_state.add_as_output__one(params, mask, data_type, value_allocator_);
+ break;
+ }
+ }
+ }
+
+ void destruct(const MFVariable &variable, const IndexMask &mask)
+ {
+ VariableState &variable_state = this->get_variable_state(variable);
+ variable_state.destruct(mask, full_mask_, variable.data_type(), value_allocator_);
+ }
+
+ VariableState &get_variable_state(const MFVariable &variable)
+ {
+ return *variable_states_.lookup_or_add_cb(
+ &variable, [&]() { return this->create_new_state_for_variable(variable); });
+ }
+
+ VariableState *create_new_state_for_variable(const MFVariable &variable)
+ {
+ MFDataType data_type = variable.data_type();
+ switch (data_type.category()) {
+ case MFDataType::Single: {
+ const CPPType &type = data_type.single_type();
+ return value_allocator_.obtain_variable_state(*value_allocator_.obtain_OneSingle(type), 0);
+ }
+ case MFDataType::Vector: {
+ const CPPType &type = data_type.vector_base_type();
+ return value_allocator_.obtain_variable_state(*value_allocator_.obtain_OneVector(type), 0);
+ }
+ }
+ BLI_assert_unreachable();
+ return nullptr;
+ }
+};
+
+static bool evaluate_as_one(const MultiFunction &fn,
+ Span<VariableState *> param_variable_states,
+ const IndexMask &mask,
+ const IndexMask &full_mask)
+{
+ if (fn.depends_on_context()) {
+ return false;
+ }
+ if (mask.size() < full_mask.size()) {
+ return false;
+ }
+ for (VariableState *state : param_variable_states) {
+ if (!state->is_one()) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static void execute_call_instruction(const MFCallInstruction &instruction,
+ IndexMask mask,
+ VariableStates &variable_states,
+ const MFContext &context)
+{
+ const MultiFunction &fn = instruction.fn();
+
+ Vector<VariableState *> param_variable_states;
+ param_variable_states.resize(fn.param_amount());
+
+ for (const int param_index : fn.param_indices()) {
+ const MFVariable *variable = instruction.params()[param_index];
+ VariableState &variable_state = variable_states.get_variable_state(*variable);
+ param_variable_states[param_index] = &variable_state;
+ }
+
+ /* If all inputs to the function are constant, it's enough to call the function only once instead
+ * of for every index. */
+ if (evaluate_as_one(fn, param_variable_states, mask, variable_states.full_mask())) {
+ MFParamsBuilder params(fn, 1);
+
+ for (const int param_index : fn.param_indices()) {
+ const MFParamType param_type = fn.param_type(param_index);
+ VariableState &variable_state = *param_variable_states[param_index];
+ variable_states.add_as_param__one(variable_state, params, param_type, mask);
+ }
+
+ fn.call(IndexRange(1), params, context);
+ }
+ else {
+ MFParamsBuilder params(fn, mask.min_array_size());
+
+ for (const int param_index : fn.param_indices()) {
+ const MFParamType param_type = fn.param_type(param_index);
+ VariableState &variable_state = *param_variable_states[param_index];
+ variable_states.add_as_param(variable_state, params, param_type, mask);
+ }
+
+ fn.call(mask, params, context);
+ }
+}
+
+/** An index mask, that might own the indices if necessary. */
+struct InstructionIndices {
+ bool is_owned;
+ Vector<int64_t> owned_indices;
+ IndexMask referenced_indices;
+
+ IndexMask mask() const
+ {
+ if (this->is_owned) {
+ return this->owned_indices.as_span();
+ }
+ return this->referenced_indices;
+ }
+};
+
+/** Contains information about the next instruction that should be executed. */
+struct NextInstructionInfo {
+ const MFInstruction *instruction = nullptr;
+ InstructionIndices indices;
+
+ IndexMask mask() const
+ {
+ return this->indices.mask();
+ }
+
+ operator bool() const
+ {
+ return this->instruction != nullptr;
+ }
+};
+
+/**
+ * Keeps track of the next instruction for all indices and decides in which order instructions are
+ * evaluated.
+ */
+class InstructionScheduler {
+ private:
+ Map<const MFInstruction *, Vector<InstructionIndices>> indices_by_instruction_;
+
+ public:
+ InstructionScheduler() = default;
+
+ void add_referenced_indices(const MFInstruction &instruction, IndexMask mask)
+ {
+ if (mask.is_empty()) {
+ return;
+ }
+ InstructionIndices new_indices;
+ new_indices.is_owned = false;
+ new_indices.referenced_indices = mask;
+ indices_by_instruction_.lookup_or_add_default(&instruction).append(std::move(new_indices));
+ }
+
+ void add_owned_indices(const MFInstruction &instruction, Vector<int64_t> indices)
+ {
+ if (indices.is_empty()) {
+ return;
+ }
+ BLI_assert(IndexMask::indices_are_valid_index_mask(indices));
+
+ InstructionIndices new_indices;
+ new_indices.is_owned = true;
+ new_indices.owned_indices = std::move(indices);
+ indices_by_instruction_.lookup_or_add_default(&instruction).append(std::move(new_indices));
+ }
+
+ void add_previous_instruction_indices(const MFInstruction &instruction,
+ NextInstructionInfo &instr_info)
+ {
+ indices_by_instruction_.lookup_or_add_default(&instruction)
+ .append(std::move(instr_info.indices));
+ }
+
+ NextInstructionInfo pop_next()
+ {
+ if (indices_by_instruction_.is_empty()) {
+ return {};
+ }
+ /* TODO: Implement better mechanism to determine next instruction. */
+ const MFInstruction *instruction = *indices_by_instruction_.keys().begin();
+
+ NextInstructionInfo next_instruction_info;
+ next_instruction_info.instruction = instruction;
+ next_instruction_info.indices = this->pop_indices_array(instruction);
+ return next_instruction_info;
+ }
+
+ private:
+ InstructionIndices pop_indices_array(const MFInstruction *instruction)
+ {
+ Vector<InstructionIndices> *indices = indices_by_instruction_.lookup_ptr(instruction);
+ if (indices == nullptr) {
+ return {};
+ }
+ InstructionIndices r_indices = (*indices).pop_last();
+ BLI_assert(!r_indices.mask().is_empty());
+ if (indices->is_empty()) {
+ indices_by_instruction_.remove_contained(instruction);
+ }
+ return r_indices;
+ }
+};
+
+void MFProcedureExecutor::call(IndexMask full_mask, MFParams params, MFContext context) const
+{
+ BLI_assert(procedure_.validate());
+
+ LinearAllocator<> allocator;
+
+ VariableStates variable_states{full_mask};
+ variable_states.add_initial_variable_states(*this, procedure_, params);
+
+ InstructionScheduler scheduler;
+ scheduler.add_referenced_indices(*procedure_.entry(), full_mask);
+
+ /* Loop until all indices got to a return instruction. */
+ while (NextInstructionInfo instr_info = scheduler.pop_next()) {
+ const MFInstruction &instruction = *instr_info.instruction;
+ switch (instruction.type()) {
+ case MFInstructionType::Call: {
+ const MFCallInstruction &call_instruction = static_cast<const MFCallInstruction &>(
+ instruction);
+ execute_call_instruction(call_instruction, instr_info.mask(), variable_states, context);
+ scheduler.add_previous_instruction_indices(*call_instruction.next(), instr_info);
+ break;
+ }
+ case MFInstructionType::Branch: {
+ const MFBranchInstruction &branch_instruction = static_cast<const MFBranchInstruction &>(
+ instruction);
+ const MFVariable *condition_var = branch_instruction.condition();
+ VariableState &variable_state = variable_states.get_variable_state(*condition_var);
+
+ IndicesSplitVectors new_indices;
+ variable_state.indices_split(instr_info.mask(), new_indices);
+ scheduler.add_owned_indices(*branch_instruction.branch_false(), new_indices[false]);
+ scheduler.add_owned_indices(*branch_instruction.branch_true(), new_indices[true]);
+ break;
+ }
+ case MFInstructionType::Destruct: {
+ const MFDestructInstruction &destruct_instruction =
+ static_cast<const MFDestructInstruction &>(instruction);
+ const MFVariable *variable = destruct_instruction.variable();
+ variable_states.destruct(*variable, instr_info.mask());
+ scheduler.add_previous_instruction_indices(*destruct_instruction.next(), instr_info);
+ break;
+ }
+ case MFInstructionType::Dummy: {
+ const MFDummyInstruction &dummy_instruction = static_cast<const MFDummyInstruction &>(
+ instruction);
+ scheduler.add_previous_instruction_indices(*dummy_instruction.next(), instr_info);
+ break;
+ }
+ case MFInstructionType::Return: {
+ /* Don't insert the indices back into the scheduler. */
+ break;
+ }
+ }
+ }
+
+ for (const int param_index : this->param_indices()) {
+ const MFParamType param_type = this->param_type(param_index);
+ const MFVariable *variable = procedure_.params()[param_index].variable;
+ VariableState &variable_state = variable_states.get_variable_state(*variable);
+ switch (param_type.interface_type()) {
+ case MFParamType::Input: {
+ /* Input variables must be destructed in the end. */
+ BLI_assert(variable_state.is_fully_uninitialized(full_mask));
+ break;
+ }
+ case MFParamType::Mutable:
+ case MFParamType::Output: {
+ /* Mutable and output variables must be initialized in the end. */
+ BLI_assert(variable_state.is_fully_initialized(full_mask));
+ /* Make sure that the data is in the memory provided by the caller. */
+ variable_state.ensure_is_mutable(
+ full_mask, param_type.data_type(), variable_states.value_allocator());
+ break;
+ }
+ }
+ }
+}
+
+} // namespace blender::fn