Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChris Blackbourn <chrisbblend@gmail.com>2022-08-06 04:53:46 +0300
committerChris Blackbourn <chrisbblend@gmail.com>2022-08-06 04:54:40 +0300
commitfcd61d2056f8988ded3d0ee35696aad0b424edc8 (patch)
treedbe064e0e9294d84151c4c92d6da41286f7af968 /source/blender/geometry/intern/uv_parametrizer.cc
parent0d62e963b06eccaee2e9f33a10954e7768b81189 (diff)
Cleanup: Move uv_parametrizer.c to C++
Differential Review: https://developer.blender.org/D15618
Diffstat (limited to 'source/blender/geometry/intern/uv_parametrizer.cc')
-rw-r--r--source/blender/geometry/intern/uv_parametrizer.cc4409
1 files changed, 4409 insertions, 0 deletions
diff --git a/source/blender/geometry/intern/uv_parametrizer.cc b/source/blender/geometry/intern/uv_parametrizer.cc
new file mode 100644
index 00000000000..efda55e2669
--- /dev/null
+++ b/source/blender/geometry/intern/uv_parametrizer.cc
@@ -0,0 +1,4409 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+/** \file
+ * \ingroup eduv
+ */
+
+#include "GEO_uv_parametrizer.h"
+
+#include "MEM_guardedalloc.h"
+
+#include "BLI_boxpack_2d.h"
+#include "BLI_convexhull_2d.h"
+#include "BLI_ghash.h"
+#include "BLI_heap.h"
+#include "BLI_memarena.h"
+#include "BLI_polyfill_2d.h"
+#include "BLI_polyfill_2d_beautify.h"
+#include "BLI_rand.h"
+
+#include "eigen_capi.h"
+
+/* Utils */
+
+#define param_assert(condition) \
+ if (!(condition)) { /*printf("Assertion %s:%d\n", __FILE__, __LINE__); abort();*/ \
+ } \
+ (void)0
+#define param_warning(message) \
+ {/*printf("Warning %s:%d: %s\n", __FILE__, __LINE__, message);*/}(void)0
+
+/* Special Purpose Hash */
+
+typedef intptr_t PHashKey;
+
+typedef struct PHashLink {
+ struct PHashLink *next;
+ PHashKey key;
+} PHashLink;
+
+typedef struct PHash {
+ PHashLink **list;
+ PHashLink **buckets;
+ int size, cursize, cursize_id;
+} PHash;
+
+/* Simplices */
+
+typedef struct PVert {
+ struct PVert *nextlink;
+
+ union PVertUnion {
+ PHashKey key; /* Construct. */
+ int id; /* ABF/LSCM matrix index. */
+ HeapNode *heaplink; /* Edge collapsing. */
+ } u;
+
+ struct PEdge *edge;
+ float co[3];
+ float uv[2];
+ uint flag;
+} PVert;
+
+typedef struct PEdge {
+ struct PEdge *nextlink;
+
+ union PEdgeUnion {
+ PHashKey key; /* Construct. */
+ int id; /* ABF matrix index. */
+ HeapNode *heaplink; /* Fill holes. */
+ struct PEdge *nextcollapse; /* Simplification. */
+ } u;
+
+ struct PVert *vert;
+ struct PEdge *pair;
+ struct PEdge *next;
+ struct PFace *face;
+ float *orig_uv, old_uv[2];
+ uint flag;
+} PEdge;
+
+typedef struct PFace {
+ struct PFace *nextlink;
+
+ union PFaceUnion {
+ PHashKey key; /* Construct. */
+ int chart; /* Construct splitting. */
+ float area3d; /* Stretch. */
+ int id; /* ABF matrix index. */
+ } u;
+
+ struct PEdge *edge;
+ uchar flag;
+} PFace;
+
+enum PVertFlag {
+ PVERT_PIN = 1,
+ PVERT_SELECT = 2,
+ PVERT_INTERIOR = 4,
+ PVERT_COLLAPSE = 8,
+ PVERT_SPLIT = 16,
+};
+
+enum PEdgeFlag {
+ PEDGE_SEAM = 1,
+ PEDGE_VERTEX_SPLIT = 2,
+ PEDGE_PIN = 4,
+ PEDGE_SELECT = 8,
+ PEDGE_DONE = 16,
+ PEDGE_FILLED = 32,
+ PEDGE_COLLAPSE = 64,
+ PEDGE_COLLAPSE_EDGE = 128,
+ PEDGE_COLLAPSE_PAIR = 256,
+};
+
+/* for flipping faces */
+#define PEDGE_VERTEX_FLAGS (PEDGE_PIN)
+
+enum PFaceFlag {
+ PFACE_CONNECTED = 1,
+ PFACE_FILLED = 2,
+ PFACE_COLLAPSE = 4,
+};
+
+/* Chart */
+
+typedef struct PChart {
+ PVert *verts;
+ PEdge *edges;
+ PFace *faces;
+ int nverts, nedges, nfaces;
+ int nboundaries;
+
+ PVert *collapsed_verts;
+ PEdge *collapsed_edges;
+ PFace *collapsed_faces;
+
+ union PChartUnion {
+ struct PChartLscm {
+ LinearSolver *context;
+ float *abf_alpha;
+ PVert *pin1, *pin2;
+ PVert *single_pin;
+ float single_pin_area;
+ float single_pin_uv[2];
+ } lscm;
+ struct PChartPack {
+ float rescale, area;
+ float size[2];
+ float origin[2];
+ } pack;
+ } u;
+
+ bool has_pins;
+} PChart;
+
+enum PHandleState {
+ PHANDLE_STATE_ALLOCATED,
+ PHANDLE_STATE_CONSTRUCTED,
+ PHANDLE_STATE_LSCM,
+ PHANDLE_STATE_STRETCH,
+};
+
+typedef struct ParamHandle {
+ enum PHandleState state;
+ MemArena *arena;
+ MemArena *polyfill_arena;
+ Heap *polyfill_heap;
+
+ PChart *construction_chart;
+ PHash *hash_verts;
+ PHash *hash_edges;
+ PHash *hash_faces;
+
+ struct GHash *pin_hash;
+ int unique_pin_count;
+
+ PChart **charts;
+ int ncharts;
+
+ float aspx, aspy;
+
+ RNG *rng;
+ float blend;
+} ParamHandle;
+
+/* PHash
+ * - special purpose hash that keeps all its elements in a single linked list.
+ * - after construction, this hash is thrown away, and the list remains.
+ * - removing elements is not possible efficiently.
+ */
+
+static int PHashSizes[] = {
+ 1, 3, 5, 11, 17, 37, 67, 131, 257, 521,
+ 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309,
+ 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459,
+};
+
+#define PHASH_hash(ph, item) (((uintptr_t)(item)) % ((uint)(ph)->cursize))
+#define PHASH_edge(v1, v2) (((v1) < (v2)) ? ((v1)*39) ^ ((v2)*31) : ((v1)*31) ^ ((v2)*39))
+
+static PHash *phash_new(PHashLink **list, int sizehint)
+{
+ PHash *ph = (PHash *)MEM_callocN(sizeof(PHash), "PHash");
+ ph->size = 0;
+ ph->cursize_id = 0;
+ ph->list = list;
+
+ while (PHashSizes[ph->cursize_id] < sizehint) {
+ ph->cursize_id++;
+ }
+
+ ph->cursize = PHashSizes[ph->cursize_id];
+ ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets");
+
+ return ph;
+}
+
+static void phash_delete(PHash *ph)
+{
+ if (ph) {
+ MEM_SAFE_FREE(ph->buckets);
+ }
+ MEM_SAFE_FREE(ph);
+}
+
+static int phash_size(PHash *ph)
+{
+ return ph->size;
+}
+
+static void phash_insert(PHash *ph, PHashLink *link)
+{
+ int size = ph->cursize;
+ uintptr_t hash = PHASH_hash(ph, link->key);
+ PHashLink *lookup = ph->buckets[hash];
+
+ if (lookup == NULL) {
+ /* insert in front of the list */
+ ph->buckets[hash] = link;
+ link->next = *(ph->list);
+ *(ph->list) = link;
+ }
+ else {
+ /* insert after existing element */
+ link->next = lookup->next;
+ lookup->next = link;
+ }
+
+ ph->size++;
+
+ if (ph->size > (size * 3)) {
+ PHashLink *next = NULL, *first = *(ph->list);
+
+ ph->cursize = PHashSizes[++ph->cursize_id];
+ MEM_freeN(ph->buckets);
+ ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets");
+ ph->size = 0;
+ *(ph->list) = NULL;
+
+ for (link = first; link; link = next) {
+ next = link->next;
+ phash_insert(ph, link);
+ }
+ }
+}
+
+static PHashLink *phash_lookup(PHash *ph, PHashKey key)
+{
+ PHashLink *link;
+ uintptr_t hash = PHASH_hash(ph, key);
+
+ for (link = ph->buckets[hash]; link; link = link->next) {
+ if (link->key == key) {
+ return link;
+ }
+ if (PHASH_hash(ph, link->key) != hash) {
+ return NULL;
+ }
+ }
+
+ return link;
+}
+
+static PHashLink *phash_next(PHash *ph, PHashKey key, PHashLink *link)
+{
+ uintptr_t hash = PHASH_hash(ph, key);
+
+ for (link = link->next; link; link = link->next) {
+ if (link->key == key) {
+ return link;
+ }
+ if (PHASH_hash(ph, link->key) != hash) {
+ return NULL;
+ }
+ }
+
+ return link;
+}
+
+/* Geometry */
+
+static float p_vec_angle(const float v1[3], const float v2[3], const float v3[3])
+{
+ return angle_v3v3v3(v1, v2, v3);
+}
+static float p_vec2_angle(const float v1[2], const float v2[2], const float v3[2])
+{
+ return angle_v2v2v2(v1, v2, v3);
+}
+static void p_triangle_angles(
+ const float v1[3], const float v2[3], const float v3[3], float *r_a1, float *r_a2, float *r_a3)
+{
+ *r_a1 = p_vec_angle(v3, v1, v2);
+ *r_a2 = p_vec_angle(v1, v2, v3);
+ *r_a3 = (float)M_PI - *r_a2 - *r_a1;
+}
+
+static void p_face_angles(PFace *f, float *r_a1, float *r_a2, float *r_a3)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ p_triangle_angles(v1->co, v2->co, v3->co, r_a1, r_a2, r_a3);
+}
+
+static float p_face_area(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ return area_tri_v3(v1->co, v2->co, v3->co);
+}
+
+static float p_area_signed(const float v1[2], const float v2[2], const float v3[2])
+{
+ return 0.5f * (((v2[0] - v1[0]) * (v3[1] - v1[1])) - ((v3[0] - v1[0]) * (v2[1] - v1[1])));
+}
+
+static float p_face_uv_area_signed(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ return 0.5f * (((v2->uv[0] - v1->uv[0]) * (v3->uv[1] - v1->uv[1])) -
+ ((v3->uv[0] - v1->uv[0]) * (v2->uv[1] - v1->uv[1])));
+}
+
+static float p_edge_length(PEdge *e)
+{
+ return len_v3v3(e->vert->co, e->next->vert->co);
+}
+
+static float p_edge_uv_length(PEdge *e)
+{
+ return len_v2v2(e->vert->uv, e->next->vert->uv);
+}
+
+static void p_chart_uv_bbox(PChart *chart, float minv[2], float maxv[2])
+{
+ PVert *v;
+
+ INIT_MINMAX2(minv, maxv);
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ minmax_v2v2_v2(minv, maxv, v->uv);
+ }
+}
+
+static float p_chart_uv_area(PChart *chart)
+{
+ float area = 0.0f;
+
+ for (PFace *f = chart->faces; f; f = f->nextlink) {
+ area += fabsf(p_face_uv_area_signed(f));
+ }
+
+ return area;
+}
+
+static void p_chart_uv_scale(PChart *chart, float scale)
+{
+ PVert *v;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ v->uv[0] *= scale;
+ v->uv[1] *= scale;
+ }
+}
+
+static void p_chart_uv_scale_xy(PChart *chart, float x, float y)
+{
+ PVert *v;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ v->uv[0] *= x;
+ v->uv[1] *= y;
+ }
+}
+
+static void p_chart_uv_translate(PChart *chart, const float trans[2])
+{
+ PVert *v;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ v->uv[0] += trans[0];
+ v->uv[1] += trans[1];
+ }
+}
+
+static void p_chart_uv_transform(PChart *chart, const float mat[2][2])
+{
+ PVert *v;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ mul_m2_v2(mat, v->uv);
+ }
+}
+
+static void p_chart_uv_to_array(PChart *chart, float (*points)[2])
+{
+ PVert *v;
+ uint i = 0;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ copy_v2_v2(points[i++], v->uv);
+ }
+}
+
+static bool p_intersect_line_2d_dir(const float v1[2],
+ const float dir1[2],
+ const float v2[2],
+ const float dir2[2],
+ float r_isect[2])
+{
+ float lmbda, div;
+
+ div = dir2[0] * dir1[1] - dir2[1] * dir1[0];
+
+ if (div == 0.0f) {
+ return false;
+ }
+
+ lmbda = ((v1[1] - v2[1]) * dir1[0] - (v1[0] - v2[0]) * dir1[1]) / div;
+ r_isect[0] = v1[0] + lmbda * dir2[0];
+ r_isect[1] = v1[1] + lmbda * dir2[1];
+
+ return true;
+}
+
+/* Topological Utilities */
+
+static PEdge *p_wheel_edge_next(PEdge *e)
+{
+ return e->next->next->pair;
+}
+
+static PEdge *p_wheel_edge_prev(PEdge *e)
+{
+ return (e->pair) ? e->pair->next : NULL;
+}
+
+static PEdge *p_boundary_edge_next(PEdge *e)
+{
+ return e->next->vert->edge;
+}
+
+static PEdge *p_boundary_edge_prev(PEdge *e)
+{
+ PEdge *we = e, *last;
+
+ do {
+ last = we;
+ we = p_wheel_edge_next(we);
+ } while (we && (we != e));
+
+ return last->next->next;
+}
+
+static bool p_vert_interior(PVert *v)
+{
+ return v->edge->pair;
+}
+
+static void p_face_flip(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+ int f1 = e1->flag, f2 = e2->flag, f3 = e3->flag;
+ float *orig_uv1 = e1->orig_uv, *orig_uv2 = e2->orig_uv, *orig_uv3 = e3->orig_uv;
+
+ e1->vert = v2;
+ e1->next = e3;
+ e1->orig_uv = orig_uv2;
+ e1->flag = (f1 & ~PEDGE_VERTEX_FLAGS) | (f2 & PEDGE_VERTEX_FLAGS);
+
+ e2->vert = v3;
+ e2->next = e1;
+ e2->orig_uv = orig_uv3;
+ e2->flag = (f2 & ~PEDGE_VERTEX_FLAGS) | (f3 & PEDGE_VERTEX_FLAGS);
+
+ e3->vert = v1;
+ e3->next = e2;
+ e3->orig_uv = orig_uv1;
+ e3->flag = (f3 & ~PEDGE_VERTEX_FLAGS) | (f1 & PEDGE_VERTEX_FLAGS);
+}
+
+#if 0
+static void p_chart_topological_sanity_check(PChart *chart)
+{
+ PVert *v;
+ PEdge *e;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ GEO_uv_parametrizer_test_equals_ptr("v->edge->vert", v, v->edge->vert);
+ }
+
+ for (e = chart->edges; e; e = e->nextlink) {
+ if (e->pair) {
+ GEO_uv_parametrizer_test_equals_ptr("e->pair->pair", e, e->pair->pair);
+ GEO_uv_parametrizer_test_equals_ptr("pair->vert", e->vert, e->pair->next->vert);
+ GEO_uv_parametrizer_test_equals_ptr("pair->next->vert", e->next->vert, e->pair->vert);
+ }
+ }
+}
+#endif
+
+/* Loading / Flushing */
+
+static void p_vert_load_pin_select_uvs(ParamHandle *handle, PVert *v)
+{
+ PEdge *e;
+ int nedges = 0, npins = 0;
+ float pinuv[2];
+
+ v->uv[0] = v->uv[1] = 0.0f;
+ pinuv[0] = pinuv[1] = 0.0f;
+ e = v->edge;
+ do {
+ if (e->orig_uv) {
+ if (e->flag & PEDGE_SELECT) {
+ v->flag |= PVERT_SELECT;
+ }
+
+ if (e->flag & PEDGE_PIN) {
+ pinuv[0] += e->orig_uv[0] * handle->aspx;
+ pinuv[1] += e->orig_uv[1] * handle->aspy;
+ npins++;
+ }
+ else {
+ v->uv[0] += e->orig_uv[0] * handle->aspx;
+ v->uv[1] += e->orig_uv[1] * handle->aspy;
+ }
+
+ nedges++;
+ }
+
+ e = p_wheel_edge_next(e);
+ } while (e && e != (v->edge));
+
+ if (npins > 0) {
+ v->uv[0] = pinuv[0] / npins;
+ v->uv[1] = pinuv[1] / npins;
+ v->flag |= PVERT_PIN;
+ }
+ else if (nedges > 0) {
+ v->uv[0] /= nedges;
+ v->uv[1] /= nedges;
+ }
+}
+
+static void p_flush_uvs(ParamHandle *handle, PChart *chart)
+{
+ PEdge *e;
+
+ for (e = chart->edges; e; e = e->nextlink) {
+ if (e->orig_uv) {
+ e->orig_uv[0] = e->vert->uv[0] / handle->aspx;
+ e->orig_uv[1] = e->vert->uv[1] / handle->aspy;
+ }
+ }
+}
+
+static void p_flush_uvs_blend(ParamHandle *handle, PChart *chart, float blend)
+{
+ PEdge *e;
+ float invblend = 1.0f - blend;
+
+ for (e = chart->edges; e; e = e->nextlink) {
+ if (e->orig_uv) {
+ e->orig_uv[0] = blend * e->old_uv[0] + invblend * e->vert->uv[0] / handle->aspx;
+ e->orig_uv[1] = blend * e->old_uv[1] + invblend * e->vert->uv[1] / handle->aspy;
+ }
+ }
+}
+
+static void p_face_backup_uvs(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+
+ if (e1->orig_uv) {
+ e1->old_uv[0] = e1->orig_uv[0];
+ e1->old_uv[1] = e1->orig_uv[1];
+ }
+ if (e2->orig_uv) {
+ e2->old_uv[0] = e2->orig_uv[0];
+ e2->old_uv[1] = e2->orig_uv[1];
+ }
+ if (e3->orig_uv) {
+ e3->old_uv[0] = e3->orig_uv[0];
+ e3->old_uv[1] = e3->orig_uv[1];
+ }
+}
+
+static void p_face_restore_uvs(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+
+ if (e1->orig_uv) {
+ e1->orig_uv[0] = e1->old_uv[0];
+ e1->orig_uv[1] = e1->old_uv[1];
+ }
+ if (e2->orig_uv) {
+ e2->orig_uv[0] = e2->old_uv[0];
+ e2->orig_uv[1] = e2->old_uv[1];
+ }
+ if (e3->orig_uv) {
+ e3->orig_uv[0] = e3->old_uv[0];
+ e3->orig_uv[1] = e3->old_uv[1];
+ }
+}
+
+/* Construction (use only during construction, relies on u.key being set */
+
+static PVert *p_vert_add(ParamHandle *handle, PHashKey key, const float co[3], PEdge *e)
+{
+ PVert *v = (PVert *)BLI_memarena_alloc(handle->arena, sizeof(*v));
+ copy_v3_v3(v->co, co);
+
+ /* Sanity check, a single nan/inf point causes the entire result to be invalid.
+ * Note that values within the calculation may _become_ non-finite,
+ * so the rest of the code still needs to take this possibility into account. */
+ for (int i = 0; i < 3; i++) {
+ if (UNLIKELY(!isfinite(v->co[i]))) {
+ v->co[i] = 0.0f;
+ }
+ }
+
+ v->u.key = key;
+ v->edge = e;
+ v->flag = 0;
+
+ phash_insert(handle->hash_verts, (PHashLink *)v);
+
+ return v;
+}
+
+static PVert *p_vert_lookup(ParamHandle *handle, PHashKey key, const float co[3], PEdge *e)
+{
+ PVert *v = (PVert *)phash_lookup(handle->hash_verts, key);
+
+ if (v) {
+ return v;
+ }
+ return p_vert_add(handle, key, co, e);
+}
+
+static PVert *p_vert_copy(ParamHandle *handle, PVert *v)
+{
+ PVert *nv = (PVert *)BLI_memarena_alloc(handle->arena, sizeof(*nv));
+
+ copy_v3_v3(nv->co, v->co);
+ nv->uv[0] = v->uv[0];
+ nv->uv[1] = v->uv[1];
+ nv->u.key = v->u.key;
+ nv->edge = v->edge;
+ nv->flag = v->flag;
+
+ return nv;
+}
+
+static PEdge *p_edge_lookup(ParamHandle *handle, const PHashKey *vkeys)
+{
+ PHashKey key = PHASH_edge(vkeys[0], vkeys[1]);
+ PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key);
+
+ while (e) {
+ if ((e->vert->u.key == vkeys[0]) && (e->next->vert->u.key == vkeys[1])) {
+ return e;
+ }
+ if ((e->vert->u.key == vkeys[1]) && (e->next->vert->u.key == vkeys[0])) {
+ return e;
+ }
+
+ e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e);
+ }
+
+ return NULL;
+}
+
+static int p_face_exists(ParamHandle *handle, const ParamKey *pvkeys, int i1, int i2, int i3)
+{
+ PHashKey *vkeys = (PHashKey *)pvkeys;
+ PHashKey key = PHASH_edge(vkeys[i1], vkeys[i2]);
+ PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key);
+
+ while (e) {
+ if ((e->vert->u.key == vkeys[i1]) && (e->next->vert->u.key == vkeys[i2])) {
+ if (e->next->next->vert->u.key == vkeys[i3]) {
+ return true;
+ }
+ }
+ else if ((e->vert->u.key == vkeys[i2]) && (e->next->vert->u.key == vkeys[i1])) {
+ if (e->next->next->vert->u.key == vkeys[i3]) {
+ return true;
+ }
+ }
+
+ e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e);
+ }
+
+ return false;
+}
+
+static bool p_edge_implicit_seam(PEdge *e, PEdge *ep)
+{
+ float *uv1, *uv2, *uvp1, *uvp2;
+ float limit[2];
+
+ limit[0] = 0.00001;
+ limit[1] = 0.00001;
+
+ uv1 = e->orig_uv;
+ uv2 = e->next->orig_uv;
+
+ if (e->vert->u.key == ep->vert->u.key) {
+ uvp1 = ep->orig_uv;
+ uvp2 = ep->next->orig_uv;
+ }
+ else {
+ uvp1 = ep->next->orig_uv;
+ uvp2 = ep->orig_uv;
+ }
+
+ if ((fabsf(uv1[0] - uvp1[0]) > limit[0]) || (fabsf(uv1[1] - uvp1[1]) > limit[1])) {
+ e->flag |= PEDGE_SEAM;
+ ep->flag |= PEDGE_SEAM;
+ return true;
+ }
+ if ((fabsf(uv2[0] - uvp2[0]) > limit[0]) || (fabsf(uv2[1] - uvp2[1]) > limit[1])) {
+ e->flag |= PEDGE_SEAM;
+ ep->flag |= PEDGE_SEAM;
+ return true;
+ }
+
+ return false;
+}
+
+static bool p_edge_has_pair(ParamHandle *handle, PEdge *e, bool topology_from_uvs, PEdge **r_pair)
+{
+ PHashKey key;
+ PEdge *pe;
+ PVert *v1, *v2;
+ PHashKey key1 = e->vert->u.key;
+ PHashKey key2 = e->next->vert->u.key;
+
+ if (e->flag & PEDGE_SEAM) {
+ return false;
+ }
+
+ key = PHASH_edge(key1, key2);
+ pe = (PEdge *)phash_lookup(handle->hash_edges, key);
+ *r_pair = NULL;
+
+ while (pe) {
+ if (pe != e) {
+ v1 = pe->vert;
+ v2 = pe->next->vert;
+
+ if (((v1->u.key == key1) && (v2->u.key == key2)) ||
+ ((v1->u.key == key2) && (v2->u.key == key1))) {
+
+ /* don't connect seams and t-junctions */
+ if ((pe->flag & PEDGE_SEAM) || *r_pair ||
+ (topology_from_uvs && p_edge_implicit_seam(e, pe))) {
+ *r_pair = NULL;
+ return false;
+ }
+
+ *r_pair = pe;
+ }
+ }
+
+ pe = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)pe);
+ }
+
+ if (*r_pair && (e->vert == (*r_pair)->vert)) {
+ if ((*r_pair)->next->pair || (*r_pair)->next->next->pair) {
+ /* non unfoldable, maybe mobius ring or klein bottle */
+ *r_pair = NULL;
+ return false;
+ }
+ }
+
+ return (*r_pair != NULL);
+}
+
+static bool p_edge_connect_pair(ParamHandle *handle,
+ PEdge *e,
+ bool topology_from_uvs,
+ PEdge ***stack)
+{
+ PEdge *pair = NULL;
+
+ if (!e->pair && p_edge_has_pair(handle, e, topology_from_uvs, &pair)) {
+ if (e->vert == pair->vert) {
+ p_face_flip(pair->face);
+ }
+
+ e->pair = pair;
+ pair->pair = e;
+
+ if (!(pair->face->flag & PFACE_CONNECTED)) {
+ **stack = pair;
+ (*stack)++;
+ }
+ }
+
+ return (e->pair != NULL);
+}
+
+static int p_connect_pairs(ParamHandle *handle, bool topology_from_uvs)
+{
+ PEdge **stackbase = (PEdge **)MEM_mallocN(sizeof(*stackbase) * phash_size(handle->hash_faces),
+ "Pstackbase");
+ PEdge **stack = stackbase;
+ PFace *f, *first;
+ PEdge *e, *e1, *e2;
+ PChart *chart = handle->construction_chart;
+ int ncharts = 0;
+
+ /* Connect pairs, count edges, set vertex-edge pointer to a pair-less edge. */
+ for (first = chart->faces; first; first = first->nextlink) {
+ if (first->flag & PFACE_CONNECTED) {
+ continue;
+ }
+
+ *stack = first->edge;
+ stack++;
+
+ while (stack != stackbase) {
+ stack--;
+ e = *stack;
+ e1 = e->next;
+ e2 = e1->next;
+
+ f = e->face;
+ f->flag |= PFACE_CONNECTED;
+
+ /* assign verts to charts so we can sort them later */
+ f->u.chart = ncharts;
+
+ if (!p_edge_connect_pair(handle, e, topology_from_uvs, &stack)) {
+ e->vert->edge = e;
+ }
+ if (!p_edge_connect_pair(handle, e1, topology_from_uvs, &stack)) {
+ e1->vert->edge = e1;
+ }
+ if (!p_edge_connect_pair(handle, e2, topology_from_uvs, &stack)) {
+ e2->vert->edge = e2;
+ }
+ }
+
+ ncharts++;
+ }
+
+ MEM_SAFE_FREE(stackbase);
+
+ return ncharts;
+}
+
+static void p_split_vert(ParamHandle *handle, PChart *chart, PEdge *e)
+{
+ PEdge *we, *lastwe = NULL;
+ PVert *v = e->vert;
+ bool copy = true;
+
+ if (e->flag & PEDGE_PIN) {
+ chart->has_pins = true;
+ }
+
+ if (e->flag & PEDGE_VERTEX_SPLIT) {
+ return;
+ }
+
+ /* rewind to start */
+ lastwe = e;
+ for (we = p_wheel_edge_prev(e); we && (we != e); we = p_wheel_edge_prev(we)) {
+ lastwe = we;
+ }
+
+ /* go over all edges in wheel */
+ for (we = lastwe; we; we = p_wheel_edge_next(we)) {
+ if (we->flag & PEDGE_VERTEX_SPLIT) {
+ break;
+ }
+
+ we->flag |= PEDGE_VERTEX_SPLIT;
+
+ if (we == v->edge) {
+ /* found it, no need to copy */
+ copy = false;
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
+ }
+ }
+
+ if (copy) {
+ /* not found, copying */
+ v->flag |= PVERT_SPLIT;
+ v = p_vert_copy(handle, v);
+ v->flag |= PVERT_SPLIT;
+
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
+
+ v->edge = lastwe;
+
+ we = lastwe;
+ do {
+ we->vert = v;
+ we = p_wheel_edge_next(we);
+ } while (we && (we != lastwe));
+ }
+}
+
+static PChart **p_split_charts(ParamHandle *handle, PChart *chart, int ncharts)
+{
+ PChart **charts = (PChart **)MEM_callocN(sizeof(*charts) * ncharts, "PCharts");
+
+ for (int i = 0; i < ncharts; i++) {
+ charts[i] = (PChart *)MEM_callocN(sizeof(*chart), "PChart");
+ }
+
+ PFace *f = chart->faces;
+ while (f) {
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PFace *nextf = f->nextlink;
+
+ PChart *nchart = charts[f->u.chart];
+
+ f->nextlink = nchart->faces;
+ nchart->faces = f;
+ e1->nextlink = nchart->edges;
+ nchart->edges = e1;
+ e2->nextlink = nchart->edges;
+ nchart->edges = e2;
+ e3->nextlink = nchart->edges;
+ nchart->edges = e3;
+
+ nchart->nfaces++;
+ nchart->nedges += 3;
+
+ p_split_vert(handle, nchart, e1);
+ p_split_vert(handle, nchart, e2);
+ p_split_vert(handle, nchart, e3);
+
+ f = nextf;
+ }
+
+ return charts;
+}
+
+static PFace *p_face_add(ParamHandle *handle)
+{
+ PFace *f;
+ PEdge *e1, *e2, *e3;
+
+ /* allocate */
+ f = (PFace *)BLI_memarena_alloc(handle->arena, sizeof(*f));
+ f->flag = 0; /* init ! */
+
+ e1 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e1));
+ e2 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e2));
+ e3 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e3));
+
+ /* set up edges */
+ f->edge = e1;
+ e1->face = e2->face = e3->face = f;
+
+ e1->next = e2;
+ e2->next = e3;
+ e3->next = e1;
+
+ e1->pair = NULL;
+ e2->pair = NULL;
+ e3->pair = NULL;
+
+ e1->flag = 0;
+ e2->flag = 0;
+ e3->flag = 0;
+
+ return f;
+}
+
+static PFace *p_face_add_construct(ParamHandle *handle,
+ ParamKey key,
+ const ParamKey *vkeys,
+ const float **co,
+ float **uv,
+ int i1,
+ int i2,
+ int i3,
+ const bool *pin,
+ const bool *select)
+{
+ PFace *f = p_face_add(handle);
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+
+ e1->vert = p_vert_lookup(handle, vkeys[i1], co[i1], e1);
+ e2->vert = p_vert_lookup(handle, vkeys[i2], co[i2], e2);
+ e3->vert = p_vert_lookup(handle, vkeys[i3], co[i3], e3);
+
+ e1->orig_uv = uv[i1];
+ e2->orig_uv = uv[i2];
+ e3->orig_uv = uv[i3];
+
+ if (pin) {
+ if (pin[i1]) {
+ e1->flag |= PEDGE_PIN;
+ }
+ if (pin[i2]) {
+ e2->flag |= PEDGE_PIN;
+ }
+ if (pin[i3]) {
+ e3->flag |= PEDGE_PIN;
+ }
+ }
+
+ if (select) {
+ if (select[i1]) {
+ e1->flag |= PEDGE_SELECT;
+ }
+ if (select[i2]) {
+ e2->flag |= PEDGE_SELECT;
+ }
+ if (select[i3]) {
+ e3->flag |= PEDGE_SELECT;
+ }
+ }
+
+ f->u.key = key;
+ phash_insert(handle->hash_faces, (PHashLink *)f);
+
+ e1->u.key = PHASH_edge(vkeys[i1], vkeys[i2]);
+ e2->u.key = PHASH_edge(vkeys[i2], vkeys[i3]);
+ e3->u.key = PHASH_edge(vkeys[i3], vkeys[i1]);
+
+ phash_insert(handle->hash_edges, (PHashLink *)e1);
+ phash_insert(handle->hash_edges, (PHashLink *)e2);
+ phash_insert(handle->hash_edges, (PHashLink *)e3);
+
+ return f;
+}
+
+static PFace *p_face_add_fill(ParamHandle *handle, PChart *chart, PVert *v1, PVert *v2, PVert *v3)
+{
+ PFace *f = p_face_add(handle);
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+
+ e1->vert = v1;
+ e2->vert = v2;
+ e3->vert = v3;
+
+ e1->orig_uv = e2->orig_uv = e3->orig_uv = NULL;
+
+ f->nextlink = chart->faces;
+ chart->faces = f;
+ e1->nextlink = chart->edges;
+ chart->edges = e1;
+ e2->nextlink = chart->edges;
+ chart->edges = e2;
+ e3->nextlink = chart->edges;
+ chart->edges = e3;
+
+ chart->nfaces++;
+ chart->nedges += 3;
+
+ return f;
+}
+
+static bool p_quad_split_direction(ParamHandle *handle, const float **co, const ParamKey *vkeys)
+{
+ /* Slight bias to prefer one edge over the other in case they are equal, so
+ * that in symmetric models we choose the same split direction instead of
+ * depending on floating point errors to decide. */
+ float bias = 1.0f + 1e-6f;
+ float fac = len_v3v3(co[0], co[2]) * bias - len_v3v3(co[1], co[3]);
+ bool dir = (fac <= 0.0f);
+
+ /* The face exists check is there because of a special case:
+ * when two quads share three vertices, they can each be split into two triangles,
+ * resulting in two identical triangles. For example in Suzanne's nose. */
+ if (dir) {
+ if (p_face_exists(handle, vkeys, 0, 1, 2) || p_face_exists(handle, vkeys, 0, 2, 3)) {
+ return !dir;
+ }
+ }
+ else {
+ if (p_face_exists(handle, vkeys, 0, 1, 3) || p_face_exists(handle, vkeys, 1, 2, 3)) {
+ return !dir;
+ }
+ }
+
+ return dir;
+}
+
+/* Construction: boundary filling */
+
+static void p_chart_boundaries(PChart *chart, PEdge **r_outer)
+{
+ PEdge *e, *be;
+ float len, maxlen = -1.0;
+
+ chart->nboundaries = 0;
+ if (r_outer) {
+ *r_outer = NULL;
+ }
+
+ for (e = chart->edges; e; e = e->nextlink) {
+ if (e->pair || (e->flag & PEDGE_DONE)) {
+ continue;
+ }
+
+ chart->nboundaries++;
+
+ len = 0.0f;
+
+ be = e;
+ do {
+ be->flag |= PEDGE_DONE;
+ len += p_edge_length(be);
+ be = be->next->vert->edge;
+ } while (be != e);
+
+ if (r_outer && (len > maxlen)) {
+ *r_outer = e;
+ maxlen = len;
+ }
+ }
+
+ for (e = chart->edges; e; e = e->nextlink) {
+ e->flag &= ~PEDGE_DONE;
+ }
+}
+
+static float p_edge_boundary_angle(PEdge *e)
+{
+ PEdge *we;
+ PVert *v, *v1, *v2;
+ float angle;
+ int n = 0;
+
+ v = e->vert;
+
+ /* concave angle check -- could be better */
+ angle = M_PI;
+
+ we = v->edge;
+ do {
+ v1 = we->next->vert;
+ v2 = we->next->next->vert;
+ angle -= p_vec_angle(v1->co, v->co, v2->co);
+
+ we = we->next->next->pair;
+ n++;
+ } while (we && (we != v->edge));
+
+ return angle;
+}
+
+static void p_chart_fill_boundary(ParamHandle *handle, PChart *chart, PEdge *be, int nedges)
+{
+ PEdge *e, *e1, *e2;
+
+ PFace *f;
+ struct Heap *heap = BLI_heap_new();
+ float angle;
+
+ e = be;
+ do {
+ angle = p_edge_boundary_angle(e);
+ e->u.heaplink = BLI_heap_insert(heap, angle, e);
+
+ e = p_boundary_edge_next(e);
+ } while (e != be);
+
+ if (nedges == 2) {
+ /* no real boundary, but an isolated seam */
+ e = be->next->vert->edge;
+ e->pair = be;
+ be->pair = e;
+
+ BLI_heap_remove(heap, e->u.heaplink);
+ BLI_heap_remove(heap, be->u.heaplink);
+ }
+ else {
+ while (nedges > 2) {
+ PEdge *ne, *ne1, *ne2;
+
+ e = (PEdge *)BLI_heap_pop_min(heap);
+
+ e1 = p_boundary_edge_prev(e);
+ e2 = p_boundary_edge_next(e);
+
+ BLI_heap_remove(heap, e1->u.heaplink);
+ BLI_heap_remove(heap, e2->u.heaplink);
+ e->u.heaplink = e1->u.heaplink = e2->u.heaplink = NULL;
+
+ e->flag |= PEDGE_FILLED;
+ e1->flag |= PEDGE_FILLED;
+
+ f = p_face_add_fill(handle, chart, e->vert, e1->vert, e2->vert);
+ f->flag |= PFACE_FILLED;
+
+ ne = f->edge->next->next;
+ ne1 = f->edge;
+ ne2 = f->edge->next;
+
+ ne->flag = ne1->flag = ne2->flag = PEDGE_FILLED;
+
+ e->pair = ne;
+ ne->pair = e;
+ e1->pair = ne1;
+ ne1->pair = e1;
+
+ ne->vert = e2->vert;
+ ne1->vert = e->vert;
+ ne2->vert = e1->vert;
+
+ if (nedges == 3) {
+ e2->pair = ne2;
+ ne2->pair = e2;
+ }
+ else {
+ ne2->vert->edge = ne2;
+
+ ne2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(ne2), ne2);
+ e2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(e2), e2);
+ }
+
+ nedges--;
+ }
+ }
+
+ BLI_heap_free(heap, NULL);
+}
+
+static void p_chart_fill_boundaries(ParamHandle *handle, PChart *chart, PEdge *outer)
+{
+ PEdge *e, *be; /* *enext - as yet unused */
+ int nedges;
+
+ for (e = chart->edges; e; e = e->nextlink) {
+ /* enext = e->nextlink; - as yet unused */
+
+ if (e->pair || (e->flag & PEDGE_FILLED)) {
+ continue;
+ }
+
+ nedges = 0;
+ be = e;
+ do {
+ be->flag |= PEDGE_FILLED;
+ be = be->next->vert->edge;
+ nedges++;
+ } while (be != e);
+
+ if (e != outer) {
+ p_chart_fill_boundary(handle, chart, e, nedges);
+ }
+ }
+}
+
+#if 0
+/* Polygon kernel for inserting uv's non overlapping */
+
+static int p_polygon_point_in(const float cp1[2], const float cp2[2], const float p[2])
+{
+ if ((cp1[0] == p[0]) && (cp1[1] == p[1])) {
+ return 2;
+ }
+ else if ((cp2[0] == p[0]) && (cp2[1] == p[1])) {
+ return 3;
+ }
+ else {
+ return (p_area_signed(cp1, cp2, p) >= 0.0f);
+ }
+}
+
+static void p_polygon_kernel_clip(float (*oldpoints)[2],
+ int noldpoints,
+ float (*newpoints)[2],
+ int *r_nnewpoints,
+ const float cp1[2],
+ const float cp2[2])
+{
+ float *p2, *p1, isect[2];
+ int i, p2in, p1in;
+
+ p1 = oldpoints[noldpoints - 1];
+ p1in = p_polygon_point_in(cp1, cp2, p1);
+ *r_nnewpoints = 0;
+
+ for (i = 0; i < noldpoints; i++) {
+ p2 = oldpoints[i];
+ p2in = p_polygon_point_in(cp1, cp2, p2);
+
+ if ((p2in >= 2) || (p1in && p2in)) {
+ newpoints[*r_nnewpoints][0] = p2[0];
+ newpoints[*r_nnewpoints][1] = p2[1];
+ (*r_nnewpoints)++;
+ }
+ else if (p1in && !p2in) {
+ if (p1in != 3) {
+ p_intersect_line_2d(p1, p2, cp1, cp2, isect);
+ newpoints[*r_nnewpoints][0] = isect[0];
+ newpoints[*r_nnewpoints][1] = isect[1];
+ (*r_nnewpoints)++;
+ }
+ }
+ else if (!p1in && p2in) {
+ p_intersect_line_2d(p1, p2, cp1, cp2, isect);
+ newpoints[*r_nnewpoints][0] = isect[0];
+ newpoints[*r_nnewpoints][1] = isect[1];
+ (*r_nnewpoints)++;
+
+ newpoints[*r_nnewpoints][0] = p2[0];
+ newpoints[*r_nnewpoints][1] = p2[1];
+ (*r_nnewpoints)++;
+ }
+
+ p1in = p2in;
+ p1 = p2;
+ }
+}
+
+static void p_polygon_kernel_center(float (*points)[2], int npoints, float *center)
+{
+ int i, size, nnewpoints = npoints;
+ float(*oldpoints)[2], (*newpoints)[2], *p1, *p2;
+
+ size = npoints * 3;
+ oldpoints = MEM_mallocN(sizeof(float[2]) * size, "PPolygonOldPoints");
+ newpoints = MEM_mallocN(sizeof(float[2]) * size, "PPolygonNewPoints");
+
+ memcpy(oldpoints, points, sizeof(float[2]) * npoints);
+
+ for (i = 0; i < npoints; i++) {
+ p1 = points[i];
+ p2 = points[(i + 1) % npoints];
+ p_polygon_kernel_clip(oldpoints, nnewpoints, newpoints, &nnewpoints, p1, p2);
+
+ if (nnewpoints == 0) {
+ /* degenerate case, use center of original polygon */
+ memcpy(oldpoints, points, sizeof(float[2]) * npoints);
+ nnewpoints = npoints;
+ break;
+ }
+ else if (nnewpoints == 1) {
+ /* degenerate case, use remaining point */
+ center[0] = newpoints[0][0];
+ center[1] = newpoints[0][1];
+
+ MEM_freeN(oldpoints);
+ MEM_freeN(newpoints);
+
+ return;
+ }
+
+ if (nnewpoints * 2 > size) {
+ size *= 2;
+ MEM_freeN(oldpoints);
+ oldpoints = MEM_mallocN(sizeof(float[2]) * size, "oldpoints");
+ memcpy(oldpoints, newpoints, sizeof(float[2]) * nnewpoints);
+ MEM_freeN(newpoints);
+ newpoints = MEM_mallocN(sizeof(float[2]) * size, "newpoints");
+ }
+ else {
+ float(*sw_points)[2] = oldpoints;
+ oldpoints = newpoints;
+ newpoints = sw_points;
+ }
+ }
+
+ center[0] = center[1] = 0.0f;
+
+ for (i = 0; i < nnewpoints; i++) {
+ center[0] += oldpoints[i][0];
+ center[1] += oldpoints[i][1];
+ }
+
+ center[0] /= nnewpoints;
+ center[1] /= nnewpoints;
+
+ MEM_freeN(oldpoints);
+ MEM_freeN(newpoints);
+}
+#endif
+
+#if 0
+/* Edge Collapser */
+
+int NCOLLAPSE = 1;
+int NCOLLAPSEX = 0;
+
+static float p_vert_cotan(const float v1[3], const float v2[3], const float v3[3])
+{
+ float a[3], b[3], c[3], clen;
+
+ sub_v3_v3v3(a, v2, v1);
+ sub_v3_v3v3(b, v3, v1);
+ cross_v3_v3v3(c, a, b);
+
+ clen = len_v3(c);
+
+ if (clen == 0.0f) {
+ return 0.0f;
+ }
+
+ return dot_v3v3(a, b) / clen;
+}
+
+static bool p_vert_flipped_wheel_triangle(PVert *v)
+{
+ PEdge *e = v->edge;
+
+ do {
+ if (p_face_uv_area_signed(e->face) < 0.0f) {
+ return true;
+ }
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
+
+ return false;
+}
+
+static bool p_vert_map_harmonic_weights(PVert *v)
+{
+ float weightsum, positionsum[2], olduv[2];
+
+ weightsum = 0.0f;
+ positionsum[0] = positionsum[1] = 0.0f;
+
+ if (p_vert_interior(v)) {
+ PEdge *e = v->edge;
+
+ do {
+ float t1, t2, weight;
+ PVert *v1, *v2;
+
+ v1 = e->next->vert;
+ v2 = e->next->next->vert;
+ t1 = p_vert_cotan(v2->co, e->vert->co, v1->co);
+
+ v1 = e->pair->next->vert;
+ v2 = e->pair->next->next->vert;
+ t2 = p_vert_cotan(v2->co, e->pair->vert->co, v1->co);
+
+ weight = 0.5f * (t1 + t2);
+ weightsum += weight;
+ positionsum[0] += weight * e->pair->vert->uv[0];
+ positionsum[1] += weight * e->pair->vert->uv[1];
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
+ }
+ else {
+ PEdge *e = v->edge;
+
+ do {
+ float t1, t2;
+ PVert *v1, *v2;
+
+ v2 = e->next->vert;
+ v1 = e->next->next->vert;
+
+ t1 = p_vert_cotan(v1->co, v->co, v2->co);
+ t2 = p_vert_cotan(v2->co, v->co, v1->co);
+
+ weightsum += t1 + t2;
+ positionsum[0] += (v2->uv[1] - v1->uv[1]) + (t1 * v2->uv[0] + t2 * v1->uv[0]);
+ positionsum[1] += (v1->uv[0] - v2->uv[0]) + (t1 * v2->uv[1] + t2 * v1->uv[1]);
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
+ }
+
+ if (weightsum != 0.0f) {
+ weightsum = 1.0f / weightsum;
+ positionsum[0] *= weightsum;
+ positionsum[1] *= weightsum;
+ }
+
+ olduv[0] = v->uv[0];
+ olduv[1] = v->uv[1];
+ v->uv[0] = positionsum[0];
+ v->uv[1] = positionsum[1];
+
+ if (p_vert_flipped_wheel_triangle(v)) {
+ v->uv[0] = olduv[0];
+ v->uv[1] = olduv[1];
+
+ return false;
+ }
+
+ return true;
+}
+
+static void p_vert_harmonic_insert(PVert *v)
+{
+ PEdge *e;
+
+ if (!p_vert_map_harmonic_weights(v)) {
+ /* do polygon kernel center insertion: this is quite slow, but should
+ * only be needed for 0.01 % of verts or so, when insert with harmonic
+ * weights fails */
+
+ int npoints = 0, i;
+ float(*points)[2];
+
+ e = v->edge;
+ do {
+ npoints++;
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
+
+ if (e == NULL) {
+ npoints++;
+ }
+
+ points = MEM_mallocN(sizeof(float[2]) * npoints, "PHarmonicPoints");
+
+ e = v->edge;
+ i = 0;
+ do {
+ PEdge *nexte = p_wheel_edge_next(e);
+
+ points[i][0] = e->next->vert->uv[0];
+ points[i][1] = e->next->vert->uv[1];
+
+ if (nexte == NULL) {
+ i++;
+ points[i][0] = e->next->next->vert->uv[0];
+ points[i][1] = e->next->next->vert->uv[1];
+ break;
+ }
+
+ e = nexte;
+ i++;
+ } while (e != v->edge);
+
+ p_polygon_kernel_center(points, npoints, v->uv);
+
+ MEM_freeN(points);
+ }
+
+ e = v->edge;
+ do {
+ if (!(e->next->vert->flag & PVERT_PIN)) {
+ p_vert_map_harmonic_weights(e->next->vert);
+ }
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
+
+ p_vert_map_harmonic_weights(v);
+}
+
+static void p_vert_fix_edge_pointer(PVert *v)
+{
+ PEdge *start = v->edge;
+
+ /* set v->edge pointer to the edge with no pair, if there is one */
+ while (v->edge->pair) {
+ v->edge = p_wheel_edge_prev(v->edge);
+
+ if (v->edge == start) {
+ break;
+ }
+ }
+}
+
+static void p_collapsing_verts(PEdge *edge, PEdge *pair, PVert **r_newv, PVert **r_keepv)
+{
+ /* the two vertices that are involved in the collapse */
+ if (edge) {
+ *r_newv = edge->vert;
+ *r_keepv = edge->next->vert;
+ }
+ else {
+ *r_newv = pair->next->vert;
+ *r_keepv = pair->vert;
+ }
+}
+
+static void p_collapse_edge(PEdge *edge, PEdge *pair)
+{
+ PVert *oldv, *keepv;
+ PEdge *e;
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ /* change e->vert pointers from old vertex to the target vertex */
+ e = oldv->edge;
+ do {
+ if ((e != edge) && !(pair && pair->next == e)) {
+ e->vert = keepv;
+ }
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != oldv->edge));
+
+ /* set keepv->edge pointer */
+ if ((edge && (keepv->edge == edge->next)) || (keepv->edge == pair)) {
+ if (edge && edge->next->pair) {
+ keepv->edge = edge->next->pair->next;
+ }
+ else if (pair && pair->next->next->pair) {
+ keepv->edge = pair->next->next->pair;
+ }
+ else if (edge && edge->next->next->pair) {
+ keepv->edge = edge->next->next->pair;
+ }
+ else {
+ keepv->edge = pair->next->pair->next;
+ }
+ }
+
+ /* update pairs and v->edge pointers */
+ if (edge) {
+ PEdge *e1 = edge->next, *e2 = e1->next;
+
+ if (e1->pair) {
+ e1->pair->pair = e2->pair;
+ }
+
+ if (e2->pair) {
+ e2->pair->pair = e1->pair;
+ e2->vert->edge = p_wheel_edge_prev(e2);
+ }
+ else {
+ e2->vert->edge = p_wheel_edge_next(e2);
+ }
+
+ p_vert_fix_edge_pointer(e2->vert);
+ }
+
+ if (pair) {
+ PEdge *e1 = pair->next, *e2 = e1->next;
+
+ if (e1->pair) {
+ e1->pair->pair = e2->pair;
+ }
+
+ if (e2->pair) {
+ e2->pair->pair = e1->pair;
+ e2->vert->edge = p_wheel_edge_prev(e2);
+ }
+ else {
+ e2->vert->edge = p_wheel_edge_next(e2);
+ }
+
+ p_vert_fix_edge_pointer(e2->vert);
+ }
+
+ p_vert_fix_edge_pointer(keepv);
+
+ /* mark for move to collapsed list later */
+ oldv->flag |= PVERT_COLLAPSE;
+
+ if (edge) {
+ PFace *f = edge->face;
+ PEdge *e1 = edge->next, *e2 = e1->next;
+
+ f->flag |= PFACE_COLLAPSE;
+ edge->flag |= PEDGE_COLLAPSE;
+ e1->flag |= PEDGE_COLLAPSE;
+ e2->flag |= PEDGE_COLLAPSE;
+ }
+
+ if (pair) {
+ PFace *f = pair->face;
+ PEdge *e1 = pair->next, *e2 = e1->next;
+
+ f->flag |= PFACE_COLLAPSE;
+ pair->flag |= PEDGE_COLLAPSE;
+ e1->flag |= PEDGE_COLLAPSE;
+ e2->flag |= PEDGE_COLLAPSE;
+ }
+}
+
+static void p_split_vertex(PEdge *edge, PEdge *pair)
+{
+ PVert *newv, *keepv;
+ PEdge *e;
+
+ p_collapsing_verts(edge, pair, &newv, &keepv);
+
+ /* update edge pairs */
+ if (edge) {
+ PEdge *e1 = edge->next, *e2 = e1->next;
+
+ if (e1->pair) {
+ e1->pair->pair = e1;
+ }
+ if (e2->pair) {
+ e2->pair->pair = e2;
+ }
+
+ e2->vert->edge = e2;
+ p_vert_fix_edge_pointer(e2->vert);
+ keepv->edge = e1;
+ }
+
+ if (pair) {
+ PEdge *e1 = pair->next, *e2 = e1->next;
+
+ if (e1->pair) {
+ e1->pair->pair = e1;
+ }
+ if (e2->pair) {
+ e2->pair->pair = e2;
+ }
+
+ e2->vert->edge = e2;
+ p_vert_fix_edge_pointer(e2->vert);
+ keepv->edge = pair;
+ }
+
+ p_vert_fix_edge_pointer(keepv);
+
+ /* set e->vert pointers to restored vertex */
+ e = newv->edge;
+ do {
+ e->vert = newv;
+ e = p_wheel_edge_next(e);
+ } while (e && (e != newv->edge));
+}
+
+static bool p_collapse_allowed_topologic(PEdge *edge, PEdge *pair)
+{
+ PVert *oldv, *keepv;
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ /* boundary edges */
+ if (!edge || !pair) {
+ /* avoid collapsing chart into an edge */
+ if (edge && !edge->next->pair && !edge->next->next->pair) {
+ return false;
+ }
+ else if (pair && !pair->next->pair && !pair->next->next->pair) {
+ return false;
+ }
+ }
+ /* avoid merging two boundaries (oldv and keepv are on the 'other side' of
+ * the chart) */
+ else if (!p_vert_interior(oldv) && !p_vert_interior(keepv)) {
+ return false;
+ }
+
+ return true;
+}
+
+static bool p_collapse_normal_flipped(float *v1, float *v2, float *vold, float *vnew)
+{
+ float nold[3], nnew[3], sub1[3], sub2[3];
+
+ sub_v3_v3v3(sub1, vold, v1);
+ sub_v3_v3v3(sub2, vold, v2);
+ cross_v3_v3v3(nold, sub1, sub2);
+
+ sub_v3_v3v3(sub1, vnew, v1);
+ sub_v3_v3v3(sub2, vnew, v2);
+ cross_v3_v3v3(nnew, sub1, sub2);
+
+ return (dot_v3v3(nold, nnew) <= 0.0f);
+}
+
+static bool p_collapse_allowed_geometric(PEdge *edge, PEdge *pair)
+{
+ PVert *oldv, *keepv;
+ PEdge *e;
+ float angulardefect, angle;
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ angulardefect = 2 * M_PI;
+
+ e = oldv->edge;
+ do {
+ float a[3], b[3], minangle, maxangle;
+ PEdge *e1 = e->next, *e2 = e1->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert;
+ int i;
+
+ angle = p_vec_angle(v1->co, oldv->co, v2->co);
+ angulardefect -= angle;
+
+ /* skip collapsing faces */
+ if (v1 == keepv || v2 == keepv) {
+ e = p_wheel_edge_next(e);
+ continue;
+ }
+
+ if (p_collapse_normal_flipped(v1->co, v2->co, oldv->co, keepv->co)) {
+ return false;
+ }
+
+ a[0] = angle;
+ a[1] = p_vec_angle(v2->co, v1->co, oldv->co);
+ a[2] = M_PI - a[0] - a[1];
+
+ b[0] = p_vec_angle(v1->co, keepv->co, v2->co);
+ b[1] = p_vec_angle(v2->co, v1->co, keepv->co);
+ b[2] = M_PI - b[0] - b[1];
+
+ /* ABF criterion 1: avoid sharp and obtuse angles. */
+ minangle = 15.0f * M_PI / 180.0f;
+ maxangle = M_PI - minangle;
+
+ for (i = 0; i < 3; i++) {
+ if ((b[i] < a[i]) && (b[i] < minangle)) {
+ return false;
+ }
+ else if ((b[i] > a[i]) && (b[i] > maxangle)) {
+ return false;
+ }
+ }
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != oldv->edge));
+
+ if (p_vert_interior(oldv)) {
+ /* HLSCM criterion: angular defect smaller than threshold. */
+ if (fabsf(angulardefect) > (float)(M_PI * 30.0 / 180.0)) {
+ return false;
+ }
+ }
+ else {
+ PVert *v1 = p_boundary_edge_next(oldv->edge)->vert;
+ PVert *v2 = p_boundary_edge_prev(oldv->edge)->vert;
+
+ /* ABF++ criterion 2: avoid collapsing verts inwards. */
+ if (p_vert_interior(keepv)) {
+ return false;
+ }
+
+ /* Don't collapse significant boundary changes. */
+ angle = p_vec_angle(v1->co, oldv->co, v2->co);
+ if (angle < (M_PI * 160.0 / 180.0)) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool p_collapse_allowed(PEdge *edge, PEdge *pair)
+{
+ PVert *oldv, *keepv;
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ if (oldv->flag & PVERT_PIN) {
+ return false;
+ }
+
+ return (p_collapse_allowed_topologic(edge, pair) && p_collapse_allowed_geometric(edge, pair));
+}
+
+static float p_collapse_cost(PEdge *edge, PEdge *pair)
+{
+ /* based on volume and boundary optimization from:
+ * "Fast and Memory Efficient Polygonal Simplification" P. Lindstrom, G. Turk */
+
+ PVert *oldv, *keepv;
+ PEdge *e;
+ PFace *oldf1, *oldf2;
+ float volumecost = 0.0f, areacost = 0.0f, edgevec[3], cost, weight, elen;
+ float shapecost = 0.0f;
+ float shapeold = 0.0f, shapenew = 0.0f;
+ int nshapeold = 0, nshapenew = 0;
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+ oldf1 = (edge) ? edge->face : NULL;
+ oldf2 = (pair) ? pair->face : NULL;
+
+ sub_v3_v3v3(edgevec, keepv->co, oldv->co);
+
+ e = oldv->edge;
+ do {
+ float a1, a2, a3;
+ float *co1 = e->next->vert->co;
+ float *co2 = e->next->next->vert->co;
+
+ if (!ELEM(e->face, oldf1, oldf2)) {
+ float tetrav2[3], tetrav3[3];
+
+ /* tetrahedron volume = (1/3!)*|a.(b x c)| */
+ sub_v3_v3v3(tetrav2, co1, oldv->co);
+ sub_v3_v3v3(tetrav3, co2, oldv->co);
+ volumecost += fabsf(volume_tri_tetrahedron_signed_v3(tetrav2, tetrav3, edgevec));
+
+# if 0
+ shapecost += dot_v3v3(co1, keepv->co);
+
+ if (p_wheel_edge_next(e) == NULL) {
+ shapecost += dot_v3v3(co2, keepv->co);
+ }
+# endif
+
+ p_triangle_angles(oldv->co, co1, co2, &a1, &a2, &a3);
+ a1 = a1 - M_PI / 3.0;
+ a2 = a2 - M_PI / 3.0;
+ a3 = a3 - M_PI / 3.0;
+ shapeold = (a1 * a1 + a2 * a2 + a3 * a3) / (M_PI_2 * M_PI_2);
+
+ nshapeold++;
+ }
+ else {
+ p_triangle_angles(keepv->co, co1, co2, &a1, &a2, &a3);
+ a1 = a1 - M_PI / 3.0;
+ a2 = a2 - M_PI / 3.0;
+ a3 = a3 - M_PI / 3.0;
+ shapenew = (a1 * a1 + a2 * a2 + a3 * a3) / (M_PI_2 * M_PI_2);
+
+ nshapenew++;
+ }
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != oldv->edge));
+
+ if (!p_vert_interior(oldv)) {
+ PVert *v1 = p_boundary_edge_prev(oldv->edge)->vert;
+ PVert *v2 = p_boundary_edge_next(oldv->edge)->vert;
+
+ areacost = area_tri_v3(oldv->co, v1->co, v2->co);
+ }
+
+ elen = len_v3(edgevec);
+ weight = 1.0f; /* 0.2f */
+ cost = weight * volumecost * volumecost + elen * elen * areacost * areacost;
+# if 0
+ cost += shapecost;
+# else
+ shapeold /= nshapeold;
+ shapenew /= nshapenew;
+ shapecost = (shapeold + 0.00001) / (shapenew + 0.00001);
+
+ cost *= shapecost;
+# endif
+
+ return cost;
+}
+
+static void p_collapse_cost_vertex(PVert *vert, float *r_mincost, PEdge **r_mine)
+{
+ PEdge *e, *enext, *pair;
+
+ *r_mine = NULL;
+ *r_mincost = 0.0f;
+ e = vert->edge;
+ do {
+ if (p_collapse_allowed(e, e->pair)) {
+ float cost = p_collapse_cost(e, e->pair);
+
+ if ((*r_mine == NULL) || (cost < *r_mincost)) {
+ *r_mincost = cost;
+ *r_mine = e;
+ }
+ }
+
+ enext = p_wheel_edge_next(e);
+
+ if (enext == NULL) {
+ /* The other boundary edge, where we only have the pair half-edge. */
+ pair = e->next->next;
+
+ if (p_collapse_allowed(NULL, pair)) {
+ float cost = p_collapse_cost(NULL, pair);
+
+ if ((*r_mine == NULL) || (cost < *r_mincost)) {
+ *r_mincost = cost;
+ *r_mine = pair;
+ }
+ }
+
+ break;
+ }
+
+ e = enext;
+ } while (e != vert->edge);
+}
+
+static void p_chart_post_collapse_flush(PChart *chart, PEdge *collapsed)
+{
+ /* Move to `collapsed_*`. */
+
+ PVert *v, *nextv = NULL, *verts = chart->verts;
+ PEdge *e, *nexte = NULL, *edges = chart->edges, *laste = NULL;
+ PFace *f, *nextf = NULL, *faces = chart->faces;
+
+ chart->verts = chart->collapsed_verts = NULL;
+ chart->edges = chart->collapsed_edges = NULL;
+ chart->faces = chart->collapsed_faces = NULL;
+
+ chart->nverts = chart->nedges = chart->nfaces = 0;
+
+ for (v = verts; v; v = nextv) {
+ nextv = v->nextlink;
+
+ if (v->flag & PVERT_COLLAPSE) {
+ v->nextlink = chart->collapsed_verts;
+ chart->collapsed_verts = v;
+ }
+ else {
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
+ }
+ }
+
+ for (e = edges; e; e = nexte) {
+ nexte = e->nextlink;
+
+ if (!collapsed || !(e->flag & PEDGE_COLLAPSE_EDGE)) {
+ if (e->flag & PEDGE_COLLAPSE) {
+ e->nextlink = chart->collapsed_edges;
+ chart->collapsed_edges = e;
+ }
+ else {
+ e->nextlink = chart->edges;
+ chart->edges = e;
+ chart->nedges++;
+ }
+ }
+ }
+
+ /* these are added last so they can be popped of in the right order
+ * for splitting */
+ for (e = collapsed; e; e = e->nextlink) {
+ e->nextlink = e->u.nextcollapse;
+ laste = e;
+ }
+ if (laste) {
+ laste->nextlink = chart->collapsed_edges;
+ chart->collapsed_edges = collapsed;
+ }
+
+ for (f = faces; f; f = nextf) {
+ nextf = f->nextlink;
+
+ if (f->flag & PFACE_COLLAPSE) {
+ f->nextlink = chart->collapsed_faces;
+ chart->collapsed_faces = f;
+ }
+ else {
+ f->nextlink = chart->faces;
+ chart->faces = f;
+ chart->nfaces++;
+ }
+ }
+}
+
+static void p_chart_post_split_flush(PChart *chart)
+{
+ /* Move from `collapsed_*`. */
+
+ PVert *v, *nextv = NULL;
+ PEdge *e, *nexte = NULL;
+ PFace *f, *nextf = NULL;
+
+ for (v = chart->collapsed_verts; v; v = nextv) {
+ nextv = v->nextlink;
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
+ }
+
+ for (e = chart->collapsed_edges; e; e = nexte) {
+ nexte = e->nextlink;
+ e->nextlink = chart->edges;
+ chart->edges = e;
+ chart->nedges++;
+ }
+
+ for (f = chart->collapsed_faces; f; f = nextf) {
+ nextf = f->nextlink;
+ f->nextlink = chart->faces;
+ chart->faces = f;
+ chart->nfaces++;
+ }
+
+ chart->collapsed_verts = NULL;
+ chart->collapsed_edges = NULL;
+ chart->collapsed_faces = NULL;
+}
+
+static void p_chart_simplify_compute(PChart *chart)
+{
+ /* Computes a list of edge collapses / vertex splits. The collapsed
+ * simplices go in the `chart->collapsed_*` lists, The original and
+ * collapsed may then be view as stacks, where the next collapse/split
+ * is at the top of the respective lists. */
+
+ Heap *heap = BLI_heap_new();
+ PVert *v, **wheelverts;
+ PEdge *collapsededges = NULL, *e;
+ int nwheelverts, i, ncollapsed = 0;
+
+ wheelverts = MEM_mallocN(sizeof(PVert *) * chart->nverts, "PChartWheelVerts");
+
+ /* insert all potential collapses into heap */
+ for (v = chart->verts; v; v = v->nextlink) {
+ float cost;
+ PEdge *e = NULL;
+
+ p_collapse_cost_vertex(v, &cost, &e);
+
+ if (e) {
+ v->u.heaplink = BLI_heap_insert(heap, cost, e);
+ }
+ else {
+ v->u.heaplink = NULL;
+ }
+ }
+
+ for (e = chart->edges; e; e = e->nextlink) {
+ e->u.nextcollapse = NULL;
+ }
+
+ /* pop edge collapse out of heap one by one */
+ while (!BLI_heap_is_empty(heap)) {
+ if (ncollapsed == NCOLLAPSE) {
+ break;
+ }
+
+ HeapNode *link = BLI_heap_top(heap);
+ PEdge *edge = (PEdge *)BLI_heap_pop_min(heap), *pair = edge->pair;
+ PVert *oldv, *keepv;
+ PEdge *wheele, *nexte;
+
+ /* remember the edges we collapsed */
+ edge->u.nextcollapse = collapsededges;
+ collapsededges = edge;
+
+ if (edge->vert->u.heaplink != link) {
+ edge->flag |= (PEDGE_COLLAPSE_EDGE | PEDGE_COLLAPSE_PAIR);
+ edge->next->vert->u.heaplink = NULL;
+ SWAP(PEdge *, edge, pair);
+ }
+ else {
+ edge->flag |= PEDGE_COLLAPSE_EDGE;
+ edge->vert->u.heaplink = NULL;
+ }
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ /* gather all wheel verts and remember them before collapse */
+ nwheelverts = 0;
+ wheele = oldv->edge;
+
+ do {
+ wheelverts[nwheelverts++] = wheele->next->vert;
+ nexte = p_wheel_edge_next(wheele);
+
+ if (nexte == NULL) {
+ wheelverts[nwheelverts++] = wheele->next->next->vert;
+ }
+
+ wheele = nexte;
+ } while (wheele && (wheele != oldv->edge));
+
+ /* collapse */
+ p_collapse_edge(edge, pair);
+
+ for (i = 0; i < nwheelverts; i++) {
+ float cost;
+ PEdge *collapse = NULL;
+
+ v = wheelverts[i];
+
+ if (v->u.heaplink) {
+ BLI_heap_remove(heap, v->u.heaplink);
+ v->u.heaplink = NULL;
+ }
+
+ p_collapse_cost_vertex(v, &cost, &collapse);
+
+ if (collapse) {
+ v->u.heaplink = BLI_heap_insert(heap, cost, collapse);
+ }
+ }
+
+ ncollapsed++;
+ }
+
+ MEM_freeN(wheelverts);
+ BLI_heap_free(heap, NULL);
+
+ p_chart_post_collapse_flush(chart, collapsededges);
+}
+
+static void p_chart_complexify(PChart *chart)
+{
+ PEdge *e, *pair, *edge;
+ PVert *newv, *keepv;
+ int x = 0;
+
+ for (e = chart->collapsed_edges; e; e = e->nextlink) {
+ if (!(e->flag & PEDGE_COLLAPSE_EDGE)) {
+ break;
+ }
+
+ edge = e;
+ pair = e->pair;
+
+ if (edge->flag & PEDGE_COLLAPSE_PAIR) {
+ SWAP(PEdge *, edge, pair);
+ }
+
+ p_split_vertex(edge, pair);
+ p_collapsing_verts(edge, pair, &newv, &keepv);
+
+ if (x >= NCOLLAPSEX) {
+ newv->uv[0] = keepv->uv[0];
+ newv->uv[1] = keepv->uv[1];
+ }
+ else {
+ p_vert_harmonic_insert(newv);
+ x++;
+ }
+ }
+
+ p_chart_post_split_flush(chart);
+}
+
+# if 0
+static void p_chart_simplify(PChart *chart)
+{
+ /* Not implemented, needs proper reordering in split_flush. */
+}
+# endif
+#endif
+
+/* ABF */
+
+#define ABF_MAX_ITER 20
+
+typedef struct PAbfSystem {
+ int ninterior, nfaces, nangles;
+ float *alpha, *beta, *sine, *cosine, *weight;
+ float *bAlpha, *bTriangle, *bInterior;
+ float *lambdaTriangle, *lambdaPlanar, *lambdaLength;
+ float (*J2dt)[3], *bstar, *dstar;
+ float minangle, maxangle;
+} PAbfSystem;
+
+static void p_abf_setup_system(PAbfSystem *sys)
+{
+ int i;
+
+ sys->alpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFalpha");
+ sys->beta = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbeta");
+ sys->sine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFsine");
+ sys->cosine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFcosine");
+ sys->weight = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFweight");
+
+ sys->bAlpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbalpha");
+ sys->bTriangle = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbtriangle");
+ sys->bInterior = (float *)MEM_mallocN(sizeof(float[2]) * sys->ninterior, "ABFbinterior");
+
+ sys->lambdaTriangle = (float *)MEM_callocN(sizeof(float) * sys->nfaces, "ABFlambdatri");
+ sys->lambdaPlanar = (float *)MEM_callocN(sizeof(float) * sys->ninterior, "ABFlamdaplane");
+ sys->lambdaLength = (float *)MEM_mallocN(sizeof(float) * sys->ninterior, "ABFlambdalen");
+
+ sys->J2dt = static_cast<float(*)[3]>(MEM_mallocN(sizeof(float) * sys->nangles * 3, "ABFj2dt"));
+ sys->bstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbstar");
+ sys->dstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFdstar");
+
+ for (i = 0; i < sys->ninterior; i++) {
+ sys->lambdaLength[i] = 1.0;
+ }
+
+ sys->minangle = 1.0 * M_PI / 180.0;
+ sys->maxangle = (float)M_PI - sys->minangle;
+}
+
+static void p_abf_free_system(PAbfSystem *sys)
+{
+ MEM_freeN(sys->alpha);
+ MEM_freeN(sys->beta);
+ MEM_freeN(sys->sine);
+ MEM_freeN(sys->cosine);
+ MEM_freeN(sys->weight);
+ MEM_freeN(sys->bAlpha);
+ MEM_freeN(sys->bTriangle);
+ MEM_freeN(sys->bInterior);
+ MEM_freeN(sys->lambdaTriangle);
+ MEM_freeN(sys->lambdaPlanar);
+ MEM_freeN(sys->lambdaLength);
+ MEM_freeN(sys->J2dt);
+ MEM_freeN(sys->bstar);
+ MEM_freeN(sys->dstar);
+}
+
+static void p_abf_compute_sines(PAbfSystem *sys)
+{
+ int i;
+ float *sine = sys->sine, *cosine = sys->cosine, *alpha = sys->alpha;
+
+ for (i = 0; i < sys->nangles; i++, sine++, cosine++, alpha++) {
+ *sine = sinf(*alpha);
+ *cosine = cosf(*alpha);
+ }
+}
+
+static float p_abf_compute_sin_product(PAbfSystem *sys, PVert *v, int aid)
+{
+ PEdge *e, *e1, *e2;
+ float sin1, sin2;
+
+ sin1 = sin2 = 1.0;
+
+ e = v->edge;
+ do {
+ e1 = e->next;
+ e2 = e->next->next;
+
+ if (aid == e1->u.id) {
+ /* we are computing a derivative for this angle,
+ * so we use cos and drop the other part */
+ sin1 *= sys->cosine[e1->u.id];
+ sin2 = 0.0;
+ }
+ else {
+ sin1 *= sys->sine[e1->u.id];
+ }
+
+ if (aid == e2->u.id) {
+ /* see above */
+ sin1 = 0.0;
+ sin2 *= sys->cosine[e2->u.id];
+ }
+ else {
+ sin2 *= sys->sine[e2->u.id];
+ }
+
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+
+ return (sin1 - sin2);
+}
+
+static float p_abf_compute_grad_alpha(PAbfSystem *sys, PFace *f, PEdge *e)
+{
+ PVert *v = e->vert, *v1 = e->next->vert, *v2 = e->next->next->vert;
+ float deriv;
+
+ deriv = (sys->alpha[e->u.id] - sys->beta[e->u.id]) * sys->weight[e->u.id];
+ deriv += sys->lambdaTriangle[f->u.id];
+
+ if (v->flag & PVERT_INTERIOR) {
+ deriv += sys->lambdaPlanar[v->u.id];
+ }
+
+ if (v1->flag & PVERT_INTERIOR) {
+ float product = p_abf_compute_sin_product(sys, v1, e->u.id);
+ deriv += sys->lambdaLength[v1->u.id] * product;
+ }
+
+ if (v2->flag & PVERT_INTERIOR) {
+ float product = p_abf_compute_sin_product(sys, v2, e->u.id);
+ deriv += sys->lambdaLength[v2->u.id] * product;
+ }
+
+ return deriv;
+}
+
+static float p_abf_compute_gradient(PAbfSystem *sys, PChart *chart)
+{
+ PFace *f;
+ PEdge *e;
+ PVert *v;
+ float norm = 0.0;
+
+ for (f = chart->faces; f; f = f->nextlink) {
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ float gtriangle, galpha1, galpha2, galpha3;
+
+ galpha1 = p_abf_compute_grad_alpha(sys, f, e1);
+ galpha2 = p_abf_compute_grad_alpha(sys, f, e2);
+ galpha3 = p_abf_compute_grad_alpha(sys, f, e3);
+
+ sys->bAlpha[e1->u.id] = -galpha1;
+ sys->bAlpha[e2->u.id] = -galpha2;
+ sys->bAlpha[e3->u.id] = -galpha3;
+
+ norm += galpha1 * galpha1 + galpha2 * galpha2 + galpha3 * galpha3;
+
+ gtriangle = sys->alpha[e1->u.id] + sys->alpha[e2->u.id] + sys->alpha[e3->u.id] - (float)M_PI;
+ sys->bTriangle[f->u.id] = -gtriangle;
+ norm += gtriangle * gtriangle;
+ }
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (v->flag & PVERT_INTERIOR) {
+ float gplanar = -2 * M_PI, glength;
+
+ e = v->edge;
+ do {
+ gplanar += sys->alpha[e->u.id];
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+
+ sys->bInterior[v->u.id] = -gplanar;
+ norm += gplanar * gplanar;
+
+ glength = p_abf_compute_sin_product(sys, v, -1);
+ sys->bInterior[sys->ninterior + v->u.id] = -glength;
+ norm += glength * glength;
+ }
+ }
+
+ return norm;
+}
+
+static bool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
+{
+ int ninterior = sys->ninterior;
+ int nvar = 2 * ninterior;
+ LinearSolver *context = EIG_linear_solver_new(0, nvar, 1);
+
+ for (int i = 0; i < nvar; i++) {
+ EIG_linear_solver_right_hand_side_add(context, 0, i, sys->bInterior[i]);
+ }
+
+ for (PFace *f = chart->faces; f; f = f->nextlink) {
+ float wi1, wi2, wi3, b, si, beta[3], j2[3][3], W[3][3];
+ float row1[6], row2[6], row3[6];
+ int vid[6];
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ wi1 = 1.0f / sys->weight[e1->u.id];
+ wi2 = 1.0f / sys->weight[e2->u.id];
+ wi3 = 1.0f / sys->weight[e3->u.id];
+
+ /* bstar1 = (J1*dInv*bAlpha - bTriangle) */
+ b = sys->bAlpha[e1->u.id] * wi1;
+ b += sys->bAlpha[e2->u.id] * wi2;
+ b += sys->bAlpha[e3->u.id] * wi3;
+ b -= sys->bTriangle[f->u.id];
+
+ /* si = J1*d*J1t */
+ si = 1.0f / (wi1 + wi2 + wi3);
+
+ /* J1t*si*bstar1 - bAlpha */
+ beta[0] = b * si - sys->bAlpha[e1->u.id];
+ beta[1] = b * si - sys->bAlpha[e2->u.id];
+ beta[2] = b * si - sys->bAlpha[e3->u.id];
+
+ /* use this later for computing other lambda's */
+ sys->bstar[f->u.id] = b;
+ sys->dstar[f->u.id] = si;
+
+ /* set matrix */
+ W[0][0] = si - sys->weight[e1->u.id];
+ W[0][1] = si;
+ W[0][2] = si;
+ W[1][0] = si;
+ W[1][1] = si - sys->weight[e2->u.id];
+ W[1][2] = si;
+ W[2][0] = si;
+ W[2][1] = si;
+ W[2][2] = si - sys->weight[e3->u.id];
+
+ vid[0] = vid[1] = vid[2] = vid[3] = vid[4] = vid[5] = -1;
+
+ if (v1->flag & PVERT_INTERIOR) {
+ vid[0] = v1->u.id;
+ vid[3] = ninterior + v1->u.id;
+
+ sys->J2dt[e1->u.id][0] = j2[0][0] = 1.0f * wi1;
+ sys->J2dt[e2->u.id][0] = j2[1][0] = p_abf_compute_sin_product(sys, v1, e2->u.id) * wi2;
+ sys->J2dt[e3->u.id][0] = j2[2][0] = p_abf_compute_sin_product(sys, v1, e3->u.id) * wi3;
+
+ EIG_linear_solver_right_hand_side_add(context, 0, v1->u.id, j2[0][0] * beta[0]);
+ EIG_linear_solver_right_hand_side_add(
+ context, 0, ninterior + v1->u.id, j2[1][0] * beta[1] + j2[2][0] * beta[2]);
+
+ row1[0] = j2[0][0] * W[0][0];
+ row2[0] = j2[0][0] * W[1][0];
+ row3[0] = j2[0][0] * W[2][0];
+
+ row1[3] = j2[1][0] * W[0][1] + j2[2][0] * W[0][2];
+ row2[3] = j2[1][0] * W[1][1] + j2[2][0] * W[1][2];
+ row3[3] = j2[1][0] * W[2][1] + j2[2][0] * W[2][2];
+ }
+
+ if (v2->flag & PVERT_INTERIOR) {
+ vid[1] = v2->u.id;
+ vid[4] = ninterior + v2->u.id;
+
+ sys->J2dt[e1->u.id][1] = j2[0][1] = p_abf_compute_sin_product(sys, v2, e1->u.id) * wi1;
+ sys->J2dt[e2->u.id][1] = j2[1][1] = 1.0f * wi2;
+ sys->J2dt[e3->u.id][1] = j2[2][1] = p_abf_compute_sin_product(sys, v2, e3->u.id) * wi3;
+
+ EIG_linear_solver_right_hand_side_add(context, 0, v2->u.id, j2[1][1] * beta[1]);
+ EIG_linear_solver_right_hand_side_add(
+ context, 0, ninterior + v2->u.id, j2[0][1] * beta[0] + j2[2][1] * beta[2]);
+
+ row1[1] = j2[1][1] * W[0][1];
+ row2[1] = j2[1][1] * W[1][1];
+ row3[1] = j2[1][1] * W[2][1];
+
+ row1[4] = j2[0][1] * W[0][0] + j2[2][1] * W[0][2];
+ row2[4] = j2[0][1] * W[1][0] + j2[2][1] * W[1][2];
+ row3[4] = j2[0][1] * W[2][0] + j2[2][1] * W[2][2];
+ }
+
+ if (v3->flag & PVERT_INTERIOR) {
+ vid[2] = v3->u.id;
+ vid[5] = ninterior + v3->u.id;
+
+ sys->J2dt[e1->u.id][2] = j2[0][2] = p_abf_compute_sin_product(sys, v3, e1->u.id) * wi1;
+ sys->J2dt[e2->u.id][2] = j2[1][2] = p_abf_compute_sin_product(sys, v3, e2->u.id) * wi2;
+ sys->J2dt[e3->u.id][2] = j2[2][2] = 1.0f * wi3;
+
+ EIG_linear_solver_right_hand_side_add(context, 0, v3->u.id, j2[2][2] * beta[2]);
+ EIG_linear_solver_right_hand_side_add(
+ context, 0, ninterior + v3->u.id, j2[0][2] * beta[0] + j2[1][2] * beta[1]);
+
+ row1[2] = j2[2][2] * W[0][2];
+ row2[2] = j2[2][2] * W[1][2];
+ row3[2] = j2[2][2] * W[2][2];
+
+ row1[5] = j2[0][2] * W[0][0] + j2[1][2] * W[0][1];
+ row2[5] = j2[0][2] * W[1][0] + j2[1][2] * W[1][1];
+ row3[5] = j2[0][2] * W[2][0] + j2[1][2] * W[2][1];
+ }
+
+ for (int i = 0; i < 3; i++) {
+ int r = vid[i];
+
+ if (r == -1) {
+ continue;
+ }
+
+ for (int j = 0; j < 6; j++) {
+ int c = vid[j];
+
+ if (c == -1) {
+ continue;
+ }
+
+ if (i == 0) {
+ EIG_linear_solver_matrix_add(context, r, c, j2[0][i] * row1[j]);
+ }
+ else {
+ EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[0][i] * row1[j]);
+ }
+
+ if (i == 1) {
+ EIG_linear_solver_matrix_add(context, r, c, j2[1][i] * row2[j]);
+ }
+ else {
+ EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[1][i] * row2[j]);
+ }
+
+ if (i == 2) {
+ EIG_linear_solver_matrix_add(context, r, c, j2[2][i] * row3[j]);
+ }
+ else {
+ EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[2][i] * row3[j]);
+ }
+ }
+ }
+ }
+
+ bool success = EIG_linear_solver_solve(context);
+
+ if (success) {
+ for (PFace *f = chart->faces; f; f = f->nextlink) {
+ float dlambda1, pre[3], dalpha;
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ pre[0] = pre[1] = pre[2] = 0.0;
+
+ if (v1->flag & PVERT_INTERIOR) {
+ float x = EIG_linear_solver_variable_get(context, 0, v1->u.id);
+ float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v1->u.id);
+ pre[0] += sys->J2dt[e1->u.id][0] * x;
+ pre[1] += sys->J2dt[e2->u.id][0] * x2;
+ pre[2] += sys->J2dt[e3->u.id][0] * x2;
+ }
+
+ if (v2->flag & PVERT_INTERIOR) {
+ float x = EIG_linear_solver_variable_get(context, 0, v2->u.id);
+ float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v2->u.id);
+ pre[0] += sys->J2dt[e1->u.id][1] * x2;
+ pre[1] += sys->J2dt[e2->u.id][1] * x;
+ pre[2] += sys->J2dt[e3->u.id][1] * x2;
+ }
+
+ if (v3->flag & PVERT_INTERIOR) {
+ float x = EIG_linear_solver_variable_get(context, 0, v3->u.id);
+ float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v3->u.id);
+ pre[0] += sys->J2dt[e1->u.id][2] * x2;
+ pre[1] += sys->J2dt[e2->u.id][2] * x2;
+ pre[2] += sys->J2dt[e3->u.id][2] * x;
+ }
+
+ dlambda1 = pre[0] + pre[1] + pre[2];
+ dlambda1 = sys->dstar[f->u.id] * (sys->bstar[f->u.id] - dlambda1);
+
+ sys->lambdaTriangle[f->u.id] += dlambda1;
+
+ dalpha = (sys->bAlpha[e1->u.id] - dlambda1);
+ sys->alpha[e1->u.id] += dalpha / sys->weight[e1->u.id] - pre[0];
+
+ dalpha = (sys->bAlpha[e2->u.id] - dlambda1);
+ sys->alpha[e2->u.id] += dalpha / sys->weight[e2->u.id] - pre[1];
+
+ dalpha = (sys->bAlpha[e3->u.id] - dlambda1);
+ sys->alpha[e3->u.id] += dalpha / sys->weight[e3->u.id] - pre[2];
+
+ /* clamp */
+ PEdge *e = f->edge;
+ do {
+ if (sys->alpha[e->u.id] > (float)M_PI) {
+ sys->alpha[e->u.id] = (float)M_PI;
+ }
+ else if (sys->alpha[e->u.id] < 0.0f) {
+ sys->alpha[e->u.id] = 0.0f;
+ }
+ } while (e != f->edge);
+ }
+
+ for (int i = 0; i < ninterior; i++) {
+ sys->lambdaPlanar[i] += (float)EIG_linear_solver_variable_get(context, 0, i);
+ sys->lambdaLength[i] += (float)EIG_linear_solver_variable_get(context, 0, ninterior + i);
+ }
+ }
+
+ EIG_linear_solver_delete(context);
+
+ return success;
+}
+
+static bool p_chart_abf_solve(PChart *chart)
+{
+ PVert *v;
+ PFace *f;
+ PEdge *e, *e1, *e2, *e3;
+ PAbfSystem sys;
+ int i;
+ float /* lastnorm, */ /* UNUSED */ limit = (chart->nfaces > 100) ? 1.0f : 0.001f;
+
+ /* setup id's */
+ sys.ninterior = sys.nfaces = sys.nangles = 0;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (p_vert_interior(v)) {
+ v->flag |= PVERT_INTERIOR;
+ v->u.id = sys.ninterior++;
+ }
+ else {
+ v->flag &= ~PVERT_INTERIOR;
+ }
+ }
+
+ for (f = chart->faces; f; f = f->nextlink) {
+ e1 = f->edge;
+ e2 = e1->next;
+ e3 = e2->next;
+ f->u.id = sys.nfaces++;
+
+ /* angle id's are conveniently stored in half edges */
+ e1->u.id = sys.nangles++;
+ e2->u.id = sys.nangles++;
+ e3->u.id = sys.nangles++;
+ }
+
+ p_abf_setup_system(&sys);
+
+ /* compute initial angles */
+ for (f = chart->faces; f; f = f->nextlink) {
+ float a1, a2, a3;
+
+ e1 = f->edge;
+ e2 = e1->next;
+ e3 = e2->next;
+ p_face_angles(f, &a1, &a2, &a3);
+
+ if (a1 < sys.minangle) {
+ a1 = sys.minangle;
+ }
+ else if (a1 > sys.maxangle) {
+ a1 = sys.maxangle;
+ }
+ if (a2 < sys.minangle) {
+ a2 = sys.minangle;
+ }
+ else if (a2 > sys.maxangle) {
+ a2 = sys.maxangle;
+ }
+ if (a3 < sys.minangle) {
+ a3 = sys.minangle;
+ }
+ else if (a3 > sys.maxangle) {
+ a3 = sys.maxangle;
+ }
+
+ sys.alpha[e1->u.id] = sys.beta[e1->u.id] = a1;
+ sys.alpha[e2->u.id] = sys.beta[e2->u.id] = a2;
+ sys.alpha[e3->u.id] = sys.beta[e3->u.id] = a3;
+
+ sys.weight[e1->u.id] = 2.0f / (a1 * a1);
+ sys.weight[e2->u.id] = 2.0f / (a2 * a2);
+ sys.weight[e3->u.id] = 2.0f / (a3 * a3);
+ }
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (v->flag & PVERT_INTERIOR) {
+ float anglesum = 0.0, scale;
+
+ e = v->edge;
+ do {
+ anglesum += sys.beta[e->u.id];
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+
+ scale = (anglesum == 0.0f) ? 0.0f : 2.0f * (float)M_PI / anglesum;
+
+ e = v->edge;
+ do {
+ sys.beta[e->u.id] = sys.alpha[e->u.id] = sys.beta[e->u.id] * scale;
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+ }
+ }
+
+ if (sys.ninterior > 0) {
+ p_abf_compute_sines(&sys);
+
+ /* iteration */
+ /* lastnorm = 1e10; */ /* UNUSED */
+
+ for (i = 0; i < ABF_MAX_ITER; i++) {
+ float norm = p_abf_compute_gradient(&sys, chart);
+
+ /* lastnorm = norm; */ /* UNUSED */
+
+ if (norm < limit) {
+ break;
+ }
+
+ if (!p_abf_matrix_invert(&sys, chart)) {
+ param_warning("ABF failed to invert matrix");
+ p_abf_free_system(&sys);
+ return false;
+ }
+
+ p_abf_compute_sines(&sys);
+ }
+
+ if (i == ABF_MAX_ITER) {
+ param_warning("ABF maximum iterations reached");
+ p_abf_free_system(&sys);
+ return false;
+ }
+ }
+
+ chart->u.lscm.abf_alpha = (float *)MEM_dupallocN(sys.alpha);
+ p_abf_free_system(&sys);
+
+ return true;
+}
+
+/* Least Squares Conformal Maps */
+
+static void p_chart_pin_positions(PChart *chart, PVert **pin1, PVert **pin2)
+{
+ if (!*pin1 || !*pin2 || *pin1 == *pin2) {
+ /* degenerate case */
+ PFace *f = chart->faces;
+ *pin1 = f->edge->vert;
+ *pin2 = f->edge->next->vert;
+
+ (*pin1)->uv[0] = 0.0f;
+ (*pin1)->uv[1] = 0.5f;
+ (*pin2)->uv[0] = 1.0f;
+ (*pin2)->uv[1] = 0.5f;
+ }
+ else {
+ int diru, dirv, dirx, diry;
+ float sub[3];
+
+ sub_v3_v3v3(sub, (*pin1)->co, (*pin2)->co);
+ sub[0] = fabsf(sub[0]);
+ sub[1] = fabsf(sub[1]);
+ sub[2] = fabsf(sub[2]);
+
+ if ((sub[0] > sub[1]) && (sub[0] > sub[2])) {
+ dirx = 0;
+ diry = (sub[1] > sub[2]) ? 1 : 2;
+ }
+ else if ((sub[1] > sub[0]) && (sub[1] > sub[2])) {
+ dirx = 1;
+ diry = (sub[0] > sub[2]) ? 0 : 2;
+ }
+ else {
+ dirx = 2;
+ diry = (sub[0] > sub[1]) ? 0 : 1;
+ }
+
+ if (dirx == 2) {
+ diru = 1;
+ dirv = 0;
+ }
+ else {
+ diru = 0;
+ dirv = 1;
+ }
+
+ (*pin1)->uv[diru] = (*pin1)->co[dirx];
+ (*pin1)->uv[dirv] = (*pin1)->co[diry];
+ (*pin2)->uv[diru] = (*pin2)->co[dirx];
+ (*pin2)->uv[dirv] = (*pin2)->co[diry];
+ }
+}
+
+static bool p_chart_symmetry_pins(PChart *chart, PEdge *outer, PVert **pin1, PVert **pin2)
+{
+ PEdge *be, *lastbe = NULL, *maxe1 = NULL, *maxe2 = NULL, *be1, *be2;
+ PEdge *cure = NULL, *firste1 = NULL, *firste2 = NULL, *nextbe;
+ float maxlen = 0.0f, curlen = 0.0f, totlen = 0.0f, firstlen = 0.0f;
+ float len1, len2;
+
+ /* find longest series of verts split in the chart itself, these are
+ * marked during construction */
+ be = outer;
+ lastbe = p_boundary_edge_prev(be);
+ do {
+ float len = p_edge_length(be);
+ totlen += len;
+
+ nextbe = p_boundary_edge_next(be);
+
+ if ((be->vert->flag & PVERT_SPLIT) ||
+ (lastbe->vert->flag & nextbe->vert->flag & PVERT_SPLIT)) {
+ if (!cure) {
+ if (be == outer) {
+ firste1 = be;
+ }
+ cure = be;
+ }
+ else {
+ curlen += p_edge_length(lastbe);
+ }
+ }
+ else if (cure) {
+ if (curlen > maxlen) {
+ maxlen = curlen;
+ maxe1 = cure;
+ maxe2 = lastbe;
+ }
+
+ if (firste1 == cure) {
+ firstlen = curlen;
+ firste2 = lastbe;
+ }
+
+ curlen = 0.0f;
+ cure = NULL;
+ }
+
+ lastbe = be;
+ be = nextbe;
+ } while (be != outer);
+
+ /* make sure we also count a series of splits over the starting point */
+ if (cure && (cure != outer)) {
+ firstlen += curlen + p_edge_length(be);
+
+ if (firstlen > maxlen) {
+ maxlen = firstlen;
+ maxe1 = cure;
+ maxe2 = firste2;
+ }
+ }
+
+ if (!maxe1 || !maxe2 || (maxlen < 0.5f * totlen)) {
+ return false;
+ }
+
+ /* find pin1 in the split vertices */
+ be1 = maxe1;
+ be2 = maxe2;
+ len1 = 0.0f;
+ len2 = 0.0f;
+
+ do {
+ if (len1 < len2) {
+ len1 += p_edge_length(be1);
+ be1 = p_boundary_edge_next(be1);
+ }
+ else {
+ be2 = p_boundary_edge_prev(be2);
+ len2 += p_edge_length(be2);
+ }
+ } while (be1 != be2);
+
+ *pin1 = be1->vert;
+
+ /* find pin2 outside the split vertices */
+ be1 = maxe1;
+ be2 = maxe2;
+ len1 = 0.0f;
+ len2 = 0.0f;
+
+ do {
+ if (len1 < len2) {
+ be1 = p_boundary_edge_prev(be1);
+ len1 += p_edge_length(be1);
+ }
+ else {
+ len2 += p_edge_length(be2);
+ be2 = p_boundary_edge_next(be2);
+ }
+ } while (be1 != be2);
+
+ *pin2 = be1->vert;
+
+ p_chart_pin_positions(chart, pin1, pin2);
+
+ return !equals_v3v3((*pin1)->co, (*pin2)->co);
+}
+
+static void p_chart_extrema_verts(PChart *chart, PVert **pin1, PVert **pin2)
+{
+ float minv[3], maxv[3], dirlen;
+ PVert *v, *minvert[3], *maxvert[3];
+ int i, dir;
+
+ /* find minimum and maximum verts over x/y/z axes */
+ minv[0] = minv[1] = minv[2] = 1e20;
+ maxv[0] = maxv[1] = maxv[2] = -1e20;
+
+ minvert[0] = minvert[1] = minvert[2] = NULL;
+ maxvert[0] = maxvert[1] = maxvert[2] = NULL;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ for (i = 0; i < 3; i++) {
+ if (v->co[i] < minv[i]) {
+ minv[i] = v->co[i];
+ minvert[i] = v;
+ }
+ if (v->co[i] > maxv[i]) {
+ maxv[i] = v->co[i];
+ maxvert[i] = v;
+ }
+ }
+ }
+
+ /* find axes with longest distance */
+ dir = 0;
+ dirlen = -1.0;
+
+ for (i = 0; i < 3; i++) {
+ if (maxv[i] - minv[i] > dirlen) {
+ dir = i;
+ dirlen = maxv[i] - minv[i];
+ }
+ }
+
+ *pin1 = minvert[dir];
+ *pin2 = maxvert[dir];
+
+ p_chart_pin_positions(chart, pin1, pin2);
+}
+
+static void p_chart_lscm_load_solution(PChart *chart)
+{
+ LinearSolver *context = chart->u.lscm.context;
+ PVert *v;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ v->uv[0] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id);
+ v->uv[1] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id + 1);
+ }
+}
+
+static void p_chart_lscm_begin(PChart *chart, bool live, bool abf)
+{
+ PVert *v, *pin1, *pin2;
+ bool select = false, deselect = false;
+ int npins = 0, id = 0;
+
+ /* give vertices matrix indices and count pins */
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (v->flag & PVERT_PIN) {
+ npins++;
+ if (v->flag & PVERT_SELECT) {
+ select = true;
+ }
+ }
+
+ if (!(v->flag & PVERT_SELECT)) {
+ deselect = true;
+ }
+ }
+
+ if ((live && (!select || !deselect))) {
+ chart->u.lscm.context = NULL;
+ }
+ else {
+#if 0
+ p_chart_simplify_compute(chart);
+ p_chart_topological_sanity_check(chart);
+#endif
+
+ if (npins == 1) {
+ chart->u.lscm.single_pin_area = p_chart_uv_area(chart);
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (v->flag & PVERT_PIN) {
+ chart->u.lscm.single_pin = v;
+ break;
+ }
+ }
+ }
+
+ if (abf) {
+ if (!p_chart_abf_solve(chart)) {
+ param_warning("ABF solving failed: falling back to LSCM.\n");
+ }
+ }
+
+ if (npins <= 1) {
+ /* No pins, let's find some ourself. */
+ PEdge *outer;
+
+ p_chart_boundaries(chart, &outer);
+
+ /* Outer can be NULL with non-finite coords. */
+ if (!(outer && p_chart_symmetry_pins(chart, outer, &pin1, &pin2))) {
+ p_chart_extrema_verts(chart, &pin1, &pin2);
+ }
+
+ chart->u.lscm.pin1 = pin1;
+ chart->u.lscm.pin2 = pin2;
+ }
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ v->u.id = id++;
+ }
+
+ chart->u.lscm.context = EIG_linear_least_squares_solver_new(
+ 2 * chart->nfaces, 2 * chart->nverts, 1);
+ }
+}
+
+static bool p_chart_lscm_solve(ParamHandle *handle, PChart *chart)
+{
+ LinearSolver *context = chart->u.lscm.context;
+ PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2;
+ PFace *f;
+ const float *alpha = chart->u.lscm.abf_alpha;
+ float area_pinned_up, area_pinned_down;
+ bool flip_faces;
+ int row;
+
+#if 0
+ /* TODO: make loading pins work for simplify/complexify. */
+#endif
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (v->flag & PVERT_PIN) {
+ p_vert_load_pin_select_uvs(handle, v); /* reload for live */
+ }
+ }
+
+ if (chart->u.lscm.single_pin) {
+ /* If only one pin, save area and pin for transform later. */
+ copy_v2_v2(chart->u.lscm.single_pin_uv, chart->u.lscm.single_pin->uv);
+ }
+
+ if (chart->u.lscm.pin1) {
+ EIG_linear_solver_variable_lock(context, 2 * pin1->u.id);
+ EIG_linear_solver_variable_lock(context, 2 * pin1->u.id + 1);
+ EIG_linear_solver_variable_lock(context, 2 * pin2->u.id);
+ EIG_linear_solver_variable_lock(context, 2 * pin2->u.id + 1);
+
+ EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id, pin1->uv[0]);
+ EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id + 1, pin1->uv[1]);
+ EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id, pin2->uv[0]);
+ EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id + 1, pin2->uv[1]);
+ }
+ else {
+ /* set and lock the pins */
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (v->flag & PVERT_PIN) {
+ EIG_linear_solver_variable_lock(context, 2 * v->u.id);
+ EIG_linear_solver_variable_lock(context, 2 * v->u.id + 1);
+
+ EIG_linear_solver_variable_set(context, 0, 2 * v->u.id, v->uv[0]);
+ EIG_linear_solver_variable_set(context, 0, 2 * v->u.id + 1, v->uv[1]);
+ }
+ }
+ }
+
+ /* detect up direction based on pinned vertices */
+ area_pinned_up = 0.0f;
+ area_pinned_down = 0.0f;
+
+ for (f = chart->faces; f; f = f->nextlink) {
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ if ((v1->flag & PVERT_PIN) && (v2->flag & PVERT_PIN) && (v3->flag & PVERT_PIN)) {
+ float area = p_face_uv_area_signed(f);
+
+ if (area > 0.0f) {
+ area_pinned_up += area;
+ }
+ else {
+ area_pinned_down -= area;
+ }
+ }
+ }
+
+ flip_faces = (area_pinned_down > area_pinned_up);
+
+ /* construct matrix */
+
+ row = 0;
+ for (f = chart->faces; f; f = f->nextlink) {
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+ float a1, a2, a3, ratio, cosine, sine;
+ float sina1, sina2, sina3, sinmax;
+
+ if (alpha) {
+ /* use abf angles if passed on */
+ a1 = *(alpha++);
+ a2 = *(alpha++);
+ a3 = *(alpha++);
+ }
+ else {
+ p_face_angles(f, &a1, &a2, &a3);
+ }
+
+ if (flip_faces) {
+ SWAP(float, a2, a3);
+ SWAP(PEdge *, e2, e3);
+ SWAP(PVert *, v2, v3);
+ }
+
+ sina1 = sinf(a1);
+ sina2 = sinf(a2);
+ sina3 = sinf(a3);
+
+ sinmax = max_fff(sina1, sina2, sina3);
+
+ /* shift vertices to find most stable order */
+ if (sina3 != sinmax) {
+ SHIFT3(PVert *, v1, v2, v3);
+ SHIFT3(float, a1, a2, a3);
+ SHIFT3(float, sina1, sina2, sina3);
+
+ if (sina2 == sinmax) {
+ SHIFT3(PVert *, v1, v2, v3);
+ SHIFT3(float, a1, a2, a3);
+ SHIFT3(float, sina1, sina2, sina3);
+ }
+ }
+
+ /* angle based lscm formulation */
+ ratio = (sina3 == 0.0f) ? 1.0f : sina2 / sina3;
+ cosine = cosf(a1) * ratio;
+ sine = sina1 * ratio;
+
+ EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, cosine - 1.0f);
+ EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, -sine);
+ EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -cosine);
+ EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, sine);
+ EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id, 1.0);
+ row++;
+
+ EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, sine);
+ EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, cosine - 1.0f);
+ EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -sine);
+ EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, -cosine);
+ EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id + 1, 1.0);
+ row++;
+ }
+
+ if (EIG_linear_solver_solve(context)) {
+ p_chart_lscm_load_solution(chart);
+ return true;
+ }
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ v->uv[0] = 0.0f;
+ v->uv[1] = 0.0f;
+ }
+
+ return false;
+}
+
+static void p_chart_lscm_transform_single_pin(PChart *chart)
+{
+ PVert *pin = chart->u.lscm.single_pin;
+
+ /* If only one pin, keep UV area the same. */
+ const float new_area = p_chart_uv_area(chart);
+ if (new_area > 0.0f) {
+ const float scale = chart->u.lscm.single_pin_area / new_area;
+ if (scale > 0.0f) {
+ p_chart_uv_scale(chart, sqrtf(scale));
+ }
+ }
+
+ /* Translate to keep the pinned vertex in place. */
+ float offset[2];
+ sub_v2_v2v2(offset, chart->u.lscm.single_pin_uv, pin->uv);
+ p_chart_uv_translate(chart, offset);
+}
+
+static void p_chart_lscm_end(PChart *chart)
+{
+ EIG_linear_solver_delete(chart->u.lscm.context);
+ chart->u.lscm.context = NULL;
+
+ MEM_SAFE_FREE(chart->u.lscm.abf_alpha);
+
+ chart->u.lscm.pin1 = NULL;
+ chart->u.lscm.pin2 = NULL;
+ chart->u.lscm.single_pin = NULL;
+ chart->u.lscm.single_pin_area = 0.0f;
+}
+
+/* Stretch */
+
+#define P_STRETCH_ITER 20
+
+static void p_stretch_pin_boundary(PChart *chart)
+{
+ PVert *v;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ if (v->edge->pair == NULL) {
+ v->flag |= PVERT_PIN;
+ }
+ else {
+ v->flag &= ~PVERT_PIN;
+ }
+ }
+}
+
+static float p_face_stretch(PFace *f)
+{
+ float T, w, tmp[3];
+ float Ps[3], Pt[3];
+ float a, c, area;
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ area = p_face_uv_area_signed(f);
+
+ if (area <= 0.0f) {
+ /* When a face is flipped, provide a large penalty.
+ * Add on a slight gradient to unflip the face, see also: T99781. */
+ return 1e8f * (1.0f + p_edge_uv_length(e1) + p_edge_uv_length(e2) + p_edge_uv_length(e3));
+ }
+
+ w = 1.0f / (2.0f * area);
+
+ /* compute derivatives */
+ copy_v3_v3(Ps, v1->co);
+ mul_v3_fl(Ps, (v2->uv[1] - v3->uv[1]));
+
+ copy_v3_v3(tmp, v2->co);
+ mul_v3_fl(tmp, (v3->uv[1] - v1->uv[1]));
+ add_v3_v3(Ps, tmp);
+
+ copy_v3_v3(tmp, v3->co);
+ mul_v3_fl(tmp, (v1->uv[1] - v2->uv[1]));
+ add_v3_v3(Ps, tmp);
+
+ mul_v3_fl(Ps, w);
+
+ copy_v3_v3(Pt, v1->co);
+ mul_v3_fl(Pt, (v3->uv[0] - v2->uv[0]));
+
+ copy_v3_v3(tmp, v2->co);
+ mul_v3_fl(tmp, (v1->uv[0] - v3->uv[0]));
+ add_v3_v3(Pt, tmp);
+
+ copy_v3_v3(tmp, v3->co);
+ mul_v3_fl(tmp, (v2->uv[0] - v1->uv[0]));
+ add_v3_v3(Pt, tmp);
+
+ mul_v3_fl(Pt, w);
+
+ /* Sander Tensor */
+ a = dot_v3v3(Ps, Ps);
+ c = dot_v3v3(Pt, Pt);
+
+ T = sqrtf(0.5f * (a + c));
+ if (f->flag & PFACE_FILLED) {
+ T *= 0.2f;
+ }
+
+ return T;
+}
+
+static float p_stretch_compute_vertex(PVert *v)
+{
+ PEdge *e = v->edge;
+ float sum = 0.0f;
+
+ do {
+ sum += p_face_stretch(e->face);
+ e = p_wheel_edge_next(e);
+ } while (e && e != (v->edge));
+
+ return sum;
+}
+
+static void p_chart_stretch_minimize(PChart *chart, RNG *rng)
+{
+ PVert *v;
+ PEdge *e;
+ int j, nedges;
+ float orig_stretch, low, stretch_low, high, stretch_high, mid, stretch;
+ float orig_uv[2], dir[2], random_angle, trusted_radius;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ if ((v->flag & PVERT_PIN) || !(v->flag & PVERT_SELECT)) {
+ continue;
+ }
+
+ orig_stretch = p_stretch_compute_vertex(v);
+ orig_uv[0] = v->uv[0];
+ orig_uv[1] = v->uv[1];
+
+ /* move vertex in a random direction */
+ trusted_radius = 0.0f;
+ nedges = 0;
+ e = v->edge;
+
+ do {
+ trusted_radius += p_edge_uv_length(e);
+ nedges++;
+
+ e = p_wheel_edge_next(e);
+ } while (e && e != (v->edge));
+
+ trusted_radius /= 2 * nedges;
+
+ random_angle = BLI_rng_get_float(rng) * 2.0f * (float)M_PI;
+ dir[0] = trusted_radius * cosf(random_angle);
+ dir[1] = trusted_radius * sinf(random_angle);
+
+ /* calculate old and new stretch */
+ low = 0;
+ stretch_low = orig_stretch;
+
+ add_v2_v2v2(v->uv, orig_uv, dir);
+ high = 1;
+ stretch = stretch_high = p_stretch_compute_vertex(v);
+
+ /* binary search for lowest stretch position */
+ for (j = 0; j < P_STRETCH_ITER; j++) {
+ mid = 0.5f * (low + high);
+ v->uv[0] = orig_uv[0] + mid * dir[0];
+ v->uv[1] = orig_uv[1] + mid * dir[1];
+ stretch = p_stretch_compute_vertex(v);
+
+ if (stretch_low < stretch_high) {
+ high = mid;
+ stretch_high = stretch;
+ }
+ else {
+ low = mid;
+ stretch_low = stretch;
+ }
+ }
+
+ /* no luck, stretch has increased, reset to old values */
+ if (stretch >= orig_stretch) {
+ copy_v2_v2(v->uv, orig_uv);
+ }
+ }
+}
+
+/* Minimum area enclosing rectangle for packing */
+
+static int p_compare_geometric_uv(const void *a, const void *b)
+{
+ const PVert *v1 = *(const PVert *const *)a;
+ const PVert *v2 = *(const PVert *const *)b;
+
+ if (v1->uv[0] < v2->uv[0]) {
+ return -1;
+ }
+ if (v1->uv[0] == v2->uv[0]) {
+ if (v1->uv[1] < v2->uv[1]) {
+ return -1;
+ }
+ if (v1->uv[1] == v2->uv[1]) {
+ return 0;
+ }
+ return 1;
+ }
+ return 1;
+}
+
+static bool p_chart_convex_hull(PChart *chart, PVert ***r_verts, int *r_nverts, int *r_right)
+{
+ /* Graham algorithm, taken from:
+ * http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117225 */
+
+ PEdge *be, *e;
+ int npoints = 0, i, ulen, llen;
+ PVert **U, **L, **points, **p;
+
+ p_chart_boundaries(chart, &be);
+
+ if (!be) {
+ return false;
+ }
+
+ e = be;
+ do {
+ npoints++;
+ e = p_boundary_edge_next(e);
+ } while (e != be);
+
+ p = points = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints * 2, "PCHullpoints");
+ U = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullU");
+ L = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullL");
+
+ e = be;
+ do {
+ *p = e->vert;
+ p++;
+ e = p_boundary_edge_next(e);
+ } while (e != be);
+
+ qsort(points, npoints, sizeof(PVert *), p_compare_geometric_uv);
+
+ ulen = llen = 0;
+ for (p = points, i = 0; i < npoints; i++, p++) {
+ while ((ulen > 1) && (p_area_signed(U[ulen - 2]->uv, (*p)->uv, U[ulen - 1]->uv) <= 0)) {
+ ulen--;
+ }
+ while ((llen > 1) && (p_area_signed(L[llen - 2]->uv, (*p)->uv, L[llen - 1]->uv) >= 0)) {
+ llen--;
+ }
+
+ U[ulen] = *p;
+ ulen++;
+ L[llen] = *p;
+ llen++;
+ }
+
+ npoints = 0;
+ for (p = points, i = 0; i < ulen; i++, p++, npoints++) {
+ *p = U[i];
+ }
+
+ /* the first and last point in L are left out, since they are also in U */
+ for (i = llen - 2; i > 0; i--, p++, npoints++) {
+ *p = L[i];
+ }
+
+ *r_verts = points;
+ *r_nverts = npoints;
+ *r_right = ulen - 1;
+
+ MEM_SAFE_FREE(U);
+ MEM_SAFE_FREE(L);
+
+ return true;
+}
+
+static float p_rectangle_area(float *p1, float *dir, float *p2, float *p3, float *p4)
+{
+ /* given 4 points on the rectangle edges and the direction of on edge,
+ * compute the area of the rectangle */
+
+ float orthodir[2], corner1[2], corner2[2], corner3[2];
+
+ orthodir[0] = dir[1];
+ orthodir[1] = -dir[0];
+
+ if (!p_intersect_line_2d_dir(p1, dir, p2, orthodir, corner1)) {
+ return 1e10;
+ }
+
+ if (!p_intersect_line_2d_dir(p1, dir, p4, orthodir, corner2)) {
+ return 1e10;
+ }
+
+ if (!p_intersect_line_2d_dir(p3, dir, p4, orthodir, corner3)) {
+ return 1e10;
+ }
+
+ return len_v2v2(corner1, corner2) * len_v2v2(corner2, corner3);
+}
+
+static float p_chart_minimum_area_angle(PChart *chart)
+{
+ /* minimum area enclosing rectangle with rotating calipers, info:
+ * http://cgm.cs.mcgill.ca/~orm/maer.html */
+
+ float rotated, minarea, minangle, area, len;
+ float *angles, miny, maxy, v[2], a[4], mina;
+ int npoints, right, i_min, i_max, i, idx[4], nextidx;
+ PVert **points, *p1, *p2, *p3, *p4, *p1n;
+
+ /* compute convex hull */
+ if (!p_chart_convex_hull(chart, &points, &npoints, &right)) {
+ return 0.0;
+ }
+
+ /* find left/top/right/bottom points, and compute angle for each point */
+ angles = (float *)MEM_mallocN(sizeof(float) * npoints, "PMinAreaAngles");
+
+ i_min = i_max = 0;
+ miny = 1e10;
+ maxy = -1e10;
+
+ for (i = 0; i < npoints; i++) {
+ p1 = (i == 0) ? points[npoints - 1] : points[i - 1];
+ p2 = points[i];
+ p3 = (i == npoints - 1) ? points[0] : points[i + 1];
+
+ angles[i] = (float)M_PI - p_vec2_angle(p1->uv, p2->uv, p3->uv);
+
+ if (points[i]->uv[1] < miny) {
+ miny = points[i]->uv[1];
+ i_min = i;
+ }
+ if (points[i]->uv[1] > maxy) {
+ maxy = points[i]->uv[1];
+ i_max = i;
+ }
+ }
+
+ /* left, top, right, bottom */
+ idx[0] = 0;
+ idx[1] = i_max;
+ idx[2] = right;
+ idx[3] = i_min;
+
+ v[0] = points[idx[0]]->uv[0];
+ v[1] = points[idx[0]]->uv[1] + 1.0f;
+ a[0] = p_vec2_angle(points[(idx[0] + 1) % npoints]->uv, points[idx[0]]->uv, v);
+
+ v[0] = points[idx[1]]->uv[0] + 1.0f;
+ v[1] = points[idx[1]]->uv[1];
+ a[1] = p_vec2_angle(points[(idx[1] + 1) % npoints]->uv, points[idx[1]]->uv, v);
+
+ v[0] = points[idx[2]]->uv[0];
+ v[1] = points[idx[2]]->uv[1] - 1.0f;
+ a[2] = p_vec2_angle(points[(idx[2] + 1) % npoints]->uv, points[idx[2]]->uv, v);
+
+ v[0] = points[idx[3]]->uv[0] - 1.0f;
+ v[1] = points[idx[3]]->uv[1];
+ a[3] = p_vec2_angle(points[(idx[3] + 1) % npoints]->uv, points[idx[3]]->uv, v);
+
+ /* 4 rotating calipers */
+
+ rotated = 0.0;
+ minarea = 1e10;
+ minangle = 0.0;
+
+ while (rotated <= (float)M_PI_2) { /* INVESTIGATE: how far to rotate? */
+ /* rotate with the smallest angle */
+ i_min = 0;
+ mina = 1e10;
+
+ for (i = 0; i < 4; i++) {
+ if (a[i] < mina) {
+ mina = a[i];
+ i_min = i;
+ }
+ }
+
+ rotated += mina;
+ nextidx = (idx[i_min] + 1) % npoints;
+
+ a[i_min] = angles[nextidx];
+ a[(i_min + 1) % 4] = a[(i_min + 1) % 4] - mina;
+ a[(i_min + 2) % 4] = a[(i_min + 2) % 4] - mina;
+ a[(i_min + 3) % 4] = a[(i_min + 3) % 4] - mina;
+
+ /* compute area */
+ p1 = points[idx[i_min]];
+ p1n = points[nextidx];
+ p2 = points[idx[(i_min + 1) % 4]];
+ p3 = points[idx[(i_min + 2) % 4]];
+ p4 = points[idx[(i_min + 3) % 4]];
+
+ len = len_v2v2(p1->uv, p1n->uv);
+
+ if (len > 0.0f) {
+ len = 1.0f / len;
+ v[0] = (p1n->uv[0] - p1->uv[0]) * len;
+ v[1] = (p1n->uv[1] - p1->uv[1]) * len;
+
+ area = p_rectangle_area(p1->uv, v, p2->uv, p3->uv, p4->uv);
+
+ /* remember smallest area */
+ if (area < minarea) {
+ minarea = area;
+ minangle = rotated;
+ }
+ }
+
+ idx[i_min] = nextidx;
+ }
+
+ /* try keeping rotation as small as possible */
+ if (minangle > (float)M_PI_4) {
+ minangle -= (float)M_PI_2;
+ }
+
+ MEM_SAFE_FREE(angles);
+ MEM_SAFE_FREE(points);
+
+ return minangle;
+}
+
+static void p_chart_rotate_minimum_area(PChart *chart)
+{
+ float angle = p_chart_minimum_area_angle(chart);
+ float sine = sinf(angle);
+ float cosine = cosf(angle);
+ PVert *v;
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ float oldu = v->uv[0], oldv = v->uv[1];
+ v->uv[0] = cosine * oldu - sine * oldv;
+ v->uv[1] = sine * oldu + cosine * oldv;
+ }
+}
+
+static void p_chart_rotate_fit_aabb(PChart *chart)
+{
+ float(*points)[2] = static_cast<float(*)[2]>(MEM_mallocN(sizeof(*points) * chart->nverts, __func__));
+
+ p_chart_uv_to_array(chart, points);
+
+ float angle = BLI_convexhull_aabb_fit_points_2d(points, chart->nverts);
+
+ MEM_freeN(points);
+
+ if (angle != 0.0f) {
+ float mat[2][2];
+ angle_to_mat2(mat, angle);
+ p_chart_uv_transform(chart, mat);
+ }
+}
+
+/* Exported */
+
+ParamHandle *GEO_uv_parametrizer_construct_begin(void)
+{
+ ParamHandle *handle = (ParamHandle *)MEM_callocN(sizeof(*handle), "ParamHandle");
+ handle->construction_chart = (PChart *)MEM_callocN(sizeof(PChart), "PChart");
+ handle->state = PHANDLE_STATE_ALLOCATED;
+ handle->arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), "param construct arena");
+ handle->polyfill_arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "param polyfill arena");
+ handle->polyfill_heap = BLI_heap_new_ex(BLI_POLYFILL_ALLOC_NGON_RESERVE);
+ handle->aspx = 1.0f;
+ handle->aspy = 1.0f;
+
+ handle->hash_verts = phash_new((PHashLink **)&handle->construction_chart->verts, 1);
+ handle->hash_edges = phash_new((PHashLink **)&handle->construction_chart->edges, 1);
+ handle->hash_faces = phash_new((PHashLink **)&handle->construction_chart->faces, 1);
+
+ return handle;
+}
+
+void GEO_uv_parametrizer_aspect_ratio(ParamHandle *phandle, float aspx, float aspy)
+{
+ phandle->aspx = aspx;
+ phandle->aspy = aspy;
+}
+
+void GEO_uv_parametrizer_delete(ParamHandle *phandle)
+{
+ param_assert(ELEM(phandle->state, PHANDLE_STATE_ALLOCATED, PHANDLE_STATE_CONSTRUCTED));
+
+ for (int i = 0; i < phandle->ncharts; i++) {
+ MEM_SAFE_FREE(phandle->charts[i]);
+ }
+
+ MEM_SAFE_FREE(phandle->charts);
+
+ if (phandle->pin_hash) {
+ BLI_ghash_free(phandle->pin_hash, NULL, NULL);
+ phandle->pin_hash = NULL;
+ }
+
+ MEM_SAFE_FREE(phandle->construction_chart);
+
+ phash_delete(phandle->hash_verts);
+ phash_delete(phandle->hash_edges);
+ phash_delete(phandle->hash_faces);
+
+ BLI_memarena_free(phandle->arena);
+ BLI_memarena_free(phandle->polyfill_arena);
+ BLI_heap_free(phandle->polyfill_heap, NULL);
+
+ BLI_rng_free(phandle->rng);
+ phandle->rng = NULL;
+
+ MEM_freeN(phandle);
+}
+
+typedef struct GeoUVPinIndex {
+ struct GeoUVPinIndex *next;
+ float uv[2];
+ ParamKey reindex;
+} GeoUVPinIndex;
+
+/* Find a (mostly) unique ParamKey given a BMVert index and UV co-ordinates.
+ * For each unique pinned UVs, return a unique ParamKey, starting with
+ * a very large number, and decreasing steadily from there.
+ * For non-pinned UVs which share a BMVert with a pinned UV,
+ * return the index corresponding to the closest pinned UV.
+ * For everything else, just return the BMVert index.
+ * Note that ParamKeys will eventually be hashed, so they don't need to be contiguous.
+ */
+ParamKey GEO_uv_find_pin_index(ParamHandle *handle, const int bmvertindex, const float uv[2])
+{
+ if (!handle->pin_hash) {
+ return bmvertindex; /* No verts pinned. */
+ }
+
+ const GeoUVPinIndex *pinuvlist = (const GeoUVPinIndex *)BLI_ghash_lookup(
+ handle->pin_hash, POINTER_FROM_INT(bmvertindex));
+ if (!pinuvlist) {
+ return bmvertindex; /* Vert not pinned. */
+ }
+
+ /* At least one of the UVs associated with bmvertindex is pinned. Find the best one. */
+ float bestdistsquared = len_squared_v2v2(pinuvlist->uv, uv);
+ ParamKey bestkey = pinuvlist->reindex;
+ pinuvlist = pinuvlist->next;
+ while (pinuvlist) {
+ const float distsquared = len_squared_v2v2(pinuvlist->uv, uv);
+ if (bestdistsquared > distsquared) {
+ bestdistsquared = distsquared;
+ bestkey = pinuvlist->reindex;
+ }
+ pinuvlist = pinuvlist->next;
+ }
+ return bestkey;
+}
+
+static GeoUVPinIndex *new_geo_uv_pinindex(ParamHandle *handle, const float uv[2])
+{
+ GeoUVPinIndex *pinuv = (GeoUVPinIndex *)BLI_memarena_alloc(handle->arena, sizeof(*pinuv));
+ pinuv->next = NULL;
+ copy_v2_v2(pinuv->uv, uv);
+ pinuv->reindex = PARAM_KEY_MAX - (handle->unique_pin_count++);
+ return pinuv;
+}
+
+void GEO_uv_prepare_pin_index(ParamHandle *handle, const int bmvertindex, const float uv[2])
+{
+ if (!handle->pin_hash) {
+ handle->pin_hash = BLI_ghash_int_new("uv pin reindex");
+ }
+
+ GeoUVPinIndex *pinuvlist = (GeoUVPinIndex *)BLI_ghash_lookup(handle->pin_hash,
+ POINTER_FROM_INT(bmvertindex));
+ if (!pinuvlist) {
+ BLI_ghash_insert(
+ handle->pin_hash, POINTER_FROM_INT(bmvertindex), new_geo_uv_pinindex(handle, uv));
+ return;
+ }
+
+ while (true) {
+ if (equals_v2v2(pinuvlist->uv, uv)) {
+ return;
+ }
+ if (!pinuvlist->next) {
+ pinuvlist->next = new_geo_uv_pinindex(handle, uv);
+ return;
+ }
+ pinuvlist = pinuvlist->next;
+ }
+}
+
+static void p_add_ngon(ParamHandle *handle,
+ const ParamKey key,
+ const int nverts,
+ const ParamKey *vkeys,
+ const float **co,
+ float **uv, /* Output will eventually be written to `uv`. */
+ const bool *pin,
+ const bool *select)
+{
+ /* Allocate memory for polyfill. */
+ MemArena *arena = handle->polyfill_arena;
+ Heap *heap = handle->polyfill_heap;
+ uint nfilltri = nverts - 2;
+ uint(*tris)[3] = static_cast<uint(*)[3]>(BLI_memarena_alloc(arena, sizeof(*tris) * (size_t)nfilltri));
+ float(*projverts)[2] = static_cast<float(*)[2]>(BLI_memarena_alloc(arena, sizeof(*projverts) * (size_t)nverts));
+
+ /* Calc normal, flipped: to get a positive 2d cross product. */
+ float normal[3];
+ zero_v3(normal);
+
+ const float *co_curr, *co_prev = co[nverts - 1];
+ for (int j = 0; j < nverts; j++) {
+ co_curr = co[j];
+ add_newell_cross_v3_v3v3(normal, co_prev, co_curr);
+ co_prev = co_curr;
+ }
+ if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
+ normal[2] = 1.0f;
+ }
+
+ /* Project verts to 2d. */
+ float axis_mat[3][3];
+ axis_dominant_v3_to_m3_negate(axis_mat, normal);
+ for (int j = 0; j < nverts; j++) {
+ mul_v2_m3v3(projverts[j], axis_mat, co[j]);
+ }
+
+ BLI_polyfill_calc_arena(projverts, nverts, 1, tris, arena);
+
+ /* Beautify helps avoid thin triangles that give numerical problems. */
+ BLI_polyfill_beautify(projverts, nverts, tris, arena, heap);
+
+ /* Add triangles. */
+ for (int j = 0; j < nfilltri; j++) {
+ uint *tri = tris[j];
+ uint v0 = tri[0];
+ uint v1 = tri[1];
+ uint v2 = tri[2];
+
+ const ParamKey tri_vkeys[3] = {vkeys[v0], vkeys[v1], vkeys[v2]};
+ const float *tri_co[3] = {co[v0], co[v1], co[v2]};
+ float *tri_uv[3] = {uv[v0], uv[v1], uv[v2]};
+ bool tri_pin[3] = {pin[v0], pin[v1], pin[v2]};
+ bool tri_select[3] = {select[v0], select[v1], select[v2]};
+
+ GEO_uv_parametrizer_face_add(handle, key, 3, tri_vkeys, tri_co, tri_uv, tri_pin, tri_select);
+ }
+
+ BLI_memarena_clear(arena);
+}
+
+void GEO_uv_parametrizer_face_add(ParamHandle *phandle,
+ const ParamKey key,
+ const int nverts,
+ const ParamKey *vkeys,
+ const float **co,
+ float **uv,
+ const bool *pin,
+ const bool *select)
+{
+ param_assert(phash_lookup(phandle->hash_faces, key) == NULL);
+ param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
+ param_assert(ELEM(nverts, 3, 4));
+
+ if (nverts > 4) {
+ /* ngon */
+ p_add_ngon(phandle, key, nverts, vkeys, co, uv, pin, select);
+ }
+ else if (nverts == 4) {
+ /* quad */
+ if (p_quad_split_direction(phandle, co, vkeys)) {
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select);
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 2, 3, pin, select);
+ }
+ else {
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 3, pin, select);
+ p_face_add_construct(phandle, key, vkeys, co, uv, 1, 2, 3, pin, select);
+ }
+ }
+ else if (!p_face_exists(phandle, vkeys, 0, 1, 2)) {
+ /* triangle */
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select);
+ }
+}
+
+void GEO_uv_parametrizer_edge_set_seam(ParamHandle *phandle, ParamKey *vkeys)
+{
+ PEdge *e;
+
+ param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
+
+ e = p_edge_lookup(phandle, vkeys);
+ if (e) {
+ e->flag |= PEDGE_SEAM;
+ }
+}
+
+void GEO_uv_parametrizer_construct_end(ParamHandle *phandle,
+ bool fill,
+ bool topology_from_uvs,
+ int *count_fail)
+{
+ PChart *chart = phandle->construction_chart;
+ int i, j;
+ PEdge *outer;
+
+ param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
+
+ phandle->ncharts = p_connect_pairs(phandle, topology_from_uvs);
+ phandle->charts = p_split_charts(phandle, chart, phandle->ncharts);
+
+ MEM_SAFE_FREE(phandle->construction_chart);
+
+ phash_delete(phandle->hash_verts);
+ phash_delete(phandle->hash_edges);
+ phash_delete(phandle->hash_faces);
+ phandle->hash_verts = phandle->hash_edges = phandle->hash_faces = NULL;
+
+ for (i = j = 0; i < phandle->ncharts; i++) {
+ PVert *v;
+ chart = phandle->charts[i];
+
+ p_chart_boundaries(chart, &outer);
+
+ if (!topology_from_uvs && chart->nboundaries == 0) {
+ MEM_SAFE_FREE(chart);
+ if (count_fail != NULL) {
+ *count_fail += 1;
+ }
+ continue;
+ }
+
+ phandle->charts[j] = chart;
+ j++;
+
+ if (fill && (chart->nboundaries > 1)) {
+ p_chart_fill_boundaries(phandle, chart, outer);
+ }
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ p_vert_load_pin_select_uvs(phandle, v);
+ }
+ }
+
+ phandle->ncharts = j;
+
+ phandle->state = PHANDLE_STATE_CONSTRUCTED;
+}
+
+void GEO_uv_parametrizer_lscm_begin(ParamHandle *phandle, bool live, bool abf)
+{
+ PFace *f;
+ int i;
+
+ param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
+ phandle->state = PHANDLE_STATE_LSCM;
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ for (f = phandle->charts[i]->faces; f; f = f->nextlink) {
+ p_face_backup_uvs(f);
+ }
+ p_chart_lscm_begin(phandle->charts[i], live, abf);
+ }
+}
+
+void GEO_uv_parametrizer_lscm_solve(ParamHandle *phandle, int *count_changed, int *count_failed)
+{
+ PChart *chart;
+ int i;
+
+ param_assert(phandle->state == PHANDLE_STATE_LSCM);
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+
+ if (chart->u.lscm.context) {
+ const bool result = p_chart_lscm_solve(phandle, chart);
+
+ if (result && !chart->has_pins) {
+ p_chart_rotate_minimum_area(chart);
+ }
+ else if (result && chart->u.lscm.single_pin) {
+ p_chart_rotate_fit_aabb(chart);
+ p_chart_lscm_transform_single_pin(chart);
+ }
+
+ if (!result || !chart->has_pins) {
+ p_chart_lscm_end(chart);
+ }
+
+ if (result) {
+ if (count_changed != NULL) {
+ *count_changed += 1;
+ }
+ }
+ else {
+ if (count_failed != NULL) {
+ *count_failed += 1;
+ }
+ }
+ }
+ }
+}
+
+void GEO_uv_parametrizer_lscm_end(ParamHandle *phandle)
+{
+ BLI_assert(phandle->state == PHANDLE_STATE_LSCM);
+
+ for (int i = 0; i < phandle->ncharts; i++) {
+ p_chart_lscm_end(phandle->charts[i]);
+#if 0
+ p_chart_complexify(phandle->charts[i]);
+#endif
+ }
+
+ phandle->state = PHANDLE_STATE_CONSTRUCTED;
+}
+
+void GEO_uv_parametrizer_stretch_begin(ParamHandle *phandle)
+{
+ PChart *chart;
+ PVert *v;
+ PFace *f;
+ int i;
+
+ param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
+ phandle->state = PHANDLE_STATE_STRETCH;
+
+ phandle->rng = BLI_rng_new(31415926);
+ phandle->blend = 0.0f;
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+
+ for (v = chart->verts; v; v = v->nextlink) {
+ v->flag &= ~PVERT_PIN; /* don't use user-defined pins */
+ }
+
+ p_stretch_pin_boundary(chart);
+
+ for (f = chart->faces; f; f = f->nextlink) {
+ p_face_backup_uvs(f);
+ f->u.area3d = p_face_area(f);
+ }
+ }
+}
+
+void GEO_uv_parametrizer_stretch_blend(ParamHandle *phandle, float blend)
+{
+ param_assert(phandle->state == PHANDLE_STATE_STRETCH);
+ phandle->blend = blend;
+}
+
+void GEO_uv_parametrizer_stretch_iter(ParamHandle *phandle)
+{
+ PChart *chart;
+ int i;
+
+ param_assert(phandle->state == PHANDLE_STATE_STRETCH);
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+ p_chart_stretch_minimize(chart, phandle->rng);
+ }
+}
+
+void GEO_uv_parametrizer_stretch_end(ParamHandle *phandle)
+{
+ param_assert(phandle->state == PHANDLE_STATE_STRETCH);
+ phandle->state = PHANDLE_STATE_CONSTRUCTED;
+}
+
+/* don't pack, just rotate (used for better packing) */
+static void GEO_uv_parametrizer_pack_rotate(ParamHandle *phandle, bool ignore_pinned)
+{
+ PChart *chart;
+ int i;
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+
+ if (ignore_pinned && chart->has_pins) {
+ continue;
+ }
+
+ p_chart_rotate_fit_aabb(chart);
+ }
+}
+
+void GEO_uv_parametrizer_pack(ParamHandle *handle,
+ float margin,
+ bool do_rotate,
+ bool ignore_pinned)
+{
+ /* box packing variables */
+ BoxPack *boxarray, *box;
+ float tot_width, tot_height, scale;
+
+ PChart *chart;
+ int i, unpacked = 0;
+ float trans[2];
+ double area = 0.0;
+
+ if (handle->ncharts == 0) {
+ return;
+ }
+
+ /* this could be its own function */
+ if (do_rotate) {
+ GEO_uv_parametrizer_pack_rotate(handle, ignore_pinned);
+ }
+
+ if (handle->aspx != handle->aspy) {
+ GEO_uv_parametrizer_scale(handle, 1.0f / handle->aspx, 1.0f / handle->aspy);
+ }
+
+ /* we may not use all these boxes */
+ boxarray = (BoxPack *)MEM_mallocN(handle->ncharts * sizeof(BoxPack), "BoxPack box");
+
+ for (i = 0; i < handle->ncharts; i++) {
+ chart = handle->charts[i];
+
+ if (ignore_pinned && chart->has_pins) {
+ unpacked++;
+ continue;
+ }
+
+ box = boxarray + (i - unpacked);
+
+ p_chart_uv_bbox(chart, trans, chart->u.pack.size);
+
+ trans[0] = -trans[0];
+ trans[1] = -trans[1];
+
+ p_chart_uv_translate(chart, trans);
+
+ box->w = chart->u.pack.size[0] + trans[0];
+ box->h = chart->u.pack.size[1] + trans[1];
+ box->index = i; /* Warning this index skips chart->has_pins boxes. */
+
+ if (margin > 0.0f) {
+ area += (double)sqrtf(box->w * box->h);
+ }
+ }
+
+ if (margin > 0.0f) {
+ /* multiply the margin by the area to give predictable results not dependent on UV scale,
+ * ...Without using the area running pack multiple times also gives a bad feedback loop.
+ * multiply by 0.1 so the margin value from the UI can be from
+ * 0.0 to 1.0 but not give a massive margin */
+ margin = (margin * (float)area) * 0.1f;
+ unpacked = 0;
+ for (i = 0; i < handle->ncharts; i++) {
+ chart = handle->charts[i];
+
+ if (ignore_pinned && chart->has_pins) {
+ unpacked++;
+ continue;
+ }
+
+ box = boxarray + (i - unpacked);
+ trans[0] = margin;
+ trans[1] = margin;
+ p_chart_uv_translate(chart, trans);
+ box->w += margin * 2;
+ box->h += margin * 2;
+ }
+ }
+
+ BLI_box_pack_2d(boxarray, handle->ncharts - unpacked, &tot_width, &tot_height);
+
+ if (tot_height > tot_width) {
+ scale = tot_height != 0.0f ? (1.0f / tot_height) : 1.0f;
+ }
+ else {
+ scale = tot_width != 0.0f ? (1.0f / tot_width) : 1.0f;
+ }
+
+ for (i = 0; i < handle->ncharts - unpacked; i++) {
+ box = boxarray + i;
+ trans[0] = box->x;
+ trans[1] = box->y;
+
+ chart = handle->charts[box->index];
+ p_chart_uv_translate(chart, trans);
+ p_chart_uv_scale(chart, scale);
+ }
+ MEM_SAFE_FREE(boxarray);
+
+ if (handle->aspx != handle->aspy) {
+ GEO_uv_parametrizer_scale(handle, handle->aspx, handle->aspy);
+ }
+}
+
+void GEO_uv_parametrizer_average(ParamHandle *phandle,
+ bool ignore_pinned,
+ bool scale_uv,
+ bool shear)
+{
+ PChart *chart;
+ int i;
+ float tot_uvarea = 0.0f, tot_facearea = 0.0f;
+ float tot_fac, fac;
+ float minv[2], maxv[2], trans[2];
+
+ if (phandle->ncharts == 0) {
+ return;
+ }
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+
+ if (ignore_pinned && chart->has_pins) {
+ continue;
+ }
+
+ p_chart_uv_bbox(chart, minv, maxv);
+ mid_v2_v2v2(chart->u.pack.origin, minv, maxv);
+
+ if (scale_uv || shear) {
+ /* It's possible that for some "bad" inputs, the following iteration will converge slowly or
+ * perhaps even diverge. Rather than infinite loop, we only iterate a maximum of `max_iter`
+ * times. (Also useful when making changes to the calculation.) */
+ int max_iter = 10;
+ for (int j = 0; j < max_iter; j++) {
+ /* An island could contain millions of polygons. When summing many small values, we need to
+ * use double precision in the accumulator to maintain accuracy. Note that the individual
+ * calculations only need to be at single precision.*/
+ double scale_cou = 0;
+ double scale_cov = 0;
+ double scale_cross = 0;
+ double weight_sum = 0;
+ for (PFace *f = chart->faces; f; f = f->nextlink) {
+ float m[2][2], s[2][2];
+ PVert *va = f->edge->vert;
+ PVert *vb = f->edge->next->vert;
+ PVert *vc = f->edge->next->next->vert;
+ s[0][0] = va->uv[0] - vc->uv[0];
+ s[0][1] = va->uv[1] - vc->uv[1];
+ s[1][0] = vb->uv[0] - vc->uv[0];
+ s[1][1] = vb->uv[1] - vc->uv[1];
+ /* Find the "U" axis and "V" axis in triangle co-ordinates. Normally this would require
+ * SVD, but in 2D we can use a cheaper matrix inversion instead.*/
+ if (!invert_m2_m2(m, s)) {
+ continue;
+ }
+ float cou[3], cov[3]; /* i.e. Texture "U" and texture "V" in 3D co-ordinates.*/
+ for (int k = 0; k < 3; k++) {
+ cou[k] = m[0][0] * (va->co[k] - vc->co[k]) + m[0][1] * (vb->co[k] - vc->co[k]);
+ cov[k] = m[1][0] * (va->co[k] - vc->co[k]) + m[1][1] * (vb->co[k] - vc->co[k]);
+ }
+ const float weight = p_face_area(f);
+ scale_cou += len_v3(cou) * weight;
+ scale_cov += len_v3(cov) * weight;
+ if (shear) {
+ normalize_v3(cov);
+ normalize_v3(cou);
+
+ /* Why is scale_cross called `cross` when we call `dot`? The next line calculates:
+ * `scale_cross += length(cross(cross(cou, face_normal), cov))`
+ * By construction, both `cou` and `cov` are orthogonal to the face normal.
+ * By definition, the normal vector has unit length. */
+ scale_cross += dot_v3v3(cou, cov) * weight;
+ }
+ weight_sum += weight;
+ }
+ if (scale_cou * scale_cov < 1e-10f) {
+ break;
+ }
+ const float scale_factor_u = scale_uv ? sqrtf(scale_cou / scale_cov) : 1.0f;
+
+ /* Compute correction transform. */
+ float t[2][2];
+ t[0][0] = scale_factor_u;
+ t[1][0] = clamp_f((float)(scale_cross / weight_sum), -0.5f, 0.5f);
+ t[0][1] = 0;
+ t[1][1] = 1.0f / scale_factor_u;
+
+ /* Apply the correction. */
+ p_chart_uv_transform(chart, t);
+
+ /* How far from the identity transform are we? [[1,0],[0,1]] */
+ const float err = fabsf(t[0][0] - 1.0f) + fabsf(t[1][0]) + fabsf(t[0][1]) +
+ fabsf(t[1][1] - 1.0f);
+
+ const float tolerance = 1e-6f; /* Trade accuracy for performance. */
+ if (err < tolerance) {
+ /* Too slow? Use Richardson Extrapolation to accelerate the convergence.*/
+ break;
+ }
+ }
+ }
+
+ chart->u.pack.area = 0.0f; /* 3d area */
+ chart->u.pack.rescale = 0.0f; /* UV area, abusing rescale for tmp storage, oh well :/ */
+
+ for (PFace *f = chart->faces; f; f = f->nextlink) {
+ chart->u.pack.area += p_face_area(f);
+ chart->u.pack.rescale += fabsf(p_face_uv_area_signed(f));
+ }
+
+ tot_facearea += chart->u.pack.area;
+ tot_uvarea += chart->u.pack.rescale;
+ }
+
+ if (tot_facearea == tot_uvarea || tot_facearea == 0.0f || tot_uvarea == 0.0f) {
+ /* nothing to do */
+ return;
+ }
+
+ tot_fac = tot_facearea / tot_uvarea;
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+
+ if (ignore_pinned && chart->has_pins) {
+ continue;
+ }
+
+ if (chart->u.pack.area != 0.0f && chart->u.pack.rescale != 0.0f) {
+ fac = chart->u.pack.area / chart->u.pack.rescale;
+
+ /* Average scale. */
+ p_chart_uv_scale(chart, sqrtf(fac / tot_fac));
+
+ /* Get the current island center. */
+ p_chart_uv_bbox(chart, minv, maxv);
+
+ /* Move to original center. */
+ mid_v2_v2v2(trans, minv, maxv);
+ negate_v2(trans);
+ add_v2_v2(trans, chart->u.pack.origin);
+ p_chart_uv_translate(chart, trans);
+ }
+ }
+}
+
+void GEO_uv_parametrizer_scale(ParamHandle *phandle, float x, float y)
+{
+ PChart *chart;
+ int i;
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+ p_chart_uv_scale_xy(chart, x, y);
+ }
+}
+
+void GEO_uv_parametrizer_flush(ParamHandle *phandle)
+{
+ PChart *chart;
+ int i;
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+
+ if ((phandle->state == PHANDLE_STATE_LSCM) && !chart->u.lscm.context) {
+ continue;
+ }
+
+ if (phandle->blend == 0.0f) {
+ p_flush_uvs(phandle, chart);
+ }
+ else {
+ p_flush_uvs_blend(phandle, chart, phandle->blend);
+ }
+ }
+}
+
+void GEO_uv_parametrizer_flush_restore(ParamHandle *phandle)
+{
+ PChart *chart;
+ PFace *f;
+ int i;
+
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
+
+ for (f = chart->faces; f; f = f->nextlink) {
+ p_face_restore_uvs(f);
+ }
+ }
+}