Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Lucke <jacques@blender.org>2022-09-13 09:44:26 +0300
committerJacques Lucke <jacques@blender.org>2022-09-13 09:44:32 +0300
commit4130f1e674f83fc3d53979d3061469af34e1f873 (patch)
treedb0da10f143d39b0198d2def4e39bd8df9d1656e /source/blender/functions
parent4d69b6f525a4f02a24141e61f16e90455f3f0a30 (diff)
Geometry Nodes: new evaluation system
This refactors the geometry nodes evaluation system. No changes for the user are expected. At a high level the goals are: * Support using geometry nodes outside of the geometry nodes modifier. * Support using the evaluator infrastructure for other purposes like field evaluation. * Support more nodes, especially when many of them are disabled behind switch nodes. * Support doing preprocessing on node groups. For more details see T98492. There are fairly detailed comments in the code, but here is a high level overview for how it works now: * There is a new "lazy-function" system. It is similar in spirit to the multi-function system but with different goals. Instead of optimizing throughput for highly parallelizable work, this system is designed to compute only the data that is actually necessary. What data is necessary can be determined dynamically during evaluation. Many lazy-functions can be composed in a graph to form a new lazy-function, which can again be used in a graph etc. * Each geometry node group is converted into a lazy-function graph prior to evaluation. To evaluate geometry nodes, one then just has to evaluate that graph. Node groups are no longer inlined into their parents. Next steps for the evaluation system is to reduce the use of threads in some situations to avoid overhead. Many small node groups don't benefit from multi-threading at all. This is much easier to do now because not everything has to be inlined in one huge node tree anymore. Differential Revision: https://developer.blender.org/D15914
Diffstat (limited to 'source/blender/functions')
-rw-r--r--source/blender/functions/CMakeLists.txt9
-rw-r--r--source/blender/functions/FN_field.hh11
-rw-r--r--source/blender/functions/FN_field_cpp_type.hh2
-rw-r--r--source/blender/functions/FN_lazy_function.hh384
-rw-r--r--source/blender/functions/FN_lazy_function_execute.hh122
-rw-r--r--source/blender/functions/FN_lazy_function_graph.hh421
-rw-r--r--source/blender/functions/FN_lazy_function_graph_executor.hh98
-rw-r--r--source/blender/functions/FN_multi_function.hh1
-rw-r--r--source/blender/functions/intern/cpp_types.cc3
-rw-r--r--source/blender/functions/intern/lazy_function.cc66
-rw-r--r--source/blender/functions/intern/lazy_function_execute.cc65
-rw-r--r--source/blender/functions/intern/lazy_function_graph.cc181
-rw-r--r--source/blender/functions/intern/lazy_function_graph_executor.cc1163
-rw-r--r--source/blender/functions/tests/FN_lazy_function_test.cc115
14 files changed, 2640 insertions, 1 deletions
diff --git a/source/blender/functions/CMakeLists.txt b/source/blender/functions/CMakeLists.txt
index f1298a7f5b7..3d153813425 100644
--- a/source/blender/functions/CMakeLists.txt
+++ b/source/blender/functions/CMakeLists.txt
@@ -13,6 +13,10 @@ set(INC_SYS
set(SRC
intern/cpp_types.cc
intern/field.cc
+ intern/lazy_function.cc
+ intern/lazy_function_execute.cc
+ intern/lazy_function_graph.cc
+ intern/lazy_function_graph_executor.cc
intern/multi_function.cc
intern/multi_function_builder.cc
intern/multi_function_params.cc
@@ -23,6 +27,10 @@ set(SRC
FN_field.hh
FN_field_cpp_type.hh
+ FN_lazy_function.hh
+ FN_lazy_function_execute.hh
+ FN_lazy_function_graph.hh
+ FN_lazy_function_graph_executor.hh
FN_multi_function.hh
FN_multi_function_builder.hh
FN_multi_function_context.hh
@@ -61,6 +69,7 @@ blender_add_lib(bf_functions "${SRC}" "${INC}" "${INC_SYS}" "${LIB}")
if(WITH_GTESTS)
set(TEST_SRC
tests/FN_field_test.cc
+ tests/FN_lazy_function_test.cc
tests/FN_multi_function_procedure_test.cc
tests/FN_multi_function_test.cc
diff --git a/source/blender/functions/FN_field.hh b/source/blender/functions/FN_field.hh
index bc42cab8db5..ca12f407e49 100644
--- a/source/blender/functions/FN_field.hh
+++ b/source/blender/functions/FN_field.hh
@@ -565,6 +565,17 @@ template<typename T> struct ValueOrField {
}
return this->value;
}
+
+ friend std::ostream &operator<<(std::ostream &stream, const ValueOrField<T> &value_or_field)
+ {
+ if (value_or_field.field) {
+ stream << "ValueOrField<T>";
+ }
+ else {
+ stream << value_or_field.value;
+ }
+ return stream;
+ }
};
/** \} */
diff --git a/source/blender/functions/FN_field_cpp_type.hh b/source/blender/functions/FN_field_cpp_type.hh
index 63a648f3202..6900a093dc6 100644
--- a/source/blender/functions/FN_field_cpp_type.hh
+++ b/source/blender/functions/FN_field_cpp_type.hh
@@ -59,7 +59,7 @@ class ValueOrFieldCPPType : public CPPType {
public:
template<typename T>
ValueOrFieldCPPType(FieldCPPTypeParam<ValueOrField<T>> /* unused */, StringRef debug_name)
- : CPPType(CPPTypeParam<ValueOrField<T>, CPPTypeFlags::None>(), debug_name),
+ : CPPType(CPPTypeParam<ValueOrField<T>, CPPTypeFlags::Printable>(), debug_name),
base_type_(CPPType::get<T>())
{
construct_from_value_ = [](void *dst, const void *value_or_field) {
diff --git a/source/blender/functions/FN_lazy_function.hh b/source/blender/functions/FN_lazy_function.hh
new file mode 100644
index 00000000000..8dceb9ed993
--- /dev/null
+++ b/source/blender/functions/FN_lazy_function.hh
@@ -0,0 +1,384 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#pragma once
+
+/** \file
+ * \ingroup fn
+ *
+ * A `LazyFunction` encapsulates a computation which has inputs, outputs and potentially side
+ * effects. Most importantly, a `LazyFunction` supports lazyness in its inputs and outputs:
+ * - Only outputs that are actually used have to be computed.
+ * - Inputs can be requested lazily based on which outputs are used or what side effects the
+ * function has.
+ *
+ * A lazy-function that uses lazyness may be executed more than once. The most common example is
+ * the geometry nodes switch node. Depending on a condition input, it decides which one of the
+ * other inputs is actually used. From the perspective of the switch node, its execution works as
+ * follows:
+ * 1. The switch node is first executed. It sees that the output is used. Now it requests the
+ * condition input from the caller and exits.
+ * 2. Once the caller is able to provide the condition input the switch node is executed again.
+ * This time it retrieves the condition and requests one of the other inputs. Then the node
+ * exits again, giving back control to the caller.
+ * 3. When the caller computed the second requested input the switch node executes a last time.
+ * This time it retrieves the new input and forwards it to the output.
+ *
+ * In some sense, a lazy-function can be thought of like a state machine. Every time it is
+ * executed, it advances its state until all required outputs are ready.
+ *
+ * The lazy-function interface is designed to support composition of many such functions into a new
+ * lazy-functions, all while keeping the lazyness working. For example, in geometry nodes a switch
+ * node in a node group should still be able to decide whether a node in the parent group will be
+ * executed or not. This is essential to avoid doing unnecessary work.
+ *
+ * The lazy-function system consists of multiple core components:
+ * - The interface of a lazy-function itself including its calling convention.
+ * - A graph data structure that allows composing many lazy-functions by connecting their inputs
+ * and outputs.
+ * - An executor that allows multi-threaded execution or such a graph.
+ */
+
+#include "BLI_cpp_type.hh"
+#include "BLI_generic_pointer.hh"
+#include "BLI_linear_allocator.hh"
+#include "BLI_vector.hh"
+
+namespace blender::fn::lazy_function {
+
+enum class ValueUsage {
+ /**
+ * The value is definitely used and therefore has to be computed.
+ */
+ Used,
+ /**
+ * It's unknown whether this value will be used or not. Computing it is ok but the result may be
+ * discarded.
+ */
+ Maybe,
+ /**
+ * The value will definitely not be used. It can still be computed but the result will be
+ * discarded in all cases.
+ */
+ Unused,
+};
+
+class LazyFunction;
+
+/**
+ * This allows passing arbitrary data into a lazy-function during execution. For that, #UserData
+ * has to be subclassed. This mainly exists because it's more type safe than passing a `void *`
+ * with no type information attached.
+ *
+ * Some lazy-functions may expect to find a certain type of user data when executed.
+ */
+class UserData {
+ public:
+ virtual ~UserData() = default;
+};
+
+/**
+ * Passed to the lazy-function when it is executed.
+ */
+struct Context {
+ /**
+ * If the lazy-function has some state (which only makes sense when it is executed more than once
+ * to finish its job), the state is stored here. This points to memory returned from
+ * #LazyFunction::init_storage.
+ */
+ void *storage;
+ /**
+ * Custom user data that can be used in the function.
+ */
+ UserData *user_data;
+};
+
+/**
+ * Defines the calling convention for a lazy-function. During execution, a lazy-function retrieves
+ * its inputs and sets the outputs through #Params.
+ */
+class Params {
+ public:
+ /**
+ * The lazy-function this #Params has been prepared for.
+ */
+ const LazyFunction &fn_;
+
+ public:
+ Params(const LazyFunction &fn);
+
+ /**
+ * Get a pointer to an input value if the value is available already. Otherwise null is returned.
+ *
+ * The #LazyFunction must leave returned object in an initialized state, but can move from it.
+ */
+ void *try_get_input_data_ptr(int index) const;
+
+ /**
+ * Same as #try_get_input_data_ptr, but if the data is not yet available, request it. This makes
+ * sure that the data will be available in a future execution of the #LazyFunction.
+ */
+ void *try_get_input_data_ptr_or_request(int index);
+
+ /**
+ * Get a pointer to where the output value should be stored.
+ * The value at the pointer is in an uninitialized state at first.
+ * The #LazyFunction is responsible for initializing the value.
+ * After the output has been initialized to its final value, #output_set has to be called.
+ */
+ void *get_output_data_ptr(int index);
+
+ /**
+ * Call this after the output value is initialized. After this is called, the value must not be
+ * touched anymore. It may be moved or destructed immediatly.
+ */
+ void output_set(int index);
+
+ /**
+ * Allows the #LazyFunction to check whether an output was computed already without keeping
+ * track of it itself.
+ */
+ bool output_was_set(int index) const;
+
+ /**
+ * Can be used to detect which outputs have to be computed.
+ */
+ ValueUsage get_output_usage(int index) const;
+
+ /**
+ * Tell the caller of the #LazyFunction that a specific input will definitely not be used.
+ * Only an input that was not #ValueUsage::Used can become unused.
+ */
+ void set_input_unused(int index);
+
+ /**
+ * Typed utility methods that wrap the methods above.
+ */
+ template<typename T> T extract_input(int index);
+ template<typename T> const T &get_input(int index);
+ template<typename T> T *try_get_input_data_ptr_or_request(int index);
+ template<typename T> void set_output(int index, T &&value);
+
+ /**
+ * Utility to initialize all outputs that haven't been set yet.
+ */
+ void set_default_remaining_outputs();
+
+ private:
+ /**
+ * Methods that need to be implemented by subclasses. Those are separate from the non-virtual
+ * methods above to make it easy to insert additional debugging logic on top of the
+ * implementations.
+ */
+ virtual void *try_get_input_data_ptr_impl(int index) const = 0;
+ virtual void *try_get_input_data_ptr_or_request_impl(int index) = 0;
+ virtual void *get_output_data_ptr_impl(int index) = 0;
+ virtual void output_set_impl(int index) = 0;
+ virtual bool output_was_set_impl(int index) const = 0;
+ virtual ValueUsage get_output_usage_impl(int index) const = 0;
+ virtual void set_input_unused_impl(int index) = 0;
+};
+
+/**
+ * Describes an input of a #LazyFunction.
+ */
+struct Input {
+ /**
+ * Name used for debugging purposes. The string has to be static or has to be owned by something
+ * else.
+ */
+ const char *debug_name;
+ /**
+ * Data type of this input.
+ */
+ const CPPType *type;
+ /**
+ * Can be used to indicate a caller or this function if this input is used statically before
+ * executing it the first time. This is technically not needed but can improve efficiency because
+ * a round-trip through the `execute` method can be avoided.
+ *
+ * When this is #ValueUsage::Used, the caller has to ensure that the input is definitely
+ * available when the #execute method is first called. The #execute method does not have to check
+ * whether the value is actually available.
+ */
+ ValueUsage usage;
+
+ Input(const char *debug_name, const CPPType &type, const ValueUsage usage = ValueUsage::Used)
+ : debug_name(debug_name), type(&type), usage(usage)
+ {
+ }
+};
+
+struct Output {
+ /**
+ * Name used for debugging purposes. The string has to be static or has to be owned by something
+ * else.
+ */
+ const char *debug_name;
+ /**
+ * Data type of this output.
+ */
+ const CPPType *type = nullptr;
+
+ Output(const char *debug_name, const CPPType &type) : debug_name(debug_name), type(&type)
+ {
+ }
+};
+
+/**
+ * A function that can compute outputs and request inputs lazily. For more details see the comment
+ * at the top of the file.
+ */
+class LazyFunction {
+ protected:
+ const char *debug_name_ = "<unknown>";
+ Vector<Input> inputs_;
+ Vector<Output> outputs_;
+
+ public:
+ virtual ~LazyFunction() = default;
+
+ /**
+ * Get a name of the function or an input or output. This is mainly used for debugging.
+ * These are virtual functions because the names are often not used outside of debugging
+ * workflows. This way the names are only generated when they are actually needed.
+ */
+ virtual std::string name() const;
+ virtual std::string input_name(int index) const;
+ virtual std::string output_name(int index) const;
+
+ /**
+ * Allocates storage for this function. The storage will be passed to every call to #execute.
+ * If the function does not keep track of any state, this does not have to be implemented.
+ */
+ virtual void *init_storage(LinearAllocator<> &allocator) const;
+
+ /**
+ * Destruct the storage created in #init_storage.
+ */
+ virtual void destruct_storage(void *storage) const;
+
+ /**
+ * Inputs of the function.
+ */
+ Span<Input> inputs() const;
+ /**
+ * Outputs of the function.
+ */
+ Span<Output> outputs() const;
+
+ /**
+ * During execution the function retrieves inputs and sets outputs in #params. For some
+ * functions, this method is called more than once. After execution, the function either has
+ * computed all required outputs or is waiting for more inputs.
+ */
+ void execute(Params &params, const Context &context) const;
+
+ /**
+ * Utility to check that the guarantee by #Input::usage is followed.
+ */
+ bool always_used_inputs_available(const Params &params) const;
+
+ private:
+ /**
+ * Needs to be implemented by subclasses. This is separate from #execute so that additional
+ * debugging logic can be implemented in #execute.
+ */
+ virtual void execute_impl(Params &params, const Context &context) const = 0;
+};
+
+/* -------------------------------------------------------------------- */
+/** \name #LazyFunction Inline Methods
+ * \{ */
+
+inline Span<Input> LazyFunction::inputs() const
+{
+ return inputs_;
+}
+
+inline Span<Output> LazyFunction::outputs() const
+{
+ return outputs_;
+}
+
+inline void LazyFunction::execute(Params &params, const Context &context) const
+{
+ BLI_assert(this->always_used_inputs_available(params));
+ this->execute_impl(params, context);
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name #Params Inline Methods
+ * \{ */
+
+inline Params::Params(const LazyFunction &fn) : fn_(fn)
+{
+}
+
+inline void *Params::try_get_input_data_ptr(const int index) const
+{
+ return this->try_get_input_data_ptr_impl(index);
+}
+
+inline void *Params::try_get_input_data_ptr_or_request(const int index)
+{
+ return this->try_get_input_data_ptr_or_request_impl(index);
+}
+
+inline void *Params::get_output_data_ptr(const int index)
+{
+ return this->get_output_data_ptr_impl(index);
+}
+
+inline void Params::output_set(const int index)
+{
+ this->output_set_impl(index);
+}
+
+inline bool Params::output_was_set(const int index) const
+{
+ return this->output_was_set_impl(index);
+}
+
+inline ValueUsage Params::get_output_usage(const int index) const
+{
+ return this->get_output_usage_impl(index);
+}
+
+inline void Params::set_input_unused(const int index)
+{
+ this->set_input_unused_impl(index);
+}
+
+template<typename T> inline T Params::extract_input(const int index)
+{
+ void *data = this->try_get_input_data_ptr(index);
+ BLI_assert(data != nullptr);
+ T return_value = std::move(*static_cast<T *>(data));
+ return return_value;
+}
+
+template<typename T> inline const T &Params::get_input(const int index)
+{
+ const void *data = this->try_get_input_data_ptr(index);
+ BLI_assert(data != nullptr);
+ return *static_cast<const T *>(data);
+}
+
+template<typename T> inline T *Params::try_get_input_data_ptr_or_request(const int index)
+{
+ return static_cast<T *>(this->try_get_input_data_ptr_or_request(index));
+}
+
+template<typename T> inline void Params::set_output(const int index, T &&value)
+{
+ using DecayT = std::decay_t<T>;
+ void *data = this->get_output_data_ptr(index);
+ new (data) DecayT(std::forward<T>(value));
+ this->output_set(index);
+}
+
+/** \} */
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/FN_lazy_function_execute.hh b/source/blender/functions/FN_lazy_function_execute.hh
new file mode 100644
index 00000000000..4213f5ca5f9
--- /dev/null
+++ b/source/blender/functions/FN_lazy_function_execute.hh
@@ -0,0 +1,122 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#pragma once
+
+/** \file
+ * \ingroup fn
+ *
+ * This file contains common utilities for actually executing a lazy-function.
+ */
+
+#include "BLI_parameter_pack_utils.hh"
+
+#include "FN_lazy_function.hh"
+
+namespace blender::fn::lazy_function {
+
+/**
+ * Most basic implementation of #Params. It does not actually implement any logic for how to
+ * retrieve inputs or set outputs. Instead, code using #BasicParams has to implement that.
+ */
+class BasicParams : public Params {
+ private:
+ const Span<GMutablePointer> inputs_;
+ const Span<GMutablePointer> outputs_;
+ MutableSpan<std::optional<ValueUsage>> input_usages_;
+ Span<ValueUsage> output_usages_;
+ MutableSpan<bool> set_outputs_;
+
+ public:
+ BasicParams(const LazyFunction &fn,
+ const Span<GMutablePointer> inputs,
+ const Span<GMutablePointer> outputs,
+ MutableSpan<std::optional<ValueUsage>> input_usages,
+ Span<ValueUsage> output_usages,
+ MutableSpan<bool> set_outputs);
+
+ void *try_get_input_data_ptr_impl(const int index) const override;
+ void *try_get_input_data_ptr_or_request_impl(const int index) override;
+ void *get_output_data_ptr_impl(const int index) override;
+ void output_set_impl(const int index) override;
+ bool output_was_set_impl(const int index) const override;
+ ValueUsage get_output_usage_impl(const int index) const override;
+ void set_input_unused_impl(const int index) override;
+};
+
+namespace detail {
+
+/**
+ * Utility to implement #execute_lazy_function_eagerly.
+ */
+template<typename... Inputs, typename... Outputs, size_t... InIndices, size_t... OutIndices>
+inline void execute_lazy_function_eagerly_impl(
+ const LazyFunction &fn,
+ UserData *user_data,
+ std::tuple<Inputs...> &inputs,
+ std::tuple<Outputs *...> &outputs,
+ std::index_sequence<InIndices...> /* in_indices */,
+ std::index_sequence<OutIndices...> /* out_indices */)
+{
+ constexpr size_t InputsNum = sizeof...(Inputs);
+ constexpr size_t OutputsNum = sizeof...(Outputs);
+ std::array<GMutablePointer, InputsNum> input_pointers;
+ std::array<GMutablePointer, OutputsNum> output_pointers;
+ std::array<std::optional<ValueUsage>, InputsNum> input_usages;
+ std::array<ValueUsage, OutputsNum> output_usages;
+ std::array<bool, OutputsNum> set_outputs;
+ (
+ [&]() {
+ constexpr size_t I = InIndices;
+ using T = Inputs;
+ const CPPType &type = CPPType::get<T>();
+ input_pointers[I] = {type, &std::get<I>(inputs)};
+ }(),
+ ...);
+ (
+ [&]() {
+ constexpr size_t I = OutIndices;
+ using T = Outputs;
+ const CPPType &type = CPPType::get<T>();
+ output_pointers[I] = {type, std::get<I>(outputs)};
+ }(),
+ ...);
+ output_usages.fill(ValueUsage::Used);
+ set_outputs.fill(false);
+ LinearAllocator<> allocator;
+ Context context;
+ context.user_data = user_data;
+ context.storage = fn.init_storage(allocator);
+ BasicParams params{
+ fn, input_pointers, output_pointers, input_usages, output_usages, set_outputs};
+ fn.execute(params, context);
+ fn.destruct_storage(context.storage);
+}
+
+} // namespace detail
+
+/**
+ * In some cases (mainly for tests), the set of inputs and outputs for a lazy-function is known at
+ * compile time and one just wants to compute the outputs based on the inputs, without any
+ * lazyness.
+ *
+ * This function does exactly that. It takes all inputs in a tuple and writes the outputs to points
+ * provided in a second tuple. Since all inputs have to be provided, the lazy-function has to
+ * compute all outputs.
+ */
+template<typename... Inputs, typename... Outputs>
+inline void execute_lazy_function_eagerly(const LazyFunction &fn,
+ UserData *user_data,
+ std::tuple<Inputs...> inputs,
+ std::tuple<Outputs *...> outputs)
+{
+ BLI_assert(fn.inputs().size() == sizeof...(Inputs));
+ BLI_assert(fn.outputs().size() == sizeof...(Outputs));
+ detail::execute_lazy_function_eagerly_impl(fn,
+ user_data,
+ inputs,
+ outputs,
+ std::make_index_sequence<sizeof...(Inputs)>(),
+ std::make_index_sequence<sizeof...(Outputs)>());
+}
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/FN_lazy_function_graph.hh b/source/blender/functions/FN_lazy_function_graph.hh
new file mode 100644
index 00000000000..4ede28c4f26
--- /dev/null
+++ b/source/blender/functions/FN_lazy_function_graph.hh
@@ -0,0 +1,421 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#pragma once
+
+/** \file
+ * \ingroup fn
+ *
+ * This file contains a graph data structure that allows composing multiple lazy-functions into a
+ * combined lazy-function.
+ *
+ * There are two types of nodes in the graph:
+ * - #FunctionNode: Corresponds to a #LazyFunction. The inputs and outputs of the function become
+ * input and output sockets of the node.
+ * - #DummyNode: Is used to indicate inputs and outputs of the entire graph. It can have an
+ * arbitrary number of sockets.
+ */
+
+#include "BLI_linear_allocator.hh"
+
+#include "FN_lazy_function.hh"
+
+namespace blender::fn::lazy_function {
+
+class Socket;
+class InputSocket;
+class OutputSocket;
+class Node;
+class Graph;
+
+/**
+ * A #Socket is the interface of a #Node. Every #Socket is either an #InputSocket or #OutputSocket.
+ * Links can be created from output sockets to input sockets.
+ */
+class Socket : NonCopyable, NonMovable {
+ protected:
+ /**
+ * The node the socket belongs to.
+ */
+ Node *node_;
+ /**
+ * Data type of the socket. Only sockets with the same type can be linked.
+ */
+ const CPPType *type_;
+ /**
+ * Indicates whether this is an #InputSocket or #OutputSocket.
+ */
+ bool is_input_;
+ /**
+ * Index of the socket. E.g. 0 for the first input and the first output socket.
+ */
+ int index_in_node_;
+
+ friend Graph;
+
+ public:
+ bool is_input() const;
+ bool is_output() const;
+
+ int index() const;
+
+ InputSocket &as_input();
+ OutputSocket &as_output();
+ const InputSocket &as_input() const;
+ const OutputSocket &as_output() const;
+
+ const Node &node() const;
+ Node &node();
+
+ const CPPType &type() const;
+
+ std::string name() const;
+};
+
+class InputSocket : public Socket {
+ private:
+ /**
+ * An input can have at most one link connected to it. The linked socket is the "origin" because
+ * it's where the data is coming from. The type of the origin must be the same as the type of
+ * this socket.
+ */
+ OutputSocket *origin_;
+ /**
+ * Can be null or a non-owning pointer to a value of the type of the socket. This value will be
+ * used when the input is used but not linked.
+ *
+ * This is technically not needed, because one could just create a separate node that just
+ * outputs the value, but that would have more overhead. Especially because it's commonly the
+ * case that most inputs are unlinked.
+ */
+ const void *default_value_ = nullptr;
+
+ friend Graph;
+
+ public:
+ OutputSocket *origin();
+ const OutputSocket *origin() const;
+
+ const void *default_value() const;
+ void set_default_value(const void *value);
+};
+
+class OutputSocket : public Socket {
+ private:
+ /**
+ * An output can be linked to an arbitrary number of inputs of the same type.
+ */
+ Vector<InputSocket *> targets_;
+
+ friend Graph;
+
+ public:
+ Span<InputSocket *> targets();
+ Span<const InputSocket *> targets() const;
+};
+
+/**
+ * A #Node has input and output sockets. Every node is either a #FunctionNode or a #DummyNode.
+ */
+class Node : NonCopyable, NonMovable {
+ protected:
+ /**
+ * The function this node corresponds to. If this is null, the node is a #DummyNode.
+ * The function is not owned by this #Node nor by the #Graph.
+ */
+ const LazyFunction *fn_ = nullptr;
+ /**
+ * Input sockets of the node.
+ */
+ Span<InputSocket *> inputs_;
+ /**
+ * Output sockets of the node.
+ */
+ Span<OutputSocket *> outputs_;
+ /**
+ * An index that is set when calling #Graph::update_node_indices. This can be used to create
+ * efficient mappings from nodes to other data using just an array instead of a hash map.
+ *
+ * This is technically not necessary but has better performance than always using hash maps.
+ */
+ int index_in_graph_ = -1;
+
+ friend Graph;
+
+ public:
+ bool is_dummy() const;
+ bool is_function() const;
+ int index_in_graph() const;
+
+ Span<const InputSocket *> inputs() const;
+ Span<const OutputSocket *> outputs() const;
+ Span<InputSocket *> inputs();
+ Span<OutputSocket *> outputs();
+
+ const InputSocket &input(int index) const;
+ const OutputSocket &output(int index) const;
+ InputSocket &input(int index);
+ OutputSocket &output(int index);
+
+ std::string name() const;
+};
+
+/**
+ * A #Node that corresponds to a specific #LazyFunction.
+ */
+class FunctionNode : public Node {
+ public:
+ const LazyFunction &function() const;
+};
+
+/**
+ * A #Node that does *not* correspond to a #LazyFunction. Instead it can be used to indicate inputs
+ * and outputs of the entire graph. It can have an arbitrary number of inputs and outputs.
+ */
+class DummyNode : public Node {
+ private:
+ std::string name_;
+
+ friend Node;
+};
+
+/**
+ * A container for an arbitrary number of nodes and links between their sockets.
+ */
+class Graph : NonCopyable, NonMovable {
+ private:
+ /**
+ * Used to allocate nodes and sockets in the graph.
+ */
+ LinearAllocator<> allocator_;
+ /**
+ * Contains all nodes in the graph so that it is efficient to iterate over them.
+ */
+ Vector<Node *> nodes_;
+
+ public:
+ ~Graph();
+
+ /**
+ * Get all nodes in the graph. The index in the span corresponds to #Node::index_in_graph.
+ */
+ Span<const Node *> nodes() const;
+
+ /**
+ * Add a new function node with sockets that match the passed in #LazyFunction.
+ */
+ FunctionNode &add_function(const LazyFunction &fn);
+
+ /**
+ * Add a new dummy node with the given socket types.
+ */
+ DummyNode &add_dummy(Span<const CPPType *> input_types, Span<const CPPType *> output_types);
+
+ /**
+ * Add a link between the two given sockets.
+ * This has undefined behavior when the input is linked to something else already.
+ */
+ void add_link(OutputSocket &from, InputSocket &to);
+
+ /**
+ * Make sure that #Node::index_in_graph is up to date.
+ */
+ void update_node_indices();
+
+ /**
+ * Can be used to assert that #update_node_indices has been called.
+ */
+ bool node_indices_are_valid() const;
+
+ /**
+ * Utility to generate a dot graph string for the graph. This can be used for debugging.
+ */
+ std::string to_dot() const;
+};
+
+/* -------------------------------------------------------------------- */
+/** \name #Socket Inline Methods
+ * \{ */
+
+inline bool Socket::is_input() const
+{
+ return is_input_;
+}
+
+inline bool Socket::is_output() const
+{
+ return !is_input_;
+}
+
+inline int Socket::index() const
+{
+ return index_in_node_;
+}
+
+inline InputSocket &Socket::as_input()
+{
+ BLI_assert(this->is_input());
+ return *static_cast<InputSocket *>(this);
+}
+
+inline OutputSocket &Socket::as_output()
+{
+ BLI_assert(this->is_output());
+ return *static_cast<OutputSocket *>(this);
+}
+
+inline const InputSocket &Socket::as_input() const
+{
+ BLI_assert(this->is_input());
+ return *static_cast<const InputSocket *>(this);
+}
+
+inline const OutputSocket &Socket::as_output() const
+{
+ BLI_assert(this->is_output());
+ return *static_cast<const OutputSocket *>(this);
+}
+
+inline const Node &Socket::node() const
+{
+ return *node_;
+}
+
+inline Node &Socket::node()
+{
+ return *node_;
+}
+
+inline const CPPType &Socket::type() const
+{
+ return *type_;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name #InputSocket Inline Methods
+ * \{ */
+
+inline const OutputSocket *InputSocket::origin() const
+{
+ return origin_;
+}
+
+inline OutputSocket *InputSocket::origin()
+{
+ return origin_;
+}
+
+inline const void *InputSocket::default_value() const
+{
+ return default_value_;
+}
+
+inline void InputSocket::set_default_value(const void *value)
+{
+ default_value_ = value;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name #OutputSocket Inline Methods
+ * \{ */
+
+inline Span<const InputSocket *> OutputSocket::targets() const
+{
+ return targets_;
+}
+
+inline Span<InputSocket *> OutputSocket::targets()
+{
+ return targets_;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name #Node Inline Methods
+ * \{ */
+
+inline bool Node::is_dummy() const
+{
+ return fn_ == nullptr;
+}
+
+inline bool Node::is_function() const
+{
+ return fn_ != nullptr;
+}
+
+inline int Node::index_in_graph() const
+{
+ return index_in_graph_;
+}
+
+inline Span<const InputSocket *> Node::inputs() const
+{
+ return inputs_;
+}
+
+inline Span<const OutputSocket *> Node::outputs() const
+{
+ return outputs_;
+}
+
+inline Span<InputSocket *> Node::inputs()
+{
+ return inputs_;
+}
+
+inline Span<OutputSocket *> Node::outputs()
+{
+ return outputs_;
+}
+
+inline const InputSocket &Node::input(const int index) const
+{
+ return *inputs_[index];
+}
+
+inline const OutputSocket &Node::output(const int index) const
+{
+ return *outputs_[index];
+}
+
+inline InputSocket &Node::input(const int index)
+{
+ return *inputs_[index];
+}
+
+inline OutputSocket &Node::output(const int index)
+{
+ return *outputs_[index];
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name #FunctionNode Inline Methods
+ * \{ */
+
+inline const LazyFunction &FunctionNode::function() const
+{
+ BLI_assert(fn_ != nullptr);
+ return *fn_;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name #Graph Inline Methods
+ * \{ */
+
+inline Span<const Node *> Graph::nodes() const
+{
+ return nodes_;
+}
+
+/** \} */
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/FN_lazy_function_graph_executor.hh b/source/blender/functions/FN_lazy_function_graph_executor.hh
new file mode 100644
index 00000000000..a6ae5cac967
--- /dev/null
+++ b/source/blender/functions/FN_lazy_function_graph_executor.hh
@@ -0,0 +1,98 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#pragma once
+
+/** \file
+ * \ingroup fn
+ *
+ * This file provides means to create a #LazyFunction from #Graph (which could then e.g. be used in
+ * another #Graph again).
+ */
+
+#include "BLI_vector.hh"
+#include "BLI_vector_set.hh"
+
+#include "FN_lazy_function_graph.hh"
+
+namespace blender::fn::lazy_function {
+
+/**
+ * Can be implemented to log values produced during graph evaluation.
+ */
+class GraphExecutorLogger {
+ public:
+ virtual ~GraphExecutorLogger() = default;
+
+ virtual void log_socket_value(const Socket &socket,
+ GPointer value,
+ const Context &context) const;
+
+ virtual void log_before_node_execute(const FunctionNode &node,
+ const Params &params,
+ const Context &context) const;
+
+ virtual void log_after_node_execute(const FunctionNode &node,
+ const Params &params,
+ const Context &context) const;
+
+ virtual void dump_when_outputs_are_missing(const FunctionNode &node,
+ Span<const OutputSocket *> missing_sockets,
+ const Context &context) const;
+ virtual void dump_when_input_is_set_twice(const InputSocket &target_socket,
+ const OutputSocket &from_socket,
+ const Context &context) const;
+};
+
+/**
+ * Has to be implemented when some of the nodes in the graph may have side effects. The
+ * #GraphExecutor has to know about that to make sure that these nodes will be executed even though
+ * their outputs are not needed.
+ */
+class GraphExecutorSideEffectProvider {
+ public:
+ virtual ~GraphExecutorSideEffectProvider() = default;
+ virtual Vector<const FunctionNode *> get_nodes_with_side_effects(const Context &context) const;
+};
+
+class GraphExecutor : public LazyFunction {
+ public:
+ using Logger = GraphExecutorLogger;
+ using SideEffectProvider = GraphExecutorSideEffectProvider;
+
+ private:
+ /**
+ * The graph that is evaluated.
+ */
+ const Graph &graph_;
+ /**
+ * Input and output sockets of the entire graph.
+ */
+ VectorSet<const OutputSocket *> graph_inputs_;
+ VectorSet<const InputSocket *> graph_outputs_;
+ /**
+ * Optional logger for events that happen during execution.
+ */
+ const Logger *logger_;
+ /**
+ * Optional side effect provider. It knows which nodes have side effects based on the context
+ * during evaluation.
+ */
+ const SideEffectProvider *side_effect_provider_;
+
+ friend class Executor;
+
+ public:
+ GraphExecutor(const Graph &graph,
+ Span<const OutputSocket *> graph_inputs,
+ Span<const InputSocket *> graph_outputs,
+ const Logger *logger,
+ const SideEffectProvider *side_effect_provider);
+
+ void *init_storage(LinearAllocator<> &allocator) const override;
+ void destruct_storage(void *storage) const override;
+
+ private:
+ void execute_impl(Params &params, const Context &context) const override;
+};
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/FN_multi_function.hh b/source/blender/functions/FN_multi_function.hh
index 015df179ef0..accbaf899be 100644
--- a/source/blender/functions/FN_multi_function.hh
+++ b/source/blender/functions/FN_multi_function.hh
@@ -157,6 +157,7 @@ namespace multi_function_types {
using fn::MFContext;
using fn::MFContextBuilder;
using fn::MFDataType;
+using fn::MFParamCategory;
using fn::MFParams;
using fn::MFParamsBuilder;
using fn::MFParamType;
diff --git a/source/blender/functions/intern/cpp_types.cc b/source/blender/functions/intern/cpp_types.cc
index 5c43fffdd61..f046da30994 100644
--- a/source/blender/functions/intern/cpp_types.cc
+++ b/source/blender/functions/intern/cpp_types.cc
@@ -16,3 +16,6 @@ MAKE_FIELD_CPP_TYPE(BoolField, bool);
MAKE_FIELD_CPP_TYPE(Int8Field, int8_t);
MAKE_FIELD_CPP_TYPE(Int32Field, int32_t);
MAKE_FIELD_CPP_TYPE(StringField, std::string);
+BLI_CPP_TYPE_MAKE(StringValueOrFieldVector,
+ blender::Vector<blender::fn::ValueOrField<std::string>>,
+ CPPTypeFlags::None);
diff --git a/source/blender/functions/intern/lazy_function.cc b/source/blender/functions/intern/lazy_function.cc
new file mode 100644
index 00000000000..46572283e9b
--- /dev/null
+++ b/source/blender/functions/intern/lazy_function.cc
@@ -0,0 +1,66 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+/** \file
+ * \ingroup fn
+ */
+
+#include "BLI_array.hh"
+
+#include "FN_lazy_function.hh"
+
+namespace blender::fn::lazy_function {
+
+std::string LazyFunction::name() const
+{
+ return debug_name_;
+}
+
+std::string LazyFunction::input_name(int index) const
+{
+ return inputs_[index].debug_name;
+}
+
+std::string LazyFunction::output_name(int index) const
+{
+ return outputs_[index].debug_name;
+}
+
+void *LazyFunction::init_storage(LinearAllocator<> &UNUSED(allocator)) const
+{
+ return nullptr;
+}
+
+void LazyFunction::destruct_storage(void *storage) const
+{
+ BLI_assert(storage == nullptr);
+ UNUSED_VARS_NDEBUG(storage);
+}
+
+bool LazyFunction::always_used_inputs_available(const Params &params) const
+{
+ for (const int i : inputs_.index_range()) {
+ const Input &fn_input = inputs_[i];
+ if (fn_input.usage == ValueUsage::Used) {
+ if (params.try_get_input_data_ptr(i) == nullptr) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+void Params::set_default_remaining_outputs()
+{
+ for (const int i : fn_.outputs().index_range()) {
+ if (this->output_was_set(i)) {
+ continue;
+ }
+ const Output &fn_output = fn_.outputs()[i];
+ const CPPType &type = *fn_output.type;
+ void *data_ptr = this->get_output_data_ptr(i);
+ type.value_initialize(data_ptr);
+ this->output_set(i);
+ }
+}
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/intern/lazy_function_execute.cc b/source/blender/functions/intern/lazy_function_execute.cc
new file mode 100644
index 00000000000..279056afa99
--- /dev/null
+++ b/source/blender/functions/intern/lazy_function_execute.cc
@@ -0,0 +1,65 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+/** \file
+ * \ingroup fn
+ */
+
+#include "FN_lazy_function_execute.hh"
+
+namespace blender::fn::lazy_function {
+
+BasicParams::BasicParams(const LazyFunction &fn,
+ const Span<GMutablePointer> inputs,
+ const Span<GMutablePointer> outputs,
+ MutableSpan<std::optional<ValueUsage>> input_usages,
+ Span<ValueUsage> output_usages,
+ MutableSpan<bool> set_outputs)
+ : Params(fn),
+ inputs_(inputs),
+ outputs_(outputs),
+ input_usages_(input_usages),
+ output_usages_(output_usages),
+ set_outputs_(set_outputs)
+{
+}
+
+void *BasicParams::try_get_input_data_ptr_impl(const int index) const
+{
+ return inputs_[index].get();
+}
+
+void *BasicParams::try_get_input_data_ptr_or_request_impl(const int index)
+{
+ void *value = inputs_[index].get();
+ if (value == nullptr) {
+ input_usages_[index] = ValueUsage::Used;
+ }
+ return value;
+}
+
+void *BasicParams::get_output_data_ptr_impl(const int index)
+{
+ return outputs_[index].get();
+}
+
+void BasicParams::output_set_impl(const int index)
+{
+ set_outputs_[index] = true;
+}
+
+bool BasicParams::output_was_set_impl(const int index) const
+{
+ return set_outputs_[index];
+}
+
+ValueUsage BasicParams::get_output_usage_impl(const int index) const
+{
+ return output_usages_[index];
+}
+
+void BasicParams::set_input_unused_impl(const int index)
+{
+ input_usages_[index] = ValueUsage::Unused;
+}
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/intern/lazy_function_graph.cc b/source/blender/functions/intern/lazy_function_graph.cc
new file mode 100644
index 00000000000..cc55b70d166
--- /dev/null
+++ b/source/blender/functions/intern/lazy_function_graph.cc
@@ -0,0 +1,181 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_dot_export.hh"
+
+#include "FN_lazy_function_graph.hh"
+
+namespace blender::fn::lazy_function {
+
+Graph::~Graph()
+{
+ for (Node *node : nodes_) {
+ for (InputSocket *socket : node->inputs_) {
+ std::destroy_at(socket);
+ }
+ for (OutputSocket *socket : node->outputs_) {
+ std::destroy_at(socket);
+ }
+ std::destroy_at(node);
+ }
+}
+
+FunctionNode &Graph::add_function(const LazyFunction &fn)
+{
+ const Span<Input> inputs = fn.inputs();
+ const Span<Output> outputs = fn.outputs();
+
+ FunctionNode &node = *allocator_.construct<FunctionNode>().release();
+ node.fn_ = &fn;
+ node.inputs_ = allocator_.construct_elements_and_pointer_array<InputSocket>(inputs.size());
+ node.outputs_ = allocator_.construct_elements_and_pointer_array<OutputSocket>(outputs.size());
+
+ for (const int i : inputs.index_range()) {
+ InputSocket &socket = *node.inputs_[i];
+ socket.index_in_node_ = i;
+ socket.is_input_ = true;
+ socket.node_ = &node;
+ socket.type_ = inputs[i].type;
+ }
+ for (const int i : outputs.index_range()) {
+ OutputSocket &socket = *node.outputs_[i];
+ socket.index_in_node_ = i;
+ socket.is_input_ = false;
+ socket.node_ = &node;
+ socket.type_ = outputs[i].type;
+ }
+
+ nodes_.append(&node);
+ return node;
+}
+
+DummyNode &Graph::add_dummy(Span<const CPPType *> input_types, Span<const CPPType *> output_types)
+{
+ DummyNode &node = *allocator_.construct<DummyNode>().release();
+ node.fn_ = nullptr;
+ node.inputs_ = allocator_.construct_elements_and_pointer_array<InputSocket>(input_types.size());
+ node.outputs_ = allocator_.construct_elements_and_pointer_array<OutputSocket>(
+ output_types.size());
+
+ for (const int i : input_types.index_range()) {
+ InputSocket &socket = *node.inputs_[i];
+ socket.index_in_node_ = i;
+ socket.is_input_ = true;
+ socket.node_ = &node;
+ socket.type_ = input_types[i];
+ }
+ for (const int i : output_types.index_range()) {
+ OutputSocket &socket = *node.outputs_[i];
+ socket.index_in_node_ = i;
+ socket.is_input_ = false;
+ socket.node_ = &node;
+ socket.type_ = output_types[i];
+ }
+
+ nodes_.append(&node);
+ return node;
+}
+
+void Graph::add_link(OutputSocket &from, InputSocket &to)
+{
+ BLI_assert(to.origin_ == nullptr);
+ BLI_assert(from.type_ == to.type_);
+ to.origin_ = &from;
+ from.targets_.append(&to);
+}
+
+void Graph::update_node_indices()
+{
+ for (const int i : nodes_.index_range()) {
+ nodes_[i]->index_in_graph_ = i;
+ }
+}
+
+bool Graph::node_indices_are_valid() const
+{
+ for (const int i : nodes_.index_range()) {
+ if (nodes_[i]->index_in_graph_ != i) {
+ return false;
+ }
+ }
+ return true;
+}
+
+std::string Socket::name() const
+{
+ if (node_->is_function()) {
+ const FunctionNode &fn_node = static_cast<const FunctionNode &>(*node_);
+ const LazyFunction &fn = fn_node.function();
+ if (is_input_) {
+ return fn.input_name(index_in_node_);
+ }
+ return fn.output_name(index_in_node_);
+ }
+ return "Unnamed";
+}
+
+std::string Node::name() const
+{
+ if (fn_ == nullptr) {
+ return static_cast<const DummyNode *>(this)->name_;
+ }
+ return fn_->name();
+}
+
+std::string Graph::to_dot() const
+{
+ dot::DirectedGraph digraph;
+ digraph.set_rankdir(dot::Attr_rankdir::LeftToRight);
+
+ Map<const Node *, dot::NodeWithSocketsRef> dot_nodes;
+
+ for (const Node *node : nodes_) {
+ dot::Node &dot_node = digraph.new_node("");
+ if (node->is_dummy()) {
+ dot_node.set_background_color("lightblue");
+ }
+ else {
+ dot_node.set_background_color("white");
+ }
+
+ Vector<std::string> input_names;
+ Vector<std::string> output_names;
+ for (const InputSocket *socket : node->inputs()) {
+ input_names.append(socket->name());
+ }
+ for (const OutputSocket *socket : node->outputs()) {
+ output_names.append(socket->name());
+ }
+
+ dot_nodes.add_new(node,
+ dot::NodeWithSocketsRef(dot_node, node->name(), input_names, output_names));
+ }
+
+ for (const Node *node : nodes_) {
+ for (const InputSocket *socket : node->inputs()) {
+ const dot::NodeWithSocketsRef &to_dot_node = dot_nodes.lookup(&socket->node());
+ const dot::NodePort to_dot_port = to_dot_node.input(socket->index());
+
+ if (const OutputSocket *origin = socket->origin()) {
+ dot::NodeWithSocketsRef &from_dot_node = dot_nodes.lookup(&origin->node());
+ digraph.new_edge(from_dot_node.output(origin->index()), to_dot_port);
+ }
+ else if (const void *default_value = socket->default_value()) {
+ const CPPType &type = socket->type();
+ std::string value_string;
+ if (type.is_printable()) {
+ value_string = type.to_string(default_value);
+ }
+ else {
+ value_string = "<" + type.name() + ">";
+ }
+ dot::Node &default_value_dot_node = digraph.new_node(value_string);
+ default_value_dot_node.set_shape(dot::Attr_shape::Ellipse);
+ digraph.new_edge(default_value_dot_node, to_dot_port);
+ }
+ }
+ }
+
+ return digraph.to_dot_string();
+}
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/intern/lazy_function_graph_executor.cc b/source/blender/functions/intern/lazy_function_graph_executor.cc
new file mode 100644
index 00000000000..eca29121889
--- /dev/null
+++ b/source/blender/functions/intern/lazy_function_graph_executor.cc
@@ -0,0 +1,1163 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+/**
+ * This file implements the evaluation of a lazy-function graph. It's main objectices are:
+ * - Only compute values that are actually used.
+ * - Allow spreading the work over an arbitrary number of CPU cores.
+ *
+ * Other (simpler) executors with different main objectives could be implemented in the future. For
+ * some scenarios those could be simpler when many nodes do very little work or most nodes have to
+ * be processed sequentially. Those assumptions make the first and second objective less important
+ * respectively.
+ *
+ * The design implemented in this executor requires *no* main thread that coordinates everything.
+ * Instead, one thread will trigger some initial work and then many threads coordinate themselves
+ * in a distributed fashion. In an ideal situation, every thread ends up processing a separate part
+ * of the graph which results in less communication overhead. The way TBB schedules tasks helps
+ * with that: a thread will next process the task that it added to a task pool just before.
+ *
+ * Communication between threads is synchronized by using a mutex in every node. When a thread
+ * wants to access the state of a node, its mutex has to be locked first (with some documented
+ * exceptions). The assumption here is that most nodes are only ever touched by a single thread and
+ * therefore the lock contention is reduced the more nodes there are.
+ *
+ * Similar to how a #LazyFunction can be thought of as a state machine (see `FN_lazy_function.hh`),
+ * each node can also be thought of as a state machine. The state of a node contains the evaluation
+ * state of its inputs and outputs. Every time a node is executed, it has to advance its state in
+ * some way (e.g. it requests a new input or computes a new output).
+ *
+ * At the core of the executor is a task pool. Every task in that pool represents a node execution.
+ * When a node is executed it may send notifications to other nodes which may in turn add those
+ * nodes to the task pool. For example, the current node has computed one of its outputs, then the
+ * computed value is forwarded to all linked inputs, changing their node states in the process. If
+ * this input was the last missing required input, the node will be added to the task pool so that
+ * it is executed next.
+ *
+ * When the task pool is empty, the executor gives back control to the caller which may later
+ * provide new inputs to the graph which in turn adds new nodes to the task pool and the process
+ * starts again.
+ */
+
+#include <mutex>
+
+#include "BLI_compute_context.hh"
+#include "BLI_enumerable_thread_specific.hh"
+#include "BLI_function_ref.hh"
+#include "BLI_task.h"
+#include "BLI_task.hh"
+#include "BLI_timeit.hh"
+
+#include "FN_lazy_function_graph_executor.hh"
+
+namespace blender::fn::lazy_function {
+
+enum class NodeScheduleState {
+ /**
+ * Default state of every node.
+ */
+ NotScheduled,
+ /**
+ * The node has been added to the task pool or is otherwise scheduled to be executed in the
+ * future.
+ */
+ Scheduled,
+ /**
+ * The node is currently running.
+ */
+ Running,
+ /**
+ * The node is running and has been rescheduled while running. In this case the node run again.
+ * This state exists, because we don't want to add the node to the task pool twice, because then
+ * the node might run twice at the same time, which is not allowed. Instead, once the node is
+ * done running, it will reschedule itself.
+ */
+ RunningAndRescheduled,
+};
+
+struct InputState {
+ /**
+ * Value of this input socket. By default, the value is empty. When other nodes are done
+ * computing their outputs, the computed values will be forwarded to linked input sockets. The
+ * value will thenlive here until it is found that it is not needed anymore.
+ *
+ * If #was_ready_for_execution is true, access does not require holding the node lock.
+ */
+ void *value = nullptr;
+ /**
+ * How the node intends to use this input. By default, all inputs may be used. Based on which
+ * outputs are used, a node can decide that an input will definitely be used or is never used.
+ * This allows freeing values early and avoids unnecessary computations.
+ */
+ ValueUsage usage = ValueUsage::Maybe;
+ /**
+ * Set to true once #value is set and will stay true afterwards. Access during execution of a
+ * node, does not require holding the node lock.
+ */
+ bool was_ready_for_execution = false;
+};
+
+struct OutputState {
+ /**
+ * Keeps track of how the output value is used. If a connected input becomes used, this output
+ * has to become used as well. The output becomes unused when it is used by no input socket
+ * anymore and it's not an output of the graph.
+ */
+ ValueUsage usage = ValueUsage::Maybe;
+ /**
+ * This is a copy of #usage that is done right before node execution starts. This is done so that
+ * the node gets a consistent view of what outputs are used, even when this changes while the
+ * node is running (the node might be reevaluated in that case). Access during execution of a
+ * node, does not require holding the node lock.
+ */
+ ValueUsage usage_for_execution = ValueUsage::Maybe;
+ /**
+ * Number of linked sockets that might still use the value of this output.
+ */
+ int potential_target_sockets = 0;
+ /**
+ * Is set to true once the output has been computed and then stays true. Access does not require
+ * holding the node lock.
+ */
+ bool has_been_computed = false;
+ /**
+ * Holds the output value for a short period of time while the node is initializing it and before
+ * it's forwarded to input sockets. Access does not require holding the node lock.
+ */
+ void *value = nullptr;
+};
+
+struct NodeState {
+ /**
+ * Needs to be locked when any data in this state is accessed that is not explicitly marked as
+ * not needing the lock.
+ */
+ mutable std::mutex mutex;
+ /**
+ * States of the individual input and output sockets. One can index into these arrays without
+ * locking. However, to access data inside, a lock is needed unless noted otherwise.
+ */
+ MutableSpan<InputState> inputs;
+ MutableSpan<OutputState> outputs;
+ /**
+ * Counts the number of inputs that still have to be provided to this node, until it should run
+ * again. This is used as an optimization so that nodes are not scheduled unnecessarily in many
+ * cases.
+ */
+ int missing_required_inputs = 0;
+ /**
+ * Is set to true once the node is done with its work, i.e. when all outputs that may be used
+ * have been computed.
+ */
+ bool node_has_finished = false;
+ /**
+ * Set to true once the node is done running for the first time.
+ */
+ bool had_initialization = true;
+ /**
+ * Nodes with side effects should always be executed when their required inputs have been
+ * computed.
+ */
+ bool has_side_effects = false;
+ /**
+ * A node is always in one specific schedule state. This helps to ensure that the same node does
+ * not run twice at the same time accidentally.
+ */
+ NodeScheduleState schedule_state = NodeScheduleState::NotScheduled;
+ /**
+ * Custom storage of the node.
+ */
+ void *storage = nullptr;
+};
+
+/**
+ * Utility class that wraps a node whose state is locked. Having this is a separate class is useful
+ * because it allows methods to communicate that they expect the node to be locked.
+ */
+struct LockedNode {
+ /**
+ * This is the node that is currently locked.
+ */
+ const Node &node;
+ NodeState &node_state;
+
+ /**
+ * Used to delay notifying (and therefore locking) other nodes until the current node is not
+ * locked anymore. This might not be strictly necessary to avoid deadlocks in the current code,
+ * but is a good measure to avoid accidentally adding a deadlock later on. By not locking more
+ * than one node per thread at a time, deadlocks are avoided.
+ *
+ * The notifications will be send right after the node is not locked anymore.
+ */
+ Vector<const OutputSocket *> delayed_required_outputs;
+ Vector<const OutputSocket *> delayed_unused_outputs;
+ Vector<const FunctionNode *> delayed_scheduled_nodes;
+
+ LockedNode(const Node &node, NodeState &node_state) : node(node), node_state(node_state)
+ {
+ }
+};
+
+struct CurrentTask {
+ /**
+ * The node that should be run on the same thread after the current node is done. This avoids
+ * some overhead by skipping a round trip through the task pool.
+ */
+ std::atomic<const FunctionNode *> next_node = nullptr;
+ /**
+ * Indicates that some node has been added to the task pool.
+ */
+ std::atomic<bool> added_node_to_pool = false;
+};
+
+class GraphExecutorLFParams;
+
+class Executor {
+ private:
+ const GraphExecutor &self_;
+ /**
+ * Remembers which inputs have been loaded from the caller already, to avoid loading them twice.
+ * Atomics are used to make sure that every input is only retrieved once.
+ */
+ Array<std::atomic<uint8_t>> loaded_inputs_;
+ /**
+ * State of every node, indexed by #Node::index_in_graph.
+ */
+ Array<NodeState *> node_states_;
+ /**
+ * Parameters provided by the caller. This is always non-null, while a node is running.
+ */
+ Params *params_ = nullptr;
+ const Context *context_ = nullptr;
+ /**
+ * Used to distribute work on separate nodes to separate threads.
+ */
+ TaskPool *task_pool_ = nullptr;
+ /**
+ * A separate linear allocator for every thread. We could potentially reuse some memory, but that
+ * doesn't seem worth it yet.
+ */
+ threading::EnumerableThreadSpecific<LinearAllocator<>> local_allocators_;
+ /**
+ * Set to false when the first execution ends.
+ */
+ bool is_first_execution_ = true;
+
+ friend GraphExecutorLFParams;
+
+ public:
+ Executor(const GraphExecutor &self) : self_(self), loaded_inputs_(self.graph_inputs_.size())
+ {
+ /* The indices are necessary, because they are used as keys in #node_states_. */
+ BLI_assert(self_.graph_.node_indices_are_valid());
+ }
+
+ ~Executor()
+ {
+ BLI_task_pool_free(task_pool_);
+ threading::parallel_for(node_states_.index_range(), 1024, [&](const IndexRange range) {
+ for (const int node_index : range) {
+ const Node &node = *self_.graph_.nodes()[node_index];
+ NodeState &node_state = *node_states_[node_index];
+ this->destruct_node_state(node, node_state);
+ }
+ });
+ }
+
+ /**
+ * Main entry point to the execution of this graph.
+ */
+ void execute(Params &params, const Context &context)
+ {
+ params_ = &params;
+ context_ = &context;
+ BLI_SCOPED_DEFER([&]() {
+ /* Make sure the #params_ pointer is not dangling, even when it shouldn't be accessed by
+ * anyone. */
+ params_ = nullptr;
+ context_ = nullptr;
+ is_first_execution_ = false;
+ });
+
+ CurrentTask current_task;
+ if (is_first_execution_) {
+ this->initialize_node_states();
+ task_pool_ = BLI_task_pool_create(this, TASK_PRIORITY_HIGH);
+
+ /* Initialize atomics to zero. */
+ memset(static_cast<void *>(loaded_inputs_.data()), 0, loaded_inputs_.size() * sizeof(bool));
+
+ this->set_always_unused_graph_inputs();
+ this->set_defaulted_graph_outputs();
+ this->schedule_side_effect_nodes(current_task);
+ }
+
+ this->schedule_newly_requested_outputs(current_task);
+ this->forward_newly_provided_inputs(current_task);
+
+ /* Avoid using task pool when there is no parallel work to do. */
+ while (!current_task.added_node_to_pool) {
+ if (current_task.next_node == nullptr) {
+ /* Nothing to do. */
+ return;
+ }
+ const FunctionNode &node = *current_task.next_node;
+ current_task.next_node = nullptr;
+ this->run_node_task(node, current_task);
+ }
+ if (current_task.next_node != nullptr) {
+ this->add_node_to_task_pool(*current_task.next_node);
+ }
+
+ BLI_task_pool_work_and_wait(task_pool_);
+ }
+
+ private:
+ void initialize_node_states()
+ {
+ Span<const Node *> nodes = self_.graph_.nodes();
+ node_states_.reinitialize(nodes.size());
+
+ /* Construct all node states in parallel. */
+ threading::parallel_for(nodes.index_range(), 256, [&](const IndexRange range) {
+ LinearAllocator<> &allocator = local_allocators_.local();
+ for (const int i : range) {
+ const Node &node = *nodes[i];
+ NodeState &node_state = *allocator.construct<NodeState>().release();
+ node_states_[i] = &node_state;
+ this->construct_initial_node_state(allocator, node, node_state);
+ }
+ });
+ }
+
+ void construct_initial_node_state(LinearAllocator<> &allocator,
+ const Node &node,
+ NodeState &node_state)
+ {
+ const Span<const InputSocket *> node_inputs = node.inputs();
+ const Span<const OutputSocket *> node_outputs = node.outputs();
+
+ node_state.inputs = allocator.construct_array<InputState>(node_inputs.size());
+ node_state.outputs = allocator.construct_array<OutputState>(node_outputs.size());
+
+ for (const int i : node_outputs.index_range()) {
+ OutputState &output_state = node_state.outputs[i];
+ const OutputSocket &output_socket = *node_outputs[i];
+ output_state.potential_target_sockets = output_socket.targets().size();
+ if (output_state.potential_target_sockets == 0) {
+ output_state.usage = ValueUsage::Unused;
+ }
+ }
+ }
+
+ void destruct_node_state(const Node &node, NodeState &node_state)
+ {
+ if (node.is_function()) {
+ const LazyFunction &fn = static_cast<const FunctionNode &>(node).function();
+ if (node_state.storage != nullptr) {
+ fn.destruct_storage(node_state.storage);
+ }
+ }
+ for (const int i : node.inputs().index_range()) {
+ InputState &input_state = node_state.inputs[i];
+ const InputSocket &input_socket = node.input(i);
+ this->destruct_input_value_if_exists(input_state, input_socket.type());
+ }
+ std::destroy_at(&node_state);
+ }
+
+ void schedule_newly_requested_outputs(CurrentTask &current_task)
+ {
+ for (const int graph_output_index : self_.graph_outputs_.index_range()) {
+ if (params_->get_output_usage(graph_output_index) != ValueUsage::Used) {
+ continue;
+ }
+ if (params_->output_was_set(graph_output_index)) {
+ continue;
+ }
+ const InputSocket &socket = *self_.graph_outputs_[graph_output_index];
+ const Node &node = socket.node();
+ NodeState &node_state = *node_states_[node.index_in_graph()];
+ this->with_locked_node(node, node_state, current_task, [&](LockedNode &locked_node) {
+ this->set_input_required(locked_node, socket);
+ });
+ }
+ }
+
+ void set_defaulted_graph_outputs()
+ {
+ for (const int graph_output_index : self_.graph_outputs_.index_range()) {
+ const InputSocket &socket = *self_.graph_outputs_[graph_output_index];
+ if (socket.origin() != nullptr) {
+ continue;
+ }
+ const CPPType &type = socket.type();
+ const void *default_value = socket.default_value();
+ BLI_assert(default_value != nullptr);
+
+ if (self_.logger_ != nullptr) {
+ self_.logger_->log_socket_value(socket, {type, default_value}, *context_);
+ }
+
+ void *output_ptr = params_->get_output_data_ptr(graph_output_index);
+ type.copy_construct(default_value, output_ptr);
+ params_->output_set(graph_output_index);
+ }
+ }
+
+ void set_always_unused_graph_inputs()
+ {
+ for (const int i : self_.graph_inputs_.index_range()) {
+ const OutputSocket &socket = *self_.graph_inputs_[i];
+ const Node &node = socket.node();
+ const NodeState &node_state = *node_states_[node.index_in_graph()];
+ const OutputState &output_state = node_state.outputs[socket.index()];
+ if (output_state.usage == ValueUsage::Unused) {
+ params_->set_input_unused(i);
+ }
+ }
+ }
+
+ void schedule_side_effect_nodes(CurrentTask &current_task)
+ {
+ if (self_.side_effect_provider_ != nullptr) {
+ const Vector<const FunctionNode *> side_effect_nodes =
+ self_.side_effect_provider_->get_nodes_with_side_effects(*context_);
+ for (const FunctionNode *node : side_effect_nodes) {
+ NodeState &node_state = *node_states_[node->index_in_graph()];
+ node_state.has_side_effects = true;
+ this->with_locked_node(*node, node_state, current_task, [&](LockedNode &locked_node) {
+ this->schedule_node(locked_node);
+ });
+ }
+ }
+ }
+
+ void forward_newly_provided_inputs(CurrentTask &current_task)
+ {
+ LinearAllocator<> &allocator = local_allocators_.local();
+ for (const int graph_input_index : self_.graph_inputs_.index_range()) {
+ std::atomic<uint8_t> &was_loaded = loaded_inputs_[graph_input_index];
+ if (was_loaded.load()) {
+ continue;
+ }
+ void *input_data = params_->try_get_input_data_ptr(graph_input_index);
+ if (input_data == nullptr) {
+ continue;
+ }
+ if (was_loaded.fetch_or(1)) {
+ /* The value was forwarded before. */
+ continue;
+ }
+ this->forward_newly_provided_input(current_task, allocator, graph_input_index, input_data);
+ }
+ }
+
+ void forward_newly_provided_input(CurrentTask &current_task,
+ LinearAllocator<> &allocator,
+ const int graph_input_index,
+ void *input_data)
+ {
+ const OutputSocket &socket = *self_.graph_inputs_[graph_input_index];
+ const CPPType &type = socket.type();
+ void *buffer = allocator.allocate(type.size(), type.alignment());
+ type.move_construct(input_data, buffer);
+ this->forward_value_to_linked_inputs(socket, {type, buffer}, current_task);
+ }
+
+ void notify_output_required(const OutputSocket &socket, CurrentTask &current_task)
+ {
+ const Node &node = socket.node();
+ const int index_in_node = socket.index();
+ NodeState &node_state = *node_states_[node.index_in_graph()];
+ OutputState &output_state = node_state.outputs[index_in_node];
+
+ /* The notified output socket might be an input of the entire graph. In this case, notify the
+ * caller that the input is required. */
+ if (node.is_dummy()) {
+ const int graph_input_index = self_.graph_inputs_.index_of(&socket);
+ std::atomic<uint8_t> &was_loaded = loaded_inputs_[graph_input_index];
+ if (was_loaded.load()) {
+ return;
+ }
+ void *input_data = params_->try_get_input_data_ptr_or_request(graph_input_index);
+ if (input_data == nullptr) {
+ return;
+ }
+ if (was_loaded.fetch_or(1)) {
+ /* The value was forwarded already. */
+ return;
+ }
+ this->forward_newly_provided_input(
+ current_task, local_allocators_.local(), graph_input_index, input_data);
+ return;
+ }
+
+ BLI_assert(node.is_function());
+ this->with_locked_node(node, node_state, current_task, [&](LockedNode &locked_node) {
+ if (output_state.usage == ValueUsage::Used) {
+ return;
+ }
+ output_state.usage = ValueUsage::Used;
+ this->schedule_node(locked_node);
+ });
+ }
+
+ void notify_output_unused(const OutputSocket &socket, CurrentTask &current_task)
+ {
+ const Node &node = socket.node();
+ const int index_in_node = socket.index();
+ NodeState &node_state = *node_states_[node.index_in_graph()];
+ OutputState &output_state = node_state.outputs[index_in_node];
+
+ this->with_locked_node(node, node_state, current_task, [&](LockedNode &locked_node) {
+ output_state.potential_target_sockets -= 1;
+ if (output_state.potential_target_sockets == 0) {
+ BLI_assert(output_state.usage != ValueUsage::Unused);
+ if (output_state.usage == ValueUsage::Maybe) {
+ output_state.usage = ValueUsage::Unused;
+ if (node.is_dummy()) {
+ const int graph_input_index = self_.graph_inputs_.index_of(&socket);
+ params_->set_input_unused(graph_input_index);
+ }
+ else {
+ this->schedule_node(locked_node);
+ }
+ }
+ }
+ });
+ }
+
+ void schedule_node(LockedNode &locked_node)
+ {
+ BLI_assert(locked_node.node.is_function());
+ switch (locked_node.node_state.schedule_state) {
+ case NodeScheduleState::NotScheduled: {
+ /* Don't add the node to the task pool immeditately, because the task pool might start
+ * executing it immediatly (when Blender is started with a single thread). That would often
+ * result in a deadlock, because we are still holding the mutex of the current node.
+ * Also see comments in #LockedNode. */
+ locked_node.node_state.schedule_state = NodeScheduleState::Scheduled;
+ locked_node.delayed_scheduled_nodes.append(
+ &static_cast<const FunctionNode &>(locked_node.node));
+ break;
+ }
+ case NodeScheduleState::Scheduled: {
+ break;
+ }
+ case NodeScheduleState::Running: {
+ locked_node.node_state.schedule_state = NodeScheduleState::RunningAndRescheduled;
+ break;
+ }
+ case NodeScheduleState::RunningAndRescheduled: {
+ break;
+ }
+ }
+ }
+
+ void with_locked_node(const Node &node,
+ NodeState &node_state,
+ CurrentTask &current_task,
+ const FunctionRef<void(LockedNode &)> f)
+ {
+ BLI_assert(&node_state == node_states_[node.index_in_graph()]);
+
+ LockedNode locked_node{node, node_state};
+ {
+ std::lock_guard lock{node_state.mutex};
+ threading::isolate_task([&]() { f(locked_node); });
+ }
+
+ this->send_output_required_notifications(locked_node.delayed_required_outputs, current_task);
+ this->send_output_unused_notifications(locked_node.delayed_unused_outputs, current_task);
+ this->schedule_new_nodes(locked_node.delayed_scheduled_nodes, current_task);
+ }
+
+ void send_output_required_notifications(const Span<const OutputSocket *> sockets,
+ CurrentTask &current_task)
+ {
+ for (const OutputSocket *socket : sockets) {
+ this->notify_output_required(*socket, current_task);
+ }
+ }
+
+ void send_output_unused_notifications(const Span<const OutputSocket *> sockets,
+ CurrentTask &current_task)
+ {
+ for (const OutputSocket *socket : sockets) {
+ this->notify_output_unused(*socket, current_task);
+ }
+ }
+
+ void schedule_new_nodes(const Span<const FunctionNode *> nodes, CurrentTask &current_task)
+ {
+ for (const FunctionNode *node_to_schedule : nodes) {
+ /* Avoid a round trip through the task pool for the first node that is scheduled by the
+ * current node execution. Other nodes are added to the pool so that other threads can pick
+ * them up. */
+ const FunctionNode *expected = nullptr;
+ if (current_task.next_node.compare_exchange_strong(
+ expected, node_to_schedule, std::memory_order_relaxed)) {
+ continue;
+ }
+ this->add_node_to_task_pool(*node_to_schedule);
+ current_task.added_node_to_pool.store(true, std::memory_order_relaxed);
+ }
+ }
+
+ void add_node_to_task_pool(const Node &node)
+ {
+ BLI_task_pool_push(
+ task_pool_, Executor::run_node_from_task_pool, (void *)&node, false, nullptr);
+ }
+
+ static void run_node_from_task_pool(TaskPool *task_pool, void *task_data)
+ {
+ void *user_data = BLI_task_pool_user_data(task_pool);
+ Executor &executor = *static_cast<Executor *>(user_data);
+ const FunctionNode &node = *static_cast<const FunctionNode *>(task_data);
+
+ /* This loop reduces the number of round trips through the task pool as long as the current
+ * node is scheduling more nodes. */
+ CurrentTask current_task;
+ current_task.next_node = &node;
+ while (current_task.next_node != nullptr) {
+ const FunctionNode &node_to_run = *current_task.next_node;
+ current_task.next_node = nullptr;
+ executor.run_node_task(node_to_run, current_task);
+ }
+ }
+
+ void run_node_task(const FunctionNode &node, CurrentTask &current_task)
+ {
+ NodeState &node_state = *node_states_[node.index_in_graph()];
+ LinearAllocator<> &allocator = local_allocators_.local();
+ const LazyFunction &fn = node.function();
+
+ bool node_needs_execution = false;
+ this->with_locked_node(node, node_state, current_task, [&](LockedNode &locked_node) {
+ BLI_assert(node_state.schedule_state == NodeScheduleState::Scheduled);
+ node_state.schedule_state = NodeScheduleState::Running;
+
+ if (node_state.node_has_finished) {
+ return;
+ }
+
+ bool required_uncomputed_output_exists = false;
+ for (OutputState &output_state : node_state.outputs) {
+ output_state.usage_for_execution = output_state.usage;
+ if (output_state.usage == ValueUsage::Used && !output_state.has_been_computed) {
+ required_uncomputed_output_exists = true;
+ }
+ }
+ if (!required_uncomputed_output_exists && !node_state.has_side_effects) {
+ return;
+ }
+
+ if (node_state.had_initialization) {
+ /* Initialize storage. */
+ node_state.storage = fn.init_storage(allocator);
+
+ /* Load unlinked inputs. */
+ for (const int input_index : node.inputs().index_range()) {
+ const InputSocket &input_socket = node.input(input_index);
+ if (input_socket.origin() != nullptr) {
+ continue;
+ }
+ InputState &input_state = node_state.inputs[input_index];
+ const CPPType &type = input_socket.type();
+ const void *default_value = input_socket.default_value();
+ BLI_assert(default_value != nullptr);
+ if (self_.logger_ != nullptr) {
+ self_.logger_->log_socket_value(input_socket, {type, default_value}, *context_);
+ }
+ void *buffer = allocator.allocate(type.size(), type.alignment());
+ type.copy_construct(default_value, buffer);
+ this->forward_value_to_input(locked_node, input_state, {type, buffer});
+ }
+
+ /* Request linked inputs that are always needed. */
+ const Span<Input> fn_inputs = fn.inputs();
+ for (const int input_index : fn_inputs.index_range()) {
+ const Input &fn_input = fn_inputs[input_index];
+ if (fn_input.usage == ValueUsage::Used) {
+ const InputSocket &input_socket = node.input(input_index);
+ this->set_input_required(locked_node, input_socket);
+ }
+ }
+
+ node_state.had_initialization = false;
+ }
+
+ for (const int input_index : node_state.inputs.index_range()) {
+ InputState &input_state = node_state.inputs[input_index];
+ if (input_state.was_ready_for_execution) {
+ continue;
+ }
+ if (input_state.value != nullptr) {
+ input_state.was_ready_for_execution = true;
+ continue;
+ }
+ if (input_state.usage == ValueUsage::Used) {
+ return;
+ }
+ }
+
+ node_needs_execution = true;
+ });
+
+ if (node_needs_execution) {
+ /* Importantly, the node must not be locked when it is executed. That would result in locks
+ * being hold very long in some cases and results in multiple locks being hold by the same
+ * thread in the same graph which can lead to deadlocks. */
+ this->execute_node(node, node_state, current_task);
+ }
+
+ this->with_locked_node(node, node_state, current_task, [&](LockedNode &locked_node) {
+#ifdef DEBUG
+ if (node_needs_execution) {
+ this->assert_expected_outputs_have_been_computed(locked_node);
+ }
+#endif
+ this->finish_node_if_possible(locked_node);
+ const bool reschedule_requested = node_state.schedule_state ==
+ NodeScheduleState::RunningAndRescheduled;
+ node_state.schedule_state = NodeScheduleState::NotScheduled;
+ if (reschedule_requested && !node_state.node_has_finished) {
+ this->schedule_node(locked_node);
+ }
+ });
+ }
+
+ void assert_expected_outputs_have_been_computed(LockedNode &locked_node)
+ {
+ const FunctionNode &node = static_cast<const FunctionNode &>(locked_node.node);
+ const NodeState &node_state = locked_node.node_state;
+
+ if (node_state.missing_required_inputs > 0) {
+ return;
+ }
+ if (node_state.schedule_state == NodeScheduleState::RunningAndRescheduled) {
+ return;
+ }
+ Vector<const OutputSocket *> missing_outputs;
+ for (const int i : node_state.outputs.index_range()) {
+ const OutputState &output_state = node_state.outputs[i];
+ if (output_state.usage_for_execution == ValueUsage::Used) {
+ if (!output_state.has_been_computed) {
+ missing_outputs.append(&node.output(i));
+ }
+ }
+ }
+ if (!missing_outputs.is_empty()) {
+ if (self_.logger_ != nullptr) {
+ self_.logger_->dump_when_outputs_are_missing(node, missing_outputs, *context_);
+ }
+ BLI_assert_unreachable();
+ }
+ }
+
+ void finish_node_if_possible(LockedNode &locked_node)
+ {
+ const Node &node = locked_node.node;
+ NodeState &node_state = locked_node.node_state;
+
+ if (node_state.node_has_finished) {
+ /* Was finished already. */
+ return;
+ }
+ /* If there are outputs that may still be used, the node is not done yet. */
+ for (const OutputState &output_state : node_state.outputs) {
+ if (output_state.usage != ValueUsage::Unused && !output_state.has_been_computed) {
+ return;
+ }
+ }
+ /* If the node is still waiting for inputs, it is not done yet. */
+ for (const InputState &input_state : node_state.inputs) {
+ if (input_state.usage == ValueUsage::Used && !input_state.was_ready_for_execution) {
+ return;
+ }
+ }
+
+ node_state.node_has_finished = true;
+
+ for (const int input_index : node_state.inputs.index_range()) {
+ const InputSocket &input_socket = node.input(input_index);
+ InputState &input_state = node_state.inputs[input_index];
+ if (input_state.usage == ValueUsage::Maybe) {
+ this->set_input_unused(locked_node, input_socket);
+ }
+ else if (input_state.usage == ValueUsage::Used) {
+ this->destruct_input_value_if_exists(input_state, input_socket.type());
+ }
+ }
+
+ if (node_state.storage != nullptr) {
+ if (node.is_function()) {
+ const FunctionNode &fn_node = static_cast<const FunctionNode &>(node);
+ fn_node.function().destruct_storage(node_state.storage);
+ }
+ node_state.storage = nullptr;
+ }
+ }
+
+ void destruct_input_value_if_exists(InputState &input_state, const CPPType &type)
+ {
+ if (input_state.value != nullptr) {
+ type.destruct(input_state.value);
+ input_state.value = nullptr;
+ }
+ }
+
+ void execute_node(const FunctionNode &node, NodeState &node_state, CurrentTask &current_task);
+
+ void set_input_unused_during_execution(const Node &node,
+ NodeState &node_state,
+ const int input_index,
+ CurrentTask &current_task)
+ {
+ const InputSocket &input_socket = node.input(input_index);
+ this->with_locked_node(node, node_state, current_task, [&](LockedNode &locked_node) {
+ this->set_input_unused(locked_node, input_socket);
+ });
+ }
+
+ void set_input_unused(LockedNode &locked_node, const InputSocket &input_socket)
+ {
+ NodeState &node_state = locked_node.node_state;
+ const int input_index = input_socket.index();
+ InputState &input_state = node_state.inputs[input_index];
+
+ BLI_assert(input_state.usage != ValueUsage::Used);
+ if (input_state.usage == ValueUsage::Unused) {
+ return;
+ }
+ input_state.usage = ValueUsage::Unused;
+
+ this->destruct_input_value_if_exists(input_state, input_socket.type());
+ if (input_state.was_ready_for_execution) {
+ return;
+ }
+ const OutputSocket *origin = input_socket.origin();
+ if (origin != nullptr) {
+ locked_node.delayed_unused_outputs.append(origin);
+ }
+ }
+
+ void *set_input_required_during_execution(const Node &node,
+ NodeState &node_state,
+ const int input_index,
+ CurrentTask &current_task)
+ {
+ const InputSocket &input_socket = node.input(input_index);
+ void *result;
+ this->with_locked_node(node, node_state, current_task, [&](LockedNode &locked_node) {
+ result = this->set_input_required(locked_node, input_socket);
+ });
+ return result;
+ }
+
+ void *set_input_required(LockedNode &locked_node, const InputSocket &input_socket)
+ {
+ BLI_assert(&locked_node.node == &input_socket.node());
+ NodeState &node_state = locked_node.node_state;
+ const int input_index = input_socket.index();
+ InputState &input_state = node_state.inputs[input_index];
+
+ BLI_assert(input_state.usage != ValueUsage::Unused);
+
+ if (input_state.value != nullptr) {
+ input_state.was_ready_for_execution = true;
+ return input_state.value;
+ }
+ if (input_state.usage == ValueUsage::Used) {
+ return nullptr;
+ }
+ input_state.usage = ValueUsage::Used;
+ node_state.missing_required_inputs += 1;
+
+ const OutputSocket *origin_socket = input_socket.origin();
+ /* Unlinked inputs are always loaded in advance. */
+ BLI_assert(origin_socket != nullptr);
+ locked_node.delayed_required_outputs.append(origin_socket);
+ return nullptr;
+ }
+
+ void forward_value_to_linked_inputs(const OutputSocket &from_socket,
+ GMutablePointer value_to_forward,
+ CurrentTask &current_task)
+ {
+ BLI_assert(value_to_forward.get() != nullptr);
+ LinearAllocator<> &allocator = local_allocators_.local();
+ const CPPType &type = *value_to_forward.type();
+
+ if (self_.logger_ != nullptr) {
+ self_.logger_->log_socket_value(from_socket, value_to_forward, *context_);
+ }
+
+ const Span<const InputSocket *> targets = from_socket.targets();
+ for (const InputSocket *target_socket : targets) {
+ const Node &target_node = target_socket->node();
+ NodeState &node_state = *node_states_[target_node.index_in_graph()];
+ const int input_index = target_socket->index();
+ InputState &input_state = node_state.inputs[input_index];
+ const bool is_last_target = target_socket == targets.last();
+#ifdef DEBUG
+ if (input_state.value != nullptr) {
+ if (self_.logger_ != nullptr) {
+ self_.logger_->dump_when_input_is_set_twice(*target_socket, from_socket, *context_);
+ }
+ BLI_assert_unreachable();
+ }
+#endif
+ BLI_assert(!input_state.was_ready_for_execution);
+ BLI_assert(target_socket->type() == type);
+ BLI_assert(target_socket->origin() == &from_socket);
+
+ if (self_.logger_ != nullptr) {
+ self_.logger_->log_socket_value(*target_socket, value_to_forward, *context_);
+ }
+ if (target_node.is_dummy()) {
+ /* Forward the value to the outside of the graph. */
+ const int graph_output_index = self_.graph_outputs_.index_of_try(target_socket);
+ if (graph_output_index != -1 &&
+ params_->get_output_usage(graph_output_index) != ValueUsage::Unused) {
+ void *dst_buffer = params_->get_output_data_ptr(graph_output_index);
+ if (is_last_target) {
+ type.move_construct(value_to_forward.get(), dst_buffer);
+ }
+ else {
+ type.copy_construct(value_to_forward.get(), dst_buffer);
+ }
+ params_->output_set(graph_output_index);
+ }
+ continue;
+ }
+ this->with_locked_node(target_node, node_state, current_task, [&](LockedNode &locked_node) {
+ if (input_state.usage == ValueUsage::Unused) {
+ return;
+ }
+ if (is_last_target) {
+ /* No need to make a copy if this is the last target. */
+ this->forward_value_to_input(locked_node, input_state, value_to_forward);
+ value_to_forward = {};
+ }
+ else {
+ void *buffer = allocator.allocate(type.size(), type.alignment());
+ type.copy_construct(value_to_forward.get(), buffer);
+ this->forward_value_to_input(locked_node, input_state, {type, buffer});
+ }
+ });
+ }
+ if (value_to_forward.get() != nullptr) {
+ value_to_forward.destruct();
+ }
+ }
+
+ void forward_value_to_input(LockedNode &locked_node,
+ InputState &input_state,
+ GMutablePointer value)
+ {
+ NodeState &node_state = locked_node.node_state;
+
+ BLI_assert(input_state.value == nullptr);
+ BLI_assert(!input_state.was_ready_for_execution);
+ input_state.value = value.get();
+
+ if (input_state.usage == ValueUsage::Used) {
+ node_state.missing_required_inputs -= 1;
+ if (node_state.missing_required_inputs == 0) {
+ this->schedule_node(locked_node);
+ }
+ }
+ }
+};
+
+class GraphExecutorLFParams final : public Params {
+ private:
+ Executor &executor_;
+ const Node &node_;
+ NodeState &node_state_;
+ CurrentTask &current_task_;
+
+ public:
+ GraphExecutorLFParams(const LazyFunction &fn,
+ Executor &executor,
+ const Node &node,
+ NodeState &node_state,
+ CurrentTask &current_task)
+ : Params(fn),
+ executor_(executor),
+ node_(node),
+ node_state_(node_state),
+ current_task_(current_task)
+ {
+ }
+
+ private:
+ void *try_get_input_data_ptr_impl(const int index) const override
+ {
+ const InputState &input_state = node_state_.inputs[index];
+ if (input_state.was_ready_for_execution) {
+ return input_state.value;
+ }
+ return nullptr;
+ }
+
+ void *try_get_input_data_ptr_or_request_impl(const int index) override
+ {
+ const InputState &input_state = node_state_.inputs[index];
+ if (input_state.was_ready_for_execution) {
+ return input_state.value;
+ }
+ return executor_.set_input_required_during_execution(node_, node_state_, index, current_task_);
+ }
+
+ void *get_output_data_ptr_impl(const int index) override
+ {
+ OutputState &output_state = node_state_.outputs[index];
+ BLI_assert(!output_state.has_been_computed);
+ if (output_state.value == nullptr) {
+ LinearAllocator<> &allocator = executor_.local_allocators_.local();
+ const CPPType &type = node_.output(index).type();
+ output_state.value = allocator.allocate(type.size(), type.alignment());
+ }
+ return output_state.value;
+ }
+
+ void output_set_impl(const int index) override
+ {
+ OutputState &output_state = node_state_.outputs[index];
+ BLI_assert(!output_state.has_been_computed);
+ BLI_assert(output_state.value != nullptr);
+ const OutputSocket &output_socket = node_.output(index);
+ executor_.forward_value_to_linked_inputs(
+ output_socket, {output_socket.type(), output_state.value}, current_task_);
+ output_state.value = nullptr;
+ output_state.has_been_computed = true;
+ }
+
+ bool output_was_set_impl(const int index) const override
+ {
+ const OutputState &output_state = node_state_.outputs[index];
+ return output_state.has_been_computed;
+ }
+
+ ValueUsage get_output_usage_impl(const int index) const override
+ {
+ const OutputState &output_state = node_state_.outputs[index];
+ return output_state.usage_for_execution;
+ }
+
+ void set_input_unused_impl(const int index) override
+ {
+ executor_.set_input_unused_during_execution(node_, node_state_, index, current_task_);
+ }
+};
+
+/**
+ * Actually execute the node.
+ *
+ * Making this `inline` results in a simpler backtrace in release builds.
+ */
+inline void Executor::execute_node(const FunctionNode &node,
+ NodeState &node_state,
+ CurrentTask &current_task)
+{
+ const LazyFunction &fn = node.function();
+ GraphExecutorLFParams node_params{fn, *this, node, node_state, current_task};
+ BLI_assert(context_ != nullptr);
+ Context fn_context = *context_;
+ fn_context.storage = node_state.storage;
+
+ if (self_.logger_ != nullptr) {
+ self_.logger_->log_before_node_execute(node, node_params, fn_context);
+ }
+
+ fn.execute(node_params, fn_context);
+
+ if (self_.logger_ != nullptr) {
+ self_.logger_->log_after_node_execute(node, node_params, fn_context);
+ }
+}
+
+GraphExecutor::GraphExecutor(const Graph &graph,
+ const Span<const OutputSocket *> graph_inputs,
+ const Span<const InputSocket *> graph_outputs,
+ const Logger *logger,
+ const SideEffectProvider *side_effect_provider)
+ : graph_(graph),
+ graph_inputs_(graph_inputs),
+ graph_outputs_(graph_outputs),
+ logger_(logger),
+ side_effect_provider_(side_effect_provider)
+{
+ for (const OutputSocket *socket : graph_inputs_) {
+ BLI_assert(socket->node().is_dummy());
+ inputs_.append({"In", socket->type(), ValueUsage::Maybe});
+ }
+ for (const InputSocket *socket : graph_outputs_) {
+ BLI_assert(socket->node().is_dummy());
+ outputs_.append({"Out", socket->type()});
+ }
+}
+
+void GraphExecutor::execute_impl(Params &params, const Context &context) const
+{
+ Executor &executor = *static_cast<Executor *>(context.storage);
+ executor.execute(params, context);
+}
+
+void *GraphExecutor::init_storage(LinearAllocator<> &allocator) const
+{
+ Executor &executor = *allocator.construct<Executor>(*this).release();
+ return &executor;
+}
+
+void GraphExecutor::destruct_storage(void *storage) const
+{
+ std::destroy_at(static_cast<Executor *>(storage));
+}
+
+void GraphExecutorLogger::log_socket_value(const Socket &socket,
+ const GPointer value,
+ const Context &context) const
+{
+ UNUSED_VARS(socket, value, context);
+}
+
+void GraphExecutorLogger::log_before_node_execute(const FunctionNode &node,
+ const Params &params,
+ const Context &context) const
+{
+ UNUSED_VARS(node, params, context);
+}
+
+void GraphExecutorLogger::log_after_node_execute(const FunctionNode &node,
+ const Params &params,
+ const Context &context) const
+{
+ UNUSED_VARS(node, params, context);
+}
+
+Vector<const FunctionNode *> GraphExecutorSideEffectProvider::get_nodes_with_side_effects(
+ const Context &context) const
+{
+ UNUSED_VARS(context);
+ return {};
+}
+
+void GraphExecutorLogger::dump_when_outputs_are_missing(const FunctionNode &node,
+ Span<const OutputSocket *> missing_sockets,
+ const Context &context) const
+{
+ UNUSED_VARS(node, missing_sockets, context);
+}
+
+void GraphExecutorLogger::dump_when_input_is_set_twice(const InputSocket &target_socket,
+ const OutputSocket &from_socket,
+ const Context &context) const
+{
+ UNUSED_VARS(target_socket, from_socket, context);
+}
+
+} // namespace blender::fn::lazy_function
diff --git a/source/blender/functions/tests/FN_lazy_function_test.cc b/source/blender/functions/tests/FN_lazy_function_test.cc
new file mode 100644
index 00000000000..8df064cd8a6
--- /dev/null
+++ b/source/blender/functions/tests/FN_lazy_function_test.cc
@@ -0,0 +1,115 @@
+/* SPDX-License-Identifier: Apache-2.0 */
+
+#include "testing/testing.h"
+
+#include "FN_lazy_function_execute.hh"
+#include "FN_lazy_function_graph.hh"
+#include "FN_lazy_function_graph_executor.hh"
+
+#include "BLI_task.h"
+#include "BLI_timeit.hh"
+
+namespace blender::fn::lazy_function::tests {
+
+class AddLazyFunction : public LazyFunction {
+ public:
+ AddLazyFunction()
+ {
+ debug_name_ = "Add";
+ inputs_.append({"A", CPPType::get<int>()});
+ inputs_.append({"B", CPPType::get<int>()});
+ outputs_.append({"Result", CPPType::get<int>()});
+ }
+
+ void execute_impl(Params &params, const Context &UNUSED(context)) const override
+ {
+ const int a = params.get_input<int>(0);
+ const int b = params.get_input<int>(1);
+ params.set_output(0, a + b);
+ }
+};
+
+class StoreValueFunction : public LazyFunction {
+ private:
+ int *dst1_;
+ int *dst2_;
+
+ public:
+ StoreValueFunction(int *dst1, int *dst2) : dst1_(dst1), dst2_(dst2)
+ {
+ debug_name_ = "Store Value";
+ inputs_.append({"A", CPPType::get<int>()});
+ inputs_.append({"B", CPPType::get<int>(), ValueUsage::Maybe});
+ }
+
+ void execute_impl(Params &params, const Context &UNUSED(context)) const override
+ {
+ *dst1_ = params.get_input<int>(0);
+ if (int *value = params.try_get_input_data_ptr_or_request<int>(1)) {
+ *dst2_ = *value;
+ }
+ }
+};
+
+class SimpleSideEffectProvider : public GraphExecutor::SideEffectProvider {
+ private:
+ Vector<const FunctionNode *> side_effect_nodes_;
+
+ public:
+ SimpleSideEffectProvider(Span<const FunctionNode *> side_effect_nodes)
+ : side_effect_nodes_(side_effect_nodes)
+ {
+ }
+
+ Vector<const FunctionNode *> get_nodes_with_side_effects(
+ const Context &UNUSED(context)) const override
+ {
+ return side_effect_nodes_;
+ }
+};
+
+TEST(lazy_function, SimpleAdd)
+{
+ const AddLazyFunction add_fn;
+ int result = 0;
+ execute_lazy_function_eagerly(add_fn, nullptr, std::make_tuple(30, 5), std::make_tuple(&result));
+ EXPECT_EQ(result, 35);
+}
+
+TEST(lazy_function, SideEffects)
+{
+ BLI_task_scheduler_init();
+ int dst1 = 0;
+ int dst2 = 0;
+
+ const AddLazyFunction add_fn;
+ const StoreValueFunction store_fn{&dst1, &dst2};
+
+ Graph graph;
+ FunctionNode &add_node_1 = graph.add_function(add_fn);
+ FunctionNode &add_node_2 = graph.add_function(add_fn);
+ FunctionNode &store_node = graph.add_function(store_fn);
+ DummyNode &input_node = graph.add_dummy({}, {&CPPType::get<int>()});
+
+ graph.add_link(input_node.output(0), add_node_1.input(0));
+ graph.add_link(input_node.output(0), add_node_2.input(0));
+ graph.add_link(add_node_1.output(0), store_node.input(0));
+ graph.add_link(add_node_2.output(0), store_node.input(1));
+
+ const int value_10 = 10;
+ const int value_100 = 100;
+ add_node_1.input(1).set_default_value(&value_10);
+ add_node_2.input(1).set_default_value(&value_100);
+
+ graph.update_node_indices();
+
+ SimpleSideEffectProvider side_effect_provider{{&store_node}};
+
+ GraphExecutor executor_fn{graph, {&input_node.output(0)}, {}, nullptr, &side_effect_provider};
+ execute_lazy_function_eagerly(executor_fn, nullptr, std::make_tuple(5), std::make_tuple());
+
+ EXPECT_EQ(dst1, 15);
+ EXPECT_EQ(dst2, 105);
+}
+
+} // namespace blender::fn::lazy_function::tests