Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLukas Toenne <lukas.toenne@googlemail.com>2011-09-06 01:01:50 +0400
committerLukas Toenne <lukas.toenne@googlemail.com>2011-09-06 01:01:50 +0400
commit8e0fe8bff72e2dc2926618577eaffdd3417a8304 (patch)
tree43b933c88cac451518dc68846c1119acacffca4f /source/blender/nodes/composite/node_composite_util.c
parent6e9ff495eb082aeb49e6a1da23a7827d3fcd0fde (diff)
Merged the particles-2010 branch with node improvements into trunk.
This branch adds mostly organizational improvements to the node system by renaming the node folders and files. A couple of internal features have been added too. Detailed information can be found on the wiki page: http://wiki.blender.org/index.php/User:Phonybone/Particles2010
Diffstat (limited to 'source/blender/nodes/composite/node_composite_util.c')
-rw-r--r--source/blender/nodes/composite/node_composite_util.c1413
1 files changed, 1413 insertions, 0 deletions
diff --git a/source/blender/nodes/composite/node_composite_util.c b/source/blender/nodes/composite/node_composite_util.c
new file mode 100644
index 00000000000..f7759775af0
--- /dev/null
+++ b/source/blender/nodes/composite/node_composite_util.c
@@ -0,0 +1,1413 @@
+/*
+ * $Id: CMP_util.c 36536 2011-05-07 13:27:27Z lukastoenne $
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2006 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/nodes/composite/node_composite_util.c
+ * \ingroup nodes
+ */
+
+
+#include "node_composite_util.h"
+
+CompBuf *alloc_compbuf(int sizex, int sizey, int type, int alloc)
+{
+ CompBuf *cbuf= MEM_callocN(sizeof(CompBuf), "compbuf");
+
+ cbuf->x= sizex;
+ cbuf->y= sizey;
+ cbuf->xrad= sizex/2;
+ cbuf->yrad= sizey/2;
+
+ cbuf->type= type;
+ if(alloc) {
+ if(cbuf->type==CB_RGBA)
+ cbuf->rect= MEM_mapallocN(4*sizeof(float)*sizex*sizey, "compbuf RGBA rect");
+ else if(cbuf->type==CB_VEC3)
+ cbuf->rect= MEM_mapallocN(3*sizeof(float)*sizex*sizey, "compbuf Vector3 rect");
+ else if(cbuf->type==CB_VEC2)
+ cbuf->rect= MEM_mapallocN(2*sizeof(float)*sizex*sizey, "compbuf Vector2 rect");
+ else
+ cbuf->rect= MEM_mapallocN(sizeof(float)*sizex*sizey, "compbuf Fac rect");
+ cbuf->malloc= 1;
+ }
+ cbuf->disprect.xmin= 0;
+ cbuf->disprect.ymin= 0;
+ cbuf->disprect.xmax= sizex;
+ cbuf->disprect.ymax= sizey;
+
+ return cbuf;
+}
+
+CompBuf *dupalloc_compbuf(CompBuf *cbuf)
+{
+ CompBuf *dupbuf= alloc_compbuf(cbuf->x, cbuf->y, cbuf->type, 1);
+ if(dupbuf) {
+ memcpy(dupbuf->rect, cbuf->rect, cbuf->type*sizeof(float)*cbuf->x*cbuf->y);
+
+ dupbuf->xof= cbuf->xof;
+ dupbuf->yof= cbuf->yof;
+ }
+ return dupbuf;
+}
+
+/* instead of reference counting, we create a list */
+CompBuf *pass_on_compbuf(CompBuf *cbuf)
+{
+ CompBuf *dupbuf= (cbuf)? alloc_compbuf(cbuf->x, cbuf->y, cbuf->type, 0): NULL;
+ CompBuf *lastbuf;
+
+ if(dupbuf) {
+ dupbuf->rect= cbuf->rect;
+ dupbuf->xof= cbuf->xof;
+ dupbuf->yof= cbuf->yof;
+ dupbuf->malloc= 0;
+
+ /* get last buffer in list, and append dupbuf */
+ for(lastbuf= cbuf; lastbuf; lastbuf= lastbuf->next)
+ if(lastbuf->next==NULL)
+ break;
+ lastbuf->next= dupbuf;
+ dupbuf->prev= lastbuf;
+ }
+ return dupbuf;
+}
+
+
+void free_compbuf(CompBuf *cbuf)
+{
+ /* check referencing, then remove from list and set malloc tag */
+ if(cbuf->prev || cbuf->next) {
+ if(cbuf->prev)
+ cbuf->prev->next= cbuf->next;
+ if(cbuf->next)
+ cbuf->next->prev= cbuf->prev;
+ if(cbuf->malloc) {
+ if(cbuf->prev)
+ cbuf->prev->malloc= 1;
+ else
+ cbuf->next->malloc= 1;
+ cbuf->malloc= 0;
+ }
+ }
+
+ if(cbuf->malloc && cbuf->rect)
+ MEM_freeN(cbuf->rect);
+
+ MEM_freeN(cbuf);
+}
+
+void print_compbuf(char *str, CompBuf *cbuf)
+{
+ printf("Compbuf %s %d %d %p\n", str, cbuf->x, cbuf->y, (void *)cbuf->rect);
+
+}
+
+void compbuf_set_node(CompBuf *cbuf, bNode *node)
+{
+ if (cbuf) cbuf->node = node;
+}
+
+/* used for disabling node (similar code in node_draw.c for disable line and node_edit for untangling nodes) */
+void node_compo_pass_on(bNode *node, bNodeStack **nsin, bNodeStack **nsout)
+{
+ CompBuf *valbuf= NULL, *colbuf= NULL, *vecbuf= NULL;
+ bNodeSocket *sock;
+ int a;
+
+ /* connect the first value buffer in with first value out */
+ /* connect the first RGBA buffer in with first RGBA out */
+
+ /* test the inputs */
+ for(a=0, sock= node->inputs.first; sock; sock= sock->next, a++) {
+ if(nsin[a]->data) {
+ CompBuf *cbuf= nsin[a]->data;
+ if(cbuf->type==1 && valbuf==NULL) valbuf= cbuf;
+ if(cbuf->type==3 && vecbuf==NULL) vecbuf= cbuf;
+ if(cbuf->type==4 && colbuf==NULL) colbuf= cbuf;
+ }
+ }
+
+ /* outputs */
+ if(valbuf || colbuf || vecbuf) {
+ for(a=0, sock= node->outputs.first; sock; sock= sock->next, a++) {
+ if(nsout[a]->hasoutput) {
+ if(sock->type==SOCK_FLOAT && valbuf) {
+ nsout[a]->data= pass_on_compbuf(valbuf);
+ valbuf= NULL;
+ }
+ if(sock->type==SOCK_VECTOR && vecbuf) {
+ nsout[a]->data= pass_on_compbuf(vecbuf);
+ vecbuf= NULL;
+ }
+ if(sock->type==SOCK_RGBA && colbuf) {
+ nsout[a]->data= pass_on_compbuf(colbuf);
+ colbuf= NULL;
+ }
+ }
+ }
+ }
+}
+
+
+CompBuf *get_cropped_compbuf(rcti *drect, float *rectf, int rectx, int recty, int type)
+{
+ CompBuf *cbuf;
+ rcti disprect= *drect;
+ float *outfp;
+ int dx, y;
+
+ if(disprect.xmax>rectx) disprect.xmax= rectx;
+ if(disprect.ymax>recty) disprect.ymax= recty;
+ if(disprect.xmin>= disprect.xmax) return NULL;
+ if(disprect.ymin>= disprect.ymax) return NULL;
+
+ cbuf= alloc_compbuf(disprect.xmax-disprect.xmin, disprect.ymax-disprect.ymin, type, 1);
+ outfp= cbuf->rect;
+ rectf += type*(disprect.ymin*rectx + disprect.xmin);
+ dx= type*cbuf->x;
+ for(y=cbuf->y; y>0; y--, outfp+=dx, rectf+=type*rectx)
+ memcpy(outfp, rectf, sizeof(float)*dx);
+
+ return cbuf;
+}
+
+CompBuf *scalefast_compbuf(CompBuf *inbuf, int newx, int newy)
+{
+ CompBuf *outbuf;
+ float *rectf, *newrectf, *rf;
+ int x, y, c, pixsize= inbuf->type;
+ int ofsx, ofsy, stepx, stepy;
+
+ if(inbuf->x==newx && inbuf->y==newy)
+ return dupalloc_compbuf(inbuf);
+
+ outbuf= alloc_compbuf(newx, newy, inbuf->type, 1);
+ newrectf= outbuf->rect;
+
+ stepx = (65536.0 * (inbuf->x - 1.0) / (newx - 1.0)) + 0.5;
+ stepy = (65536.0 * (inbuf->y - 1.0) / (newy - 1.0)) + 0.5;
+ ofsy = 32768;
+
+ for (y = newy; y > 0 ; y--){
+ rectf = inbuf->rect;
+ rectf += pixsize * (ofsy >> 16) * inbuf->x;
+
+ ofsy += stepy;
+ ofsx = 32768;
+
+ for (x = newx ; x>0 ; x--) {
+
+ rf= rectf + pixsize*(ofsx >> 16);
+ for(c=0; c<pixsize; c++)
+ newrectf[c] = rf[c];
+
+ newrectf+= pixsize;
+
+ ofsx += stepx;
+ }
+ }
+
+ return outbuf;
+}
+
+void typecheck_compbuf_color(float *out, float *in, int outtype, int intype)
+{
+ if(intype == outtype) {
+ memcpy(out, in, sizeof(float)*outtype);
+ }
+ else if(outtype==CB_VAL) {
+ if(intype==CB_VEC2) {
+ *out= 0.5f*(in[0]+in[1]);
+ }
+ else if(intype==CB_VEC3) {
+ *out= 0.333333f*(in[0]+in[1]+in[2]);
+ }
+ else if(intype==CB_RGBA) {
+ *out= in[0]*0.35f + in[1]*0.45f + in[2]*0.2f;
+ }
+ }
+ else if(outtype==CB_VEC2) {
+ if(intype==CB_VAL) {
+ out[0]= in[0];
+ out[1]= in[0];
+ }
+ else if(intype==CB_VEC3) {
+ out[0]= in[0];
+ out[1]= in[1];
+ }
+ else if(intype==CB_RGBA) {
+ out[0]= in[0];
+ out[1]= in[1];
+ }
+ }
+ else if(outtype==CB_VEC3) {
+ if(intype==CB_VAL) {
+ out[0]= in[0];
+ out[1]= in[0];
+ out[2]= in[0];
+ }
+ else if(intype==CB_VEC2) {
+ out[0]= in[0];
+ out[1]= in[1];
+ out[2]= 0.0f;
+ }
+ else if(intype==CB_RGBA) {
+ out[0]= in[0];
+ out[1]= in[1];
+ out[2]= in[2];
+ }
+ }
+ else if(outtype==CB_RGBA) {
+ if(intype==CB_VAL) {
+ out[0]= in[0];
+ out[1]= in[0];
+ out[2]= in[0];
+ out[3]= 1.0f;
+ }
+ else if(intype==CB_VEC2) {
+ out[0]= in[0];
+ out[1]= in[1];
+ out[2]= 0.0f;
+ out[3]= 1.0f;
+ }
+ else if(intype==CB_VEC3) {
+ out[0]= in[0];
+ out[1]= in[1];
+ out[2]= in[2];
+ out[3]= 1.0f;
+ }
+ }
+}
+
+CompBuf *typecheck_compbuf(CompBuf *inbuf, int type)
+{
+ if(inbuf && inbuf->type!=type) {
+ CompBuf *outbuf;
+ float *inrf, *outrf;
+ int x;
+
+ outbuf= alloc_compbuf(inbuf->x, inbuf->y, type, 1);
+
+ /* warning note: xof and yof are applied in pixelprocessor, but should be copied otherwise? */
+ outbuf->xof= inbuf->xof;
+ outbuf->yof= inbuf->yof;
+
+ if(inbuf->rect_procedural) {
+ outbuf->rect_procedural= inbuf->rect_procedural;
+ VECCOPY(outbuf->procedural_size, inbuf->procedural_size);
+ VECCOPY(outbuf->procedural_offset, inbuf->procedural_offset);
+ outbuf->procedural_type= inbuf->procedural_type;
+ outbuf->node= inbuf->node;
+ return outbuf;
+ }
+
+ inrf= inbuf->rect;
+ outrf= outbuf->rect;
+ x= inbuf->x*inbuf->y;
+
+ if(type==CB_VAL) {
+ if(inbuf->type==CB_VEC2) {
+ for(; x>0; x--, outrf+= 1, inrf+= 2)
+ *outrf= 0.5f*(inrf[0]+inrf[1]);
+ }
+ else if(inbuf->type==CB_VEC3) {
+ for(; x>0; x--, outrf+= 1, inrf+= 3)
+ *outrf= 0.333333f*(inrf[0]+inrf[1]+inrf[2]);
+ }
+ else if(inbuf->type==CB_RGBA) {
+ for(; x>0; x--, outrf+= 1, inrf+= 4)
+ *outrf= inrf[0]*0.35f + inrf[1]*0.45f + inrf[2]*0.2f;
+ }
+ }
+ else if(type==CB_VEC2) {
+ if(inbuf->type==CB_VAL) {
+ for(; x>0; x--, outrf+= 2, inrf+= 1) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[0];
+ }
+ }
+ else if(inbuf->type==CB_VEC3) {
+ for(; x>0; x--, outrf+= 2, inrf+= 3) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[1];
+ }
+ }
+ else if(inbuf->type==CB_RGBA) {
+ for(; x>0; x--, outrf+= 2, inrf+= 4) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[1];
+ }
+ }
+ }
+ else if(type==CB_VEC3) {
+ if(inbuf->type==CB_VAL) {
+ for(; x>0; x--, outrf+= 3, inrf+= 1) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[0];
+ outrf[2]= inrf[0];
+ }
+ }
+ else if(inbuf->type==CB_VEC2) {
+ for(; x>0; x--, outrf+= 3, inrf+= 2) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[1];
+ outrf[2]= 0.0f;
+ }
+ }
+ else if(inbuf->type==CB_RGBA) {
+ for(; x>0; x--, outrf+= 3, inrf+= 4) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[1];
+ outrf[2]= inrf[2];
+ }
+ }
+ }
+ else if(type==CB_RGBA) {
+ if(inbuf->type==CB_VAL) {
+ for(; x>0; x--, outrf+= 4, inrf+= 1) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[0];
+ outrf[2]= inrf[0];
+ outrf[3]= 1.0f;
+ }
+ }
+ else if(inbuf->type==CB_VEC2) {
+ for(; x>0; x--, outrf+= 4, inrf+= 2) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[1];
+ outrf[2]= 0.0f;
+ outrf[3]= 1.0f;
+ }
+ }
+ else if(inbuf->type==CB_VEC3) {
+ for(; x>0; x--, outrf+= 4, inrf+= 3) {
+ outrf[0]= inrf[0];
+ outrf[1]= inrf[1];
+ outrf[2]= inrf[2];
+ outrf[3]= 1.0f;
+ }
+ }
+ }
+
+ return outbuf;
+ }
+ return inbuf;
+}
+
+static float *compbuf_get_pixel(CompBuf *cbuf, float *defcol, float *use, int x, int y, int xrad, int yrad)
+{
+ if(cbuf) {
+ if(cbuf->rect_procedural) {
+ cbuf->rect_procedural(cbuf, use, (float)x/(float)xrad, (float)y/(float)yrad);
+ return use;
+ }
+ else {
+ static float col[4]= {0.0f, 0.0f, 0.0f, 0.0f};
+
+ /* map coords */
+ x-= cbuf->xof;
+ y-= cbuf->yof;
+
+ if(y<-cbuf->yrad || y>= -cbuf->yrad+cbuf->y) return col;
+ if(x<-cbuf->xrad || x>= -cbuf->xrad+cbuf->x) return col;
+
+ return cbuf->rect + cbuf->type*( (cbuf->yrad+y)*cbuf->x + (cbuf->xrad+x) );
+ }
+ }
+ else return defcol;
+}
+
+/* **************************************************** */
+
+/* Pixel-to-Pixel operation, 1 Image in, 1 out */
+void composit1_pixel_processor(bNode *node, CompBuf *out, CompBuf *src_buf, float *src_col,
+ void (*func)(bNode *, float *, float *),
+ int src_type)
+{
+ CompBuf *src_use;
+ float *outfp=out->rect, *srcfp;
+ float color[4]; /* local color if compbuf is procedural */
+ int xrad, yrad, x, y;
+
+ src_use= typecheck_compbuf(src_buf, src_type);
+
+ xrad= out->xrad;
+ yrad= out->yrad;
+
+ for(y= -yrad; y<-yrad+out->y; y++) {
+ for(x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
+ srcfp= compbuf_get_pixel(src_use, src_col, color, x, y, xrad, yrad);
+ func(node, outfp, srcfp);
+ }
+ }
+
+ if(src_use!=src_buf)
+ free_compbuf(src_use);
+}
+
+/* Pixel-to-Pixel operation, 2 Images in, 1 out */
+void composit2_pixel_processor(bNode *node, CompBuf *out, CompBuf *src_buf, float *src_col,
+ CompBuf *fac_buf, float *fac, void (*func)(bNode *, float *, float *, float *),
+ int src_type, int fac_type)
+{
+ CompBuf *src_use, *fac_use;
+ float *outfp=out->rect, *srcfp, *facfp;
+ float color[4]; /* local color if compbuf is procedural */
+ int xrad, yrad, x, y;
+
+ src_use= typecheck_compbuf(src_buf, src_type);
+ fac_use= typecheck_compbuf(fac_buf, fac_type);
+
+ xrad= out->xrad;
+ yrad= out->yrad;
+
+ for(y= -yrad; y<-yrad+out->y; y++) {
+ for(x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
+ srcfp= compbuf_get_pixel(src_use, src_col, color, x, y, xrad, yrad);
+ facfp= compbuf_get_pixel(fac_use, fac, color, x, y, xrad, yrad);
+
+ func(node, outfp, srcfp, facfp);
+ }
+ }
+ if(src_use!=src_buf)
+ free_compbuf(src_use);
+ if(fac_use!=fac_buf)
+ free_compbuf(fac_use);
+}
+
+/* Pixel-to-Pixel operation, 3 Images in, 1 out */
+void composit3_pixel_processor(bNode *node, CompBuf *out, CompBuf *src1_buf, float *src1_col, CompBuf *src2_buf, float *src2_col,
+ CompBuf *fac_buf, float *fac, void (*func)(bNode *, float *, float *, float *, float *),
+ int src1_type, int src2_type, int fac_type)
+{
+ CompBuf *src1_use, *src2_use, *fac_use;
+ float *outfp=out->rect, *src1fp, *src2fp, *facfp;
+ float color[4]; /* local color if compbuf is procedural */
+ int xrad, yrad, x, y;
+
+ src1_use= typecheck_compbuf(src1_buf, src1_type);
+ src2_use= typecheck_compbuf(src2_buf, src2_type);
+ fac_use= typecheck_compbuf(fac_buf, fac_type);
+
+ xrad= out->xrad;
+ yrad= out->yrad;
+
+ for(y= -yrad; y<-yrad+out->y; y++) {
+ for(x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
+ src1fp= compbuf_get_pixel(src1_use, src1_col, color, x, y, xrad, yrad);
+ src2fp= compbuf_get_pixel(src2_use, src2_col, color, x, y, xrad, yrad);
+ facfp= compbuf_get_pixel(fac_use, fac, color, x, y, xrad, yrad);
+
+ func(node, outfp, src1fp, src2fp, facfp);
+ }
+ }
+
+ if(src1_use!=src1_buf)
+ free_compbuf(src1_use);
+ if(src2_use!=src2_buf)
+ free_compbuf(src2_use);
+ if(fac_use!=fac_buf)
+ free_compbuf(fac_use);
+}
+
+/* Pixel-to-Pixel operation, 4 Images in, 1 out */
+void composit4_pixel_processor(bNode *node, CompBuf *out, CompBuf *src1_buf, float *src1_col, CompBuf *fac1_buf, float *fac1,
+ CompBuf *src2_buf, float *src2_col, CompBuf *fac2_buf, float *fac2,
+ void (*func)(bNode *, float *, float *, float *, float *, float *),
+ int src1_type, int fac1_type, int src2_type, int fac2_type)
+{
+ CompBuf *src1_use, *src2_use, *fac1_use, *fac2_use;
+ float *outfp=out->rect, *src1fp, *src2fp, *fac1fp, *fac2fp;
+ float color[4]; /* local color if compbuf is procedural */
+ int xrad, yrad, x, y;
+
+ src1_use= typecheck_compbuf(src1_buf, src1_type);
+ src2_use= typecheck_compbuf(src2_buf, src2_type);
+ fac1_use= typecheck_compbuf(fac1_buf, fac1_type);
+ fac2_use= typecheck_compbuf(fac2_buf, fac2_type);
+
+ xrad= out->xrad;
+ yrad= out->yrad;
+
+ for(y= -yrad; y<-yrad+out->y; y++) {
+ for(x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
+ src1fp= compbuf_get_pixel(src1_use, src1_col, color, x, y, xrad, yrad);
+ src2fp= compbuf_get_pixel(src2_use, src2_col, color, x, y, xrad, yrad);
+ fac1fp= compbuf_get_pixel(fac1_use, fac1, color, x, y, xrad, yrad);
+ fac2fp= compbuf_get_pixel(fac2_use, fac2, color, x, y, xrad, yrad);
+
+ func(node, outfp, src1fp, fac1fp, src2fp, fac2fp);
+ }
+ }
+
+ if(src1_use!=src1_buf)
+ free_compbuf(src1_use);
+ if(src2_use!=src2_buf)
+ free_compbuf(src2_use);
+ if(fac1_use!=fac1_buf)
+ free_compbuf(fac1_use);
+ if(fac2_use!=fac2_buf)
+ free_compbuf(fac2_use);
+}
+
+
+CompBuf *valbuf_from_rgbabuf(CompBuf *cbuf, int channel)
+{
+ CompBuf *valbuf= alloc_compbuf(cbuf->x, cbuf->y, CB_VAL, 1);
+ float *valf, *rectf;
+ int tot;
+
+ /* warning note: xof and yof are applied in pixelprocessor, but should be copied otherwise? */
+ valbuf->xof= cbuf->xof;
+ valbuf->yof= cbuf->yof;
+
+ valf= valbuf->rect;
+
+ /* defaults to returning alpha channel */
+ if ((channel < CHAN_R) || (channel > CHAN_A)) channel = CHAN_A;
+
+ rectf= cbuf->rect + channel;
+
+ for(tot= cbuf->x*cbuf->y; tot>0; tot--, valf++, rectf+=4)
+ *valf= *rectf;
+
+ return valbuf;
+}
+
+static CompBuf *generate_procedural_preview(CompBuf *cbuf, int newx, int newy)
+{
+ CompBuf *outbuf;
+ float *outfp;
+ int xrad, yrad, x, y;
+
+ outbuf= alloc_compbuf(newx, newy, CB_RGBA, 1);
+
+ outfp= outbuf->rect;
+ xrad= outbuf->xrad;
+ yrad= outbuf->yrad;
+
+ for(y= -yrad; y<-yrad+outbuf->y; y++)
+ for(x= -xrad; x<-xrad+outbuf->x; x++, outfp+=outbuf->type)
+ cbuf->rect_procedural(cbuf, outfp, (float)x/(float)xrad, (float)y/(float)yrad);
+
+ return outbuf;
+}
+
+void generate_preview(void *data, bNode *node, CompBuf *stackbuf)
+{
+ RenderData *rd= data;
+ bNodePreview *preview= node->preview;
+ int xsize, ysize;
+ int color_manage= rd->color_mgt_flag & R_COLOR_MANAGEMENT;
+ unsigned char *rect;
+
+ if(preview && stackbuf) {
+ CompBuf *cbuf, *stackbuf_use;
+
+ if(stackbuf->rect==NULL && stackbuf->rect_procedural==NULL) return;
+
+ stackbuf_use= typecheck_compbuf(stackbuf, CB_RGBA);
+
+ if(stackbuf->x > stackbuf->y) {
+ xsize= 140;
+ ysize= (140*stackbuf->y)/stackbuf->x;
+ }
+ else {
+ ysize= 140;
+ xsize= (140*stackbuf->x)/stackbuf->y;
+ }
+
+ if(stackbuf_use->rect_procedural)
+ cbuf= generate_procedural_preview(stackbuf_use, xsize, ysize);
+ else
+ cbuf= scalefast_compbuf(stackbuf_use, xsize, ysize);
+
+ /* convert to byte for preview */
+ rect= MEM_callocN(sizeof(unsigned char)*4*xsize*ysize, "bNodePreview.rect");
+
+ if(color_manage)
+ floatbuf_to_srgb_byte(cbuf->rect, rect, 0, xsize, 0, ysize, xsize);
+ else
+ floatbuf_to_byte(cbuf->rect, rect, 0, xsize, 0, ysize, xsize);
+
+ free_compbuf(cbuf);
+ if(stackbuf_use!=stackbuf)
+ free_compbuf(stackbuf_use);
+
+ BLI_lock_thread(LOCK_PREVIEW);
+
+ if(preview->rect)
+ MEM_freeN(preview->rect);
+ preview->xsize= xsize;
+ preview->ysize= ysize;
+ preview->rect= rect;
+
+ BLI_unlock_thread(LOCK_PREVIEW);
+ }
+}
+
+void do_rgba_to_yuva(bNode *UNUSED(node), float *out, float *in)
+{
+ rgb_to_yuv(in[0],in[1],in[2], &out[0], &out[1], &out[2]);
+ out[3]=in[3];
+}
+
+void do_rgba_to_hsva(bNode *UNUSED(node), float *out, float *in)
+{
+ rgb_to_hsv(in[0],in[1],in[2], &out[0], &out[1], &out[2]);
+ out[3]=in[3];
+}
+
+void do_rgba_to_ycca(bNode *UNUSED(node), float *out, float *in)
+{
+ rgb_to_ycc(in[0],in[1],in[2], &out[0], &out[1], &out[2], BLI_YCC_ITU_BT601);
+ out[3]=in[3];
+}
+
+void do_yuva_to_rgba(bNode *UNUSED(node), float *out, float *in)
+{
+ yuv_to_rgb(in[0],in[1],in[2], &out[0], &out[1], &out[2]);
+ out[3]=in[3];
+}
+
+void do_hsva_to_rgba(bNode *UNUSED(node), float *out, float *in)
+{
+ hsv_to_rgb(in[0],in[1],in[2], &out[0], &out[1], &out[2]);
+ out[3]=in[3];
+}
+
+void do_ycca_to_rgba(bNode *UNUSED(node), float *out, float *in)
+{
+ ycc_to_rgb(in[0],in[1],in[2], &out[0], &out[1], &out[2], BLI_YCC_ITU_BT601);
+ out[3]=in[3];
+}
+
+void do_copy_rgba(bNode *UNUSED(node), float *out, float *in)
+{
+ QUATCOPY(out, in);
+}
+
+void do_copy_rgb(bNode *UNUSED(node), float *out, float *in)
+{
+ VECCOPY(out, in);
+ out[3]= 1.0f;
+}
+
+void do_copy_value(bNode *UNUSED(node), float *out, float *in)
+{
+ out[0]= in[0];
+}
+
+void do_copy_a_rgba(bNode *UNUSED(node), float *out, float *in, float *fac)
+{
+ VECCOPY(out, in);
+ out[3]= *fac;
+}
+
+/* only accepts RGBA buffers */
+void gamma_correct_compbuf(CompBuf *img, int inversed)
+{
+ float *drect;
+ int x;
+
+ if(img->type!=CB_RGBA) return;
+
+ drect= img->rect;
+ if(inversed) {
+ for(x=img->x*img->y; x>0; x--, drect+=4) {
+ if(drect[0]>0.0f) drect[0]= sqrt(drect[0]); else drect[0]= 0.0f;
+ if(drect[1]>0.0f) drect[1]= sqrt(drect[1]); else drect[1]= 0.0f;
+ if(drect[2]>0.0f) drect[2]= sqrt(drect[2]); else drect[2]= 0.0f;
+ }
+ }
+ else {
+ for(x=img->x*img->y; x>0; x--, drect+=4) {
+ if(drect[0]>0.0f) drect[0]*= drect[0]; else drect[0]= 0.0f;
+ if(drect[1]>0.0f) drect[1]*= drect[1]; else drect[1]= 0.0f;
+ if(drect[2]>0.0f) drect[2]*= drect[2]; else drect[2]= 0.0f;
+ }
+ }
+}
+
+void premul_compbuf(CompBuf *img, int inversed)
+{
+ float *drect;
+ int x;
+
+ if(img->type!=CB_RGBA) return;
+
+ drect= img->rect;
+ if(inversed) {
+ for(x=img->x*img->y; x>0; x--, drect+=4) {
+ if(fabs(drect[3]) < 1e-5f) {
+ drect[0]= 0.0f;
+ drect[1]= 0.0f;
+ drect[2]= 0.0f;
+ }
+ else {
+ drect[0] /= drect[3];
+ drect[1] /= drect[3];
+ drect[2] /= drect[3];
+ }
+ }
+ }
+ else {
+ for(x=img->x*img->y; x>0; x--, drect+=4) {
+ drect[0] *= drect[3];
+ drect[1] *= drect[3];
+ drect[2] *= drect[3];
+ }
+ }
+}
+
+
+
+/*
+ * 2D Fast Hartley Transform, used for convolution
+ */
+
+typedef float fREAL;
+
+// returns next highest power of 2 of x, as well it's log2 in L2
+static unsigned int nextPow2(unsigned int x, unsigned int* L2)
+{
+ unsigned int pw, x_notpow2 = x & (x-1);
+ *L2 = 0;
+ while (x>>=1) ++(*L2);
+ pw = 1 << (*L2);
+ if (x_notpow2) { (*L2)++; pw<<=1; }
+ return pw;
+}
+
+//------------------------------------------------------------------------------
+
+// from FXT library by Joerg Arndt, faster in order bitreversal
+// use: r = revbin_upd(r, h) where h = N>>1
+static unsigned int revbin_upd(unsigned int r, unsigned int h)
+{
+ while (!((r^=h)&h)) h >>= 1;
+ return r;
+}
+//------------------------------------------------------------------------------
+static void FHT(fREAL* data, unsigned int M, unsigned int inverse)
+{
+ double tt, fc, dc, fs, ds, a = M_PI;
+ fREAL t1, t2;
+ int n2, bd, bl, istep, k, len = 1 << M, n = 1;
+
+ int i, j = 0;
+ unsigned int Nh = len >> 1;
+ for (i=1;i<(len-1);++i) {
+ j = revbin_upd(j, Nh);
+ if (j>i) {
+ t1 = data[i];
+ data[i] = data[j];
+ data[j] = t1;
+ }
+ }
+
+ do {
+ fREAL* data_n = &data[n];
+
+ istep = n << 1;
+ for (k=0; k<len; k+=istep) {
+ t1 = data_n[k];
+ data_n[k] = data[k] - t1;
+ data[k] += t1;
+ }
+
+ n2 = n >> 1;
+ if (n>2) {
+ fc = dc = cos(a);
+ fs = ds = sqrt(1.0 - fc*fc); //sin(a);
+ bd = n-2;
+ for (bl=1; bl<n2; bl++) {
+ fREAL* data_nbd = &data_n[bd];
+ fREAL* data_bd = &data[bd];
+ for (k=bl; k<len; k+=istep) {
+ t1 = fc*data_n[k] + fs*data_nbd[k];
+ t2 = fs*data_n[k] - fc*data_nbd[k];
+ data_n[k] = data[k] - t1;
+ data_nbd[k] = data_bd[k] - t2;
+ data[k] += t1;
+ data_bd[k] += t2;
+ }
+ tt = fc*dc - fs*ds;
+ fs = fs*dc + fc*ds;
+ fc = tt;
+ bd -= 2;
+ }
+ }
+
+ if (n>1) {
+ for (k=n2; k<len; k+=istep) {
+ t1 = data_n[k];
+ data_n[k] = data[k] - t1;
+ data[k] += t1;
+ }
+ }
+
+ n = istep;
+ a *= 0.5;
+ } while (n<len);
+
+ if (inverse) {
+ fREAL sc = (fREAL)1 / (fREAL)len;
+ for (k=0; k<len; ++k)
+ data[k] *= sc;
+ }
+}
+//------------------------------------------------------------------------------
+/* 2D Fast Hartley Transform, Mx/My -> log2 of width/height,
+ nzp -> the row where zero pad data starts,
+ inverse -> see above */
+static void FHT2D(fREAL *data, unsigned int Mx, unsigned int My,
+ unsigned int nzp, unsigned int inverse)
+{
+ unsigned int i, j, Nx, Ny, maxy;
+ fREAL t;
+
+ Nx = 1 << Mx;
+ Ny = 1 << My;
+
+ // rows (forward transform skips 0 pad data)
+ maxy = inverse ? Ny : nzp;
+ for (j=0; j<maxy; ++j)
+ FHT(&data[Nx*j], Mx, inverse);
+
+ // transpose data
+ if (Nx==Ny) { // square
+ for (j=0; j<Ny; ++j)
+ for (i=j+1; i<Nx; ++i) {
+ unsigned int op = i + (j << Mx), np = j + (i << My);
+ t=data[op], data[op]=data[np], data[np]=t;
+ }
+ }
+ else { // rectangular
+ unsigned int k, Nym = Ny-1, stm = 1 << (Mx + My);
+ for (i=0; stm>0; i++) {
+ #define pred(k) (((k & Nym) << Mx) + (k >> My))
+ for (j=pred(i); j>i; j=pred(j));
+ if (j < i) continue;
+ for (k=i, j=pred(i); j!=i; k=j, j=pred(j), stm--)
+ { t=data[j], data[j]=data[k], data[k]=t; }
+ #undef pred
+ stm--;
+ }
+ }
+ // swap Mx/My & Nx/Ny
+ i = Nx, Nx = Ny, Ny = i;
+ i = Mx, Mx = My, My = i;
+
+ // now columns == transposed rows
+ for (j=0; j<Ny; ++j)
+ FHT(&data[Nx*j], Mx, inverse);
+
+ // finalize
+ for (j=0; j<=(Ny >> 1); j++) {
+ unsigned int jm = (Ny - j) & (Ny-1);
+ unsigned int ji = j << Mx;
+ unsigned int jmi = jm << Mx;
+ for (i=0; i<=(Nx >> 1); i++) {
+ unsigned int im = (Nx - i) & (Nx-1);
+ fREAL A = data[ji + i];
+ fREAL B = data[jmi + i];
+ fREAL C = data[ji + im];
+ fREAL D = data[jmi + im];
+ fREAL E = (fREAL)0.5*((A + D) - (B + C));
+ data[ji + i] = A - E;
+ data[jmi + i] = B + E;
+ data[ji + im] = C + E;
+ data[jmi + im] = D - E;
+ }
+ }
+
+}
+
+//------------------------------------------------------------------------------
+
+/* 2D convolution calc, d1 *= d2, M/N - > log2 of width/height */
+static void fht_convolve(fREAL* d1, fREAL* d2, unsigned int M, unsigned int N)
+{
+ fREAL a, b;
+ unsigned int i, j, k, L, mj, mL;
+ unsigned int m = 1 << M, n = 1 << N;
+ unsigned int m2 = 1 << (M-1), n2 = 1 << (N-1);
+ unsigned int mn2 = m << (N-1);
+
+ d1[0] *= d2[0];
+ d1[mn2] *= d2[mn2];
+ d1[m2] *= d2[m2];
+ d1[m2 + mn2] *= d2[m2 + mn2];
+ for (i=1; i<m2; i++) {
+ k = m - i;
+ a = d1[i]*d2[i] - d1[k]*d2[k];
+ b = d1[k]*d2[i] + d1[i]*d2[k];
+ d1[i] = (b + a)*(fREAL)0.5;
+ d1[k] = (b - a)*(fREAL)0.5;
+ a = d1[i + mn2]*d2[i + mn2] - d1[k + mn2]*d2[k + mn2];
+ b = d1[k + mn2]*d2[i + mn2] + d1[i + mn2]*d2[k + mn2];
+ d1[i + mn2] = (b + a)*(fREAL)0.5;
+ d1[k + mn2] = (b - a)*(fREAL)0.5;
+ }
+ for (j=1; j<n2; j++) {
+ L = n - j;
+ mj = j << M;
+ mL = L << M;
+ a = d1[mj]*d2[mj] - d1[mL]*d2[mL];
+ b = d1[mL]*d2[mj] + d1[mj]*d2[mL];
+ d1[mj] = (b + a)*(fREAL)0.5;
+ d1[mL] = (b - a)*(fREAL)0.5;
+ a = d1[m2 + mj]*d2[m2 + mj] - d1[m2 + mL]*d2[m2 + mL];
+ b = d1[m2 + mL]*d2[m2 + mj] + d1[m2 + mj]*d2[m2 + mL];
+ d1[m2 + mj] = (b + a)*(fREAL)0.5;
+ d1[m2 + mL] = (b - a)*(fREAL)0.5;
+ }
+ for (i=1; i<m2; i++) {
+ k = m - i;
+ for (j=1; j<n2; j++) {
+ L = n - j;
+ mj = j << M;
+ mL = L << M;
+ a = d1[i + mj]*d2[i + mj] - d1[k + mL]*d2[k + mL];
+ b = d1[k + mL]*d2[i + mj] + d1[i + mj]*d2[k + mL];
+ d1[i + mj] = (b + a)*(fREAL)0.5;
+ d1[k + mL] = (b - a)*(fREAL)0.5;
+ a = d1[i + mL]*d2[i + mL] - d1[k + mj]*d2[k + mj];
+ b = d1[k + mj]*d2[i + mL] + d1[i + mL]*d2[k + mj];
+ d1[i + mL] = (b + a)*(fREAL)0.5;
+ d1[k + mj] = (b - a)*(fREAL)0.5;
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+
+void convolve(CompBuf* dst, CompBuf* in1, CompBuf* in2)
+{
+ fREAL *data1, *data2, *fp;
+ unsigned int w2, h2, hw, hh, log2_w, log2_h;
+ fRGB wt, *colp;
+ int x, y, ch;
+ int xbl, ybl, nxb, nyb, xbsz, ybsz;
+ int in2done = 0;
+
+ CompBuf* rdst = alloc_compbuf(in1->x, in1->y, in1->type, 1);
+
+ // convolution result width & height
+ w2 = 2*in2->x - 1;
+ h2 = 2*in2->y - 1;
+ // FFT pow2 required size & log2
+ w2 = nextPow2(w2, &log2_w);
+ h2 = nextPow2(h2, &log2_h);
+
+ // alloc space
+ data1 = (fREAL*)MEM_callocN(3*w2*h2*sizeof(fREAL), "convolve_fast FHT data1");
+ data2 = (fREAL*)MEM_callocN(w2*h2*sizeof(fREAL), "convolve_fast FHT data2");
+
+ // normalize convolutor
+ wt[0] = wt[1] = wt[2] = 0.f;
+ for (y=0; y<in2->y; y++) {
+ colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
+ for (x=0; x<in2->x; x++)
+ fRGB_add(wt, colp[x]);
+ }
+ if (wt[0] != 0.f) wt[0] = 1.f/wt[0];
+ if (wt[1] != 0.f) wt[1] = 1.f/wt[1];
+ if (wt[2] != 0.f) wt[2] = 1.f/wt[2];
+ for (y=0; y<in2->y; y++) {
+ colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
+ for (x=0; x<in2->x; x++)
+ fRGB_colormult(colp[x], wt);
+ }
+
+ // copy image data, unpacking interleaved RGBA into separate channels
+ // only need to calc data1 once
+
+ // block add-overlap
+ hw = in2->x >> 1;
+ hh = in2->y >> 1;
+ xbsz = (w2 + 1) - in2->x;
+ ybsz = (h2 + 1) - in2->y;
+ nxb = in1->x / xbsz;
+ if (in1->x % xbsz) nxb++;
+ nyb = in1->y / ybsz;
+ if (in1->y % ybsz) nyb++;
+ for (ybl=0; ybl<nyb; ybl++) {
+ for (xbl=0; xbl<nxb; xbl++) {
+
+ // each channel one by one
+ for (ch=0; ch<3; ch++) {
+ fREAL* data1ch = &data1[ch*w2*h2];
+
+ // only need to calc fht data from in2 once, can re-use for every block
+ if (!in2done) {
+ // in2, channel ch -> data1
+ for (y=0; y<in2->y; y++) {
+ fp = &data1ch[y*w2];
+ colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
+ for (x=0; x<in2->x; x++)
+ fp[x] = colp[x][ch];
+ }
+ }
+
+ // in1, channel ch -> data2
+ memset(data2, 0, w2*h2*sizeof(fREAL));
+ for (y=0; y<ybsz; y++) {
+ int yy = ybl*ybsz + y;
+ if (yy >= in1->y) continue;
+ fp = &data2[y*w2];
+ colp = (fRGB*)&in1->rect[yy*in1->x*in1->type];
+ for (x=0; x<xbsz; x++) {
+ int xx = xbl*xbsz + x;
+ if (xx >= in1->x) continue;
+ fp[x] = colp[xx][ch];
+ }
+ }
+
+ // forward FHT
+ // zero pad data start is different for each == height+1
+ if (!in2done) FHT2D(data1ch, log2_w, log2_h, in2->y+1, 0);
+ FHT2D(data2, log2_w, log2_h, in2->y+1, 0);
+
+ // FHT2D transposed data, row/col now swapped
+ // convolve & inverse FHT
+ fht_convolve(data2, data1ch, log2_h, log2_w);
+ FHT2D(data2, log2_h, log2_w, 0, 1);
+ // data again transposed, so in order again
+
+ // overlap-add result
+ for (y=0; y<(int)h2; y++) {
+ const int yy = ybl*ybsz + y - hh;
+ if ((yy < 0) || (yy >= in1->y)) continue;
+ fp = &data2[y*w2];
+ colp = (fRGB*)&rdst->rect[yy*in1->x*in1->type];
+ for (x=0; x<(int)w2; x++) {
+ const int xx = xbl*xbsz + x - hw;
+ if ((xx < 0) || (xx >= in1->x)) continue;
+ colp[xx][ch] += fp[x];
+ }
+ }
+
+ }
+ in2done = 1;
+ }
+ }
+
+ MEM_freeN(data2);
+ MEM_freeN(data1);
+ memcpy(dst->rect, rdst->rect, sizeof(float)*dst->x*dst->y*dst->type);
+ free_compbuf(rdst);
+}
+
+
+/*
+ *
+ * Utility functions qd_* should probably be intergrated better with other functions here.
+ *
+ */
+// sets fcol to pixelcolor at (x, y)
+void qd_getPixel(CompBuf* src, int x, int y, float* col)
+{
+ if(src->rect_procedural) {
+ float bc[4];
+ src->rect_procedural(src, bc, (float)x/(float)src->xrad, (float)y/(float)src->yrad);
+
+ switch(src->type){
+ /* these fallthrough to get all the channels */
+ case CB_RGBA: col[3]=bc[3];
+ case CB_VEC3: col[2]=bc[2];
+ case CB_VEC2: col[1]=bc[1];
+ case CB_VAL: col[0]=bc[0];
+ }
+ }
+ else if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ switch(src->type){
+ /* these fallthrough to get all the channels */
+ case CB_RGBA: col[3]=bc[3];
+ case CB_VEC3: col[2]=bc[2];
+ case CB_VEC2: col[1]=bc[1];
+ case CB_VAL: col[0]=bc[0];
+ }
+ }
+ else {
+ switch(src->type){
+ /* these fallthrough to get all the channels */
+ case CB_RGBA: col[3]=0.0;
+ case CB_VEC3: col[2]=0.0;
+ case CB_VEC2: col[1]=0.0;
+ case CB_VAL: col[0]=0.0;
+ }
+ }
+}
+
+// sets pixel (x, y) to color col
+void qd_setPixel(CompBuf* src, int x, int y, float* col)
+{
+ if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ switch(src->type){
+ /* these fallthrough to get all the channels */
+ case CB_RGBA: bc[3]=col[3];
+ case CB_VEC3: bc[2]=col[2];
+ case CB_VEC2: bc[1]=col[1];
+ case CB_VAL: bc[0]=col[0];
+ }
+ }
+}
+
+// adds fcol to pixelcolor (x, y)
+void qd_addPixel(CompBuf* src, int x, int y, float* col)
+{
+ if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ bc[0] += col[0], bc[1] += col[1], bc[2] += col[2];
+ }
+}
+
+// multiplies pixel by factor value f
+void qd_multPixel(CompBuf* src, int x, int y, float f)
+{
+ if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ bc[0] *= f, bc[1] *= f, bc[2] *= f;
+ }
+}
+
+// bilinear interpolation with wraparound
+void qd_getPixelLerpWrap(CompBuf* src, float u, float v, float* col)
+{
+ const float ufl = floor(u), vfl = floor(v);
+ const int nx = (int)ufl % src->x, ny = (int)vfl % src->y;
+ const int x1 = (nx < 0) ? (nx + src->x) : nx;
+ const int y1 = (ny < 0) ? (ny + src->y) : ny;
+ const int x2 = (x1 + 1) % src->x, y2 = (y1 + 1) % src->y;
+ const float* c00 = &src->rect[(x1 + y1*src->x)*src->type];
+ const float* c10 = &src->rect[(x2 + y1*src->x)*src->type];
+ const float* c01 = &src->rect[(x1 + y2*src->x)*src->type];
+ const float* c11 = &src->rect[(x2 + y2*src->x)*src->type];
+ const float uf = u - ufl, vf = v - vfl;
+ const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
+ col[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
+ if (src->type != CB_VAL) {
+ col[1] = w00*c00[1] + w10*c10[1] + w01*c01[1] + w11*c11[1];
+ col[2] = w00*c00[2] + w10*c10[2] + w01*c01[2] + w11*c11[2];
+ col[3] = w00*c00[3] + w10*c10[3] + w01*c01[3] + w11*c11[3];
+ }
+}
+
+// as above, without wrap around
+void qd_getPixelLerp(CompBuf* src, float u, float v, float* col)
+{
+ const float ufl = floor(u), vfl = floor(v);
+ const int x1 = (int)ufl, y1 = (int)vfl;
+ const int x2 = (int)ceil(u), y2 = (int)ceil(v);
+ if ((x2 >= 0) && (y2 >= 0) && (x1 < src->x) && (y1 < src->y)) {
+ const float B[4] = {0,0,0,0};
+ const int ox1 = (x1 < 0), oy1 = (y1 < 0), ox2 = (x2 >= src->x), oy2 = (y2 >= src->y);
+ const float* c00 = (ox1 || oy1) ? B : &src->rect[(x1 + y1*src->x)*src->type];
+ const float* c10 = (ox2 || oy1) ? B : &src->rect[(x2 + y1*src->x)*src->type];
+ const float* c01 = (ox1 || oy2) ? B : &src->rect[(x1 + y2*src->x)*src->type];
+ const float* c11 = (ox2 || oy2) ? B : &src->rect[(x2 + y2*src->x)*src->type];
+ const float uf = u - ufl, vf = v - vfl;
+ const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
+ col[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
+ if (src->type != CB_VAL) {
+ col[1] = w00*c00[1] + w10*c10[1] + w01*c01[1] + w11*c11[1];
+ col[2] = w00*c00[2] + w10*c10[2] + w01*c01[2] + w11*c11[2];
+ col[3] = w00*c00[3] + w10*c10[3] + w01*c01[3] + w11*c11[3];
+ }
+ }
+ else col[0] = col[1] = col[2] = col[3] = 0.f;
+}
+
+// as above, sampling only one channel
+void qd_getPixelLerpChan(CompBuf* src, float u, float v, int chan, float* out)
+{
+ const float ufl = floor(u), vfl = floor(v);
+ const int x1 = (int)ufl, y1 = (int)vfl;
+ const int x2 = (int)ceil(u), y2 = (int)ceil(v);
+ if (chan >= src->type) chan = 0;
+ if ((x2 >= 0) && (y2 >= 0) && (x1 < src->x) && (y1 < src->y)) {
+ const float B[4] = {0,0,0,0};
+ const int ox1 = (x1 < 0), oy1 = (y1 < 0), ox2 = (x2 >= src->x), oy2 = (y2 >= src->y);
+ const float* c00 = (ox1 || oy1) ? B : &src->rect[(x1 + y1*src->x)*src->type + chan];
+ const float* c10 = (ox2 || oy1) ? B : &src->rect[(x2 + y1*src->x)*src->type + chan];
+ const float* c01 = (ox1 || oy2) ? B : &src->rect[(x1 + y2*src->x)*src->type + chan];
+ const float* c11 = (ox2 || oy2) ? B : &src->rect[(x2 + y2*src->x)*src->type + chan];
+ const float uf = u - ufl, vf = v - vfl;
+ const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
+ out[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
+ }
+ else *out = 0.f;
+}
+
+
+CompBuf* qd_downScaledCopy(CompBuf* src, int scale)
+{
+ CompBuf* fbuf;
+ if (scale <= 1)
+ fbuf = dupalloc_compbuf(src);
+ else {
+ int nw = src->x/scale, nh = src->y/scale;
+ if ((2*(src->x % scale)) > scale) nw++;
+ if ((2*(src->y % scale)) > scale) nh++;
+ fbuf = alloc_compbuf(nw, nh, src->type, 1);
+ {
+ int x, y, xx, yy, sx, sy, mx, my;
+ float colsum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
+ float fscale = 1.f/(float)(scale*scale);
+ for (y=0; y<nh; y++) {
+ fRGB* fcolp = (fRGB*)&fbuf->rect[y*fbuf->x*fbuf->type];
+ yy = y*scale;
+ my = yy + scale;
+ if (my > src->y) my = src->y;
+ for (x=0; x<nw; x++) {
+ xx = x*scale;
+ mx = xx + scale;
+ if (mx > src->x) mx = src->x;
+ colsum[0] = colsum[1] = colsum[2] = 0.f;
+ for (sy=yy; sy<my; sy++) {
+ fRGB* scolp = (fRGB*)&src->rect[sy*src->x*src->type];
+ for (sx=xx; sx<mx; sx++)
+ fRGB_add(colsum, scolp[sx]);
+ }
+ fRGB_mult(colsum, fscale);
+ fRGB_copy(fcolp[x], colsum);
+ }
+ }
+ }
+ }
+ return fbuf;
+}
+
+// fast g.blur, per channel
+// xy var. bits 1 & 2 ca be used to blur in x or y direction separately
+void IIR_gauss(CompBuf* src, float sigma, int chan, int xy)
+{
+ double q, q2, sc, cf[4], tsM[9], tsu[3], tsv[3];
+ double *X, *Y, *W;
+ int i, x, y, sz;
+
+ // <0.5 not valid, though can have a possibly useful sort of sharpening effect
+ if (sigma < 0.5) return;
+
+ if ((xy < 1) || (xy > 3)) xy = 3;
+
+ // XXX The YVV macro defined below explicitely expects sources of at least 3x3 pixels,
+ // so just skiping blur along faulty direction if src's def is below that limit!
+ if (src->x < 3) xy &= ~(int) 1;
+ if (src->y < 3) xy &= ~(int) 2;
+ if (xy < 1) return;
+
+ // see "Recursive Gabor Filtering" by Young/VanVliet
+ // all factors here in double.prec. Required, because for single.prec it seems to blow up if sigma > ~200
+ if (sigma >= 3.556)
+ q = 0.9804*(sigma - 3.556) + 2.5091;
+ else // sigma >= 0.5
+ q = (0.0561*sigma + 0.5784)*sigma - 0.2568;
+ q2 = q*q;
+ sc = (1.1668 + q)*(3.203729649 + (2.21566 + q)*q);
+ // no gabor filtering here, so no complex multiplies, just the regular coefs.
+ // all negated here, so as not to have to recalc Triggs/Sdika matrix
+ cf[1] = q*(5.788961737 + (6.76492 + 3.0*q)*q)/ sc;
+ cf[2] = -q2*(3.38246 + 3.0*q)/sc;
+ // 0 & 3 unchanged
+ cf[3] = q2*q/sc;
+ cf[0] = 1.0 - cf[1] - cf[2] - cf[3];
+
+ // Triggs/Sdika border corrections,
+ // it seems to work, not entirely sure if it is actually totally correct,
+ // Besides J.M.Geusebroek's anigauss.c (see http://www.science.uva.nl/~mark),
+ // found one other implementation by Cristoph Lampert,
+ // but neither seem to be quite the same, result seems to be ok sofar anyway.
+ // Extra scale factor here to not have to do it in filter,
+ // though maybe this had something to with the precision errors
+ sc = cf[0]/((1.0 + cf[1] - cf[2] + cf[3])*(1.0 - cf[1] - cf[2] - cf[3])*(1.0 + cf[2] + (cf[1] - cf[3])*cf[3]));
+ tsM[0] = sc*(-cf[3]*cf[1] + 1.0 - cf[3]*cf[3] - cf[2]);
+ tsM[1] = sc*((cf[3] + cf[1])*(cf[2] + cf[3]*cf[1]));
+ tsM[2] = sc*(cf[3]*(cf[1] + cf[3]*cf[2]));
+ tsM[3] = sc*(cf[1] + cf[3]*cf[2]);
+ tsM[4] = sc*(-(cf[2] - 1.0)*(cf[2] + cf[3]*cf[1]));
+ tsM[5] = sc*(-(cf[3]*cf[1] + cf[3]*cf[3] + cf[2] - 1.0)*cf[3]);
+ tsM[6] = sc*(cf[3]*cf[1] + cf[2] + cf[1]*cf[1] - cf[2]*cf[2]);
+ tsM[7] = sc*(cf[1]*cf[2] + cf[3]*cf[2]*cf[2] - cf[1]*cf[3]*cf[3] - cf[3]*cf[3]*cf[3] - cf[3]*cf[2] + cf[3]);
+ tsM[8] = sc*(cf[3]*(cf[1] + cf[3]*cf[2]));
+
+#define YVV(L)\
+{\
+ W[0] = cf[0]*X[0] + cf[1]*X[0] + cf[2]*X[0] + cf[3]*X[0];\
+ W[1] = cf[0]*X[1] + cf[1]*W[0] + cf[2]*X[0] + cf[3]*X[0];\
+ W[2] = cf[0]*X[2] + cf[1]*W[1] + cf[2]*W[0] + cf[3]*X[0];\
+ for (i=3; i<L; i++)\
+ W[i] = cf[0]*X[i] + cf[1]*W[i-1] + cf[2]*W[i-2] + cf[3]*W[i-3];\
+ tsu[0] = W[L-1] - X[L-1];\
+ tsu[1] = W[L-2] - X[L-1];\
+ tsu[2] = W[L-3] - X[L-1];\
+ tsv[0] = tsM[0]*tsu[0] + tsM[1]*tsu[1] + tsM[2]*tsu[2] + X[L-1];\
+ tsv[1] = tsM[3]*tsu[0] + tsM[4]*tsu[1] + tsM[5]*tsu[2] + X[L-1];\
+ tsv[2] = tsM[6]*tsu[0] + tsM[7]*tsu[1] + tsM[8]*tsu[2] + X[L-1];\
+ Y[L-1] = cf[0]*W[L-1] + cf[1]*tsv[0] + cf[2]*tsv[1] + cf[3]*tsv[2];\
+ Y[L-2] = cf[0]*W[L-2] + cf[1]*Y[L-1] + cf[2]*tsv[0] + cf[3]*tsv[1];\
+ Y[L-3] = cf[0]*W[L-3] + cf[1]*Y[L-2] + cf[2]*Y[L-1] + cf[3]*tsv[0];\
+ for (i=L-4; i>=0; i--)\
+ Y[i] = cf[0]*W[i] + cf[1]*Y[i+1] + cf[2]*Y[i+2] + cf[3]*Y[i+3];\
+}
+
+ // intermediate buffers
+ sz = MAX2(src->x, src->y);
+ X = MEM_callocN(sz*sizeof(double), "IIR_gauss X buf");
+ Y = MEM_callocN(sz*sizeof(double), "IIR_gauss Y buf");
+ W = MEM_callocN(sz*sizeof(double), "IIR_gauss W buf");
+ if (xy & 1) { // H
+ for (y=0; y<src->y; ++y) {
+ const int yx = y*src->x;
+ for (x=0; x<src->x; ++x)
+ X[x] = src->rect[(x + yx)*src->type + chan];
+ YVV(src->x);
+ for (x=0; x<src->x; ++x)
+ src->rect[(x + yx)*src->type + chan] = Y[x];
+ }
+ }
+ if (xy & 2) { // V
+ for (x=0; x<src->x; ++x) {
+ for (y=0; y<src->y; ++y)
+ X[y] = src->rect[(x + y*src->x)*src->type + chan];
+ YVV(src->y);
+ for (y=0; y<src->y; ++y)
+ src->rect[(x + y*src->x)*src->type + chan] = Y[y];
+ }
+ }
+
+ MEM_freeN(X);
+ MEM_freeN(W);
+ MEM_freeN(Y);
+#undef YVV
+}
+