Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHans Goudey <h.goudey@me.com>2022-03-30 18:37:39 +0300
committerHans Goudey <h.goudey@me.com>2022-03-30 18:37:39 +0300
commit60a6fbf5b59911cba54d30bd1105626fcc577875 (patch)
treeaa7dbda40335765f75ebc1112a0ad8176dd3eaef /source/blender/nodes/geometry/nodes/node_geo_curve_resample.cc
parentba28c10199b363df469cf70f2e9436be90deb258 (diff)
Curves: Port resample node to the new data-block
This commit re-implements the resample curve node to use the new curves type instead of CurveEval. The largest changes come from the need to keep track of offsets into the point attribute arrays, and the fact that the attributes for all curves are stored in a flat array. Another difference is that a bit more of the logic is handled by building of the field network inputs. The idea is to let the field evaluator handle potential optimizations while making the rest of the code simpler. When resampling 1 million small poly curves,the node is about 6 times faster compared to 3.1 on my hardware (500ms to 80ms). This also adds support for Catmull Rom curve inputs. Differential Revision: https://developer.blender.org/D14435
Diffstat (limited to 'source/blender/nodes/geometry/nodes/node_geo_curve_resample.cc')
-rw-r--r--source/blender/nodes/geometry/nodes/node_geo_curve_resample.cc715
1 files changed, 542 insertions, 173 deletions
diff --git a/source/blender/nodes/geometry/nodes/node_geo_curve_resample.cc b/source/blender/nodes/geometry/nodes/node_geo_curve_resample.cc
index 5a4c2ad1660..54fa56f7419 100644
--- a/source/blender/nodes/geometry/nodes/node_geo_curve_resample.cc
+++ b/source/blender/nodes/geometry/nodes/node_geo_curve_resample.cc
@@ -1,11 +1,13 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BLI_array.hh"
+#include "BLI_index_mask_ops.hh"
+#include "BLI_length_parameterize.hh"
#include "BLI_task.hh"
#include "BLI_timeit.hh"
#include "BKE_attribute_math.hh"
-#include "BKE_spline.hh"
+#include "BKE_curves.hh"
#include "UI_interface.h"
#include "UI_resources.h"
@@ -23,7 +25,7 @@ static void node_declare(NodeDeclarationBuilder &b)
b.add_input<decl::Int>(N_("Count")).default_value(10).min(1).max(100000).supports_field();
b.add_input<decl::Float>(N_("Length"))
.default_value(0.1f)
- .min(0.001f)
+ .min(0.01f)
.supports_field()
.subtype(PROP_DISTANCE);
b.add_output<decl::Geometry>(N_("Curve"));
@@ -54,195 +56,549 @@ static void node_update(bNodeTree *ntree, bNode *node)
nodeSetSocketAvailability(ntree, length_socket, mode == GEO_NODE_CURVE_RESAMPLE_LENGTH);
}
-struct SampleModeParam {
- GeometryNodeCurveResampleMode mode;
- std::optional<Field<float>> length;
- std::optional<Field<int>> count;
- Field<bool> selection;
+/** Returns the number of evaluated points in each curve. Used to deselect curves with none. */
+class EvaluatedCountFieldInput final : public GeometryFieldInput {
+ public:
+ EvaluatedCountFieldInput() : GeometryFieldInput(CPPType::get<int>(), "Evaluated Point Count")
+ {
+ category_ = Category::Generated;
+ }
+
+ GVArray get_varray_for_context(const GeometryComponent &component,
+ const AttributeDomain domain,
+ IndexMask UNUSED(mask)) const final
+ {
+ if (component.type() == GEO_COMPONENT_TYPE_CURVE && domain == ATTR_DOMAIN_CURVE &&
+ !component.is_empty()) {
+ const CurveComponent &curve_component = static_cast<const CurveComponent &>(component);
+ const Curves &curves_id = *curve_component.get_for_read();
+ const bke::CurvesGeometry &curves = bke::CurvesGeometry::wrap(curves_id.geometry);
+ curves.ensure_evaluated_offsets();
+ return VArray<int>::ForFunc(curves.curves_num(), [&](const int64_t index) -> int {
+ return curves.evaluated_points_for_curve(index).size();
+ });
+ }
+ return {};
+ }
+
+ uint64_t hash() const override
+ {
+ /* Some random constant hash. */
+ return 234905872379865;
+ }
+
+ bool is_equal_to(const fn::FieldNode &other) const override
+ {
+ return dynamic_cast<const EvaluatedCountFieldInput *>(&other) != nullptr;
+ }
};
-static SplinePtr resample_spline(const Spline &src, const int count)
+/**
+ * Return true if the attribute should be copied/interpolated to the result curves.
+ * Don't output attributes that correspond to curve types that have no curves in the result.
+ */
+static bool interpolate_attribute_to_curves(const AttributeIDRef &attribute_id,
+ const std::array<int, CURVE_TYPES_NUM> &type_counts)
{
- std::unique_ptr<PolySpline> dst = std::make_unique<PolySpline>();
- Spline::copy_base_settings(src, *dst);
-
- if (src.evaluated_edges_size() < 1 || count == 1) {
- dst->resize(1);
- dst->positions().first() = src.positions().first();
- dst->radii().first() = src.radii().first();
- dst->tilts().first() = src.tilts().first();
-
- src.attributes.foreach_attribute(
- [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
- std::optional<GSpan> src_attribute = src.attributes.get_for_read(attribute_id);
- if (dst->attributes.create(attribute_id, meta_data.data_type)) {
- std::optional<GMutableSpan> dst_attribute = dst->attributes.get_for_write(
- attribute_id);
- if (dst_attribute) {
- src_attribute->type().copy_assign(src_attribute->data(), dst_attribute->data());
- return true;
- }
- }
- BLI_assert_unreachable();
- return false;
- },
- ATTR_DOMAIN_POINT);
- return dst;
+ if (!attribute_id.is_named()) {
+ return true;
}
+ if (ELEM(attribute_id.name(),
+ "handle_type_left",
+ "handle_type_right",
+ "handle_left",
+ "handle_right")) {
+ return type_counts[CURVE_TYPE_BEZIER] != 0;
+ }
+ if (ELEM(attribute_id.name(), "nurbs_weight")) {
+ return type_counts[CURVE_TYPE_NURBS] != 0;
+ }
+ return true;
+}
- dst->resize(count);
+/**
+ * Return true if the attribute should be copied to poly curves.
+ */
+static bool interpolate_attribute_to_poly_curve(const AttributeIDRef &attribute_id)
+{
+ static const Set<StringRef> no_interpolation{{
+ "handle_type_left",
+ "handle_type_right",
+ "handle_position_right",
+ "handle_position_left",
+ "nurbs_weight",
+ }};
+ return !(attribute_id.is_named() && no_interpolation.contains(attribute_id.name()));
+}
- Array<float> uniform_samples = src.sample_uniform_index_factors(count);
+/**
+ * Retrieve spans from source and result attributes.
+ */
+static void retrieve_attribute_spans(const Span<AttributeIDRef> ids,
+ const CurveComponent &src_component,
+ CurveComponent &dst_component,
+ Vector<GSpan> &src,
+ Vector<GMutableSpan> &dst,
+ Vector<OutputAttribute> &dst_attributes)
+{
+ for (const int i : ids.index_range()) {
+ GVArray src_attribute = src_component.attribute_try_get_for_read(ids[i], ATTR_DOMAIN_POINT);
+ BLI_assert(src_attribute);
+ src.append(src_attribute.get_internal_span());
+
+ const CustomDataType data_type = bke::cpp_type_to_custom_data_type(src_attribute.type());
+ OutputAttribute dst_attribute = dst_component.attribute_try_get_for_output_only(
+ ids[i], ATTR_DOMAIN_POINT, data_type);
+ dst.append(dst_attribute.as_span());
+ dst_attributes.append(std::move(dst_attribute));
+ }
+}
- src.sample_with_index_factors<float3>(
- src.evaluated_positions(), uniform_samples, dst->positions());
+struct AttributesForInterpolation : NonCopyable, NonMovable {
+ Vector<GSpan> src;
+ Vector<GMutableSpan> dst;
- src.sample_with_index_factors<float>(
- src.interpolate_to_evaluated(src.radii()), uniform_samples, dst->radii());
+ Vector<OutputAttribute> dst_attributes;
- src.sample_with_index_factors<float>(
- src.interpolate_to_evaluated(src.tilts()), uniform_samples, dst->tilts());
+ Vector<GSpan> src_no_interpolation;
+ Vector<GMutableSpan> dst_no_interpolation;
+};
- src.attributes.foreach_attribute(
- [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
- std::optional<GSpan> input_attribute = src.attributes.get_for_read(attribute_id);
- if (dst->attributes.create(attribute_id, meta_data.data_type)) {
- std::optional<GMutableSpan> output_attribute = dst->attributes.get_for_write(
- attribute_id);
- if (output_attribute) {
- src.sample_with_index_factors(src.interpolate_to_evaluated(*input_attribute),
- uniform_samples,
- *output_attribute);
- return true;
- }
+/**
+ * Gather a set of all generic attribute IDs to copy to the result curves.
+ */
+static void gather_point_attributes_to_interpolate(const CurveComponent &src_component,
+ CurveComponent &dst_component,
+ AttributesForInterpolation &result)
+{
+ const Curves &dst_curves_id = *dst_component.get_for_read();
+ const bke::CurvesGeometry &dst_curves = bke::CurvesGeometry::wrap(dst_curves_id.geometry);
+ const std::array<int, CURVE_TYPES_NUM> type_counts = dst_curves.count_curve_types();
+
+ VectorSet<AttributeIDRef> ids;
+ VectorSet<AttributeIDRef> ids_no_interpolation;
+ src_component.attribute_foreach(
+ [&](const AttributeIDRef &id, const AttributeMetaData meta_data) {
+ if (meta_data.domain != ATTR_DOMAIN_POINT) {
+ return true;
+ }
+ if (!interpolate_attribute_to_curves(id, type_counts)) {
+ return true;
+ }
+ if (interpolate_attribute_to_poly_curve(id)) {
+ ids.add_new(id);
+ }
+ else {
+ ids_no_interpolation.add_new(id);
}
+ return true;
+ });
+
+ /* Position is handled differently since it has non-generic interpolation for Bezier
+ * curves and because the evaluated positions are cached for each evaluated point. */
+ ids.remove_contained("position");
+
+ retrieve_attribute_spans(
+ ids, src_component, dst_component, result.src, result.dst, result.dst_attributes);
+
+ /* Attributes that aren't interpolated like Bezier handles still have to be be copied
+ * to the result when there are any unselected curves of the corresponding type. */
+ retrieve_attribute_spans(ids_no_interpolation,
+ src_component,
+ dst_component,
+ result.src_no_interpolation,
+ result.dst_no_interpolation,
+ result.dst_attributes);
+}
- BLI_assert_unreachable();
- return false;
- },
- ATTR_DOMAIN_POINT);
+/**
+ * Copy the provided point attribute values between all curves in the #curve_ranges index
+ * ranges, assuming that all curves are the same size in #src_curves and #dst_curves.
+ */
+template<typename T>
+static void copy_between_curves(const bke::CurvesGeometry &src_curves,
+ const bke::CurvesGeometry &dst_curves,
+ const Span<IndexRange> curve_ranges,
+ const Span<T> src,
+ const MutableSpan<T> dst)
+{
+ threading::parallel_for(curve_ranges.index_range(), 512, [&](IndexRange range) {
+ for (const IndexRange range : curve_ranges.slice(range)) {
+ const IndexRange src_points = src_curves.points_for_curves(range);
+ const IndexRange dst_points = dst_curves.points_for_curves(range);
+ /* The arrays might be large, so a threaded copy might make sense here too. */
+ dst.slice(dst_points).copy_from(src.slice(src_points));
+ }
+ });
+}
+static void copy_between_curves(const bke::CurvesGeometry &src_curves,
+ const bke::CurvesGeometry &dst_curves,
+ const Span<IndexRange> unselected_ranges,
+ const GSpan src,
+ const GMutableSpan dst)
+{
+ attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
+ using T = decltype(dummy);
+ copy_between_curves(src_curves, dst_curves, unselected_ranges, src.typed<T>(), dst.typed<T>());
+ });
+}
- return dst;
+/**
+ * Copy the size of every curve in #curve_ranges to the corresponding index in #counts.
+ */
+static void fill_curve_counts(const bke::CurvesGeometry &src_curves,
+ const Span<IndexRange> curve_ranges,
+ MutableSpan<int> counts)
+{
+ threading::parallel_for(curve_ranges.index_range(), 512, [&](IndexRange ranges_range) {
+ for (const IndexRange curves_range : curve_ranges.slice(ranges_range)) {
+ for (const int i : curves_range) {
+ counts[i] = src_curves.points_for_curve(i).size();
+ }
+ }
+ });
}
-static SplinePtr resample_spline_evaluated(const Spline &src)
+/**
+ * Turn an array of sizes into the offset at each index including all previous sizes.
+ */
+static void accumulate_counts_to_offsets(MutableSpan<int> counts_to_offsets)
{
- std::unique_ptr<PolySpline> dst = std::make_unique<PolySpline>();
- Spline::copy_base_settings(src, *dst);
- dst->resize(src.evaluated_points_size());
-
- dst->positions().copy_from(src.evaluated_positions());
- dst->positions().copy_from(src.evaluated_positions());
- src.interpolate_to_evaluated(src.radii()).materialize(dst->radii());
- src.interpolate_to_evaluated(src.tilts()).materialize(dst->tilts());
-
- src.attributes.foreach_attribute(
- [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
- std::optional<GSpan> src_attribute = src.attributes.get_for_read(attribute_id);
- if (dst->attributes.create(attribute_id, meta_data.data_type)) {
- std::optional<GMutableSpan> dst_attribute = dst->attributes.get_for_write(attribute_id);
- if (dst_attribute) {
- src.interpolate_to_evaluated(*src_attribute).materialize(dst_attribute->data());
- return true;
+ int total = 0;
+ for (const int i : counts_to_offsets.index_range().drop_back(1)) {
+ const int count = counts_to_offsets[i];
+ BLI_assert(count > 0);
+ counts_to_offsets[i] = total;
+ total += count;
+ }
+ counts_to_offsets.last() = total;
+}
+
+/**
+ * Create new curves where the selected curves have been resampled with a number of uniform-length
+ * samples defined by the count field. Interpolate attributes to the result, with an accuracy that
+ * depends on the curve's resolution parameter.
+ *
+ * \warning The values provided by the #count_field must be 1 or greater.
+ * \warning Curves with no evaluated points must not be selected.
+ */
+static Curves *resample_to_uniform_count(const CurveComponent &src_component,
+ const Field<bool> &selection_field,
+ const Field<int> &count_field)
+{
+ const Curves &src_curves_id = *src_component.get_for_read();
+ const bke::CurvesGeometry &src_curves = bke::CurvesGeometry::wrap(src_curves_id.geometry);
+
+ /* Create the new curves without any points and evaluate the final count directly
+ * into the offsets array, in order to be accumulated into offsets later. */
+ Curves *dst_curves_id = bke::curves_new_nomain(0, src_curves.curves_num());
+ bke::CurvesGeometry &dst_curves = bke::CurvesGeometry::wrap(dst_curves_id->geometry);
+ CurveComponent dst_component;
+ dst_component.replace(dst_curves_id, GeometryOwnershipType::Editable);
+ /* Directly copy curve attributes, since they stay the same (except for curve types). */
+ CustomData_copy(&src_curves.curve_data,
+ &dst_curves.curve_data,
+ CD_MASK_ALL,
+ CD_DUPLICATE,
+ src_curves.curves_num());
+ MutableSpan<int> dst_offsets = dst_curves.offsets();
+
+ GeometryComponentFieldContext field_context{src_component, ATTR_DOMAIN_CURVE};
+ fn::FieldEvaluator evaluator{field_context, src_curves.curves_num()};
+ evaluator.set_selection(selection_field);
+ evaluator.add_with_destination(count_field, dst_offsets);
+ evaluator.evaluate();
+ const IndexMask selection = evaluator.get_evaluated_selection_as_mask();
+ const Vector<IndexRange> unselected_ranges = selection.extract_ranges_invert(
+ src_curves.curves_range(), nullptr);
+
+ /* Fill the counts for the curves that aren't selected and accumulate the counts into offsets. */
+ fill_curve_counts(src_curves, unselected_ranges, dst_offsets);
+ accumulate_counts_to_offsets(dst_offsets);
+ dst_curves.resize(dst_offsets.last(), dst_curves.curves_num());
+
+ /* All resampled curves are poly curves. */
+ dst_curves.curve_types().fill_indices(selection, CURVE_TYPE_POLY);
+
+ VArray<bool> curves_cyclic = src_curves.cyclic();
+ VArray<int8_t> curve_types = src_curves.curve_types();
+ Span<float3> evaluated_positions = src_curves.evaluated_positions();
+ MutableSpan<float3> dst_positions = dst_curves.positions();
+
+ AttributesForInterpolation attributes;
+ gather_point_attributes_to_interpolate(src_component, dst_component, attributes);
+
+ src_curves.ensure_evaluated_lengths();
+
+ /* Sampling arbitrary attributes works by first interpolating them to the curve's standard
+ * "evaluated points" and then interpolating that result with the uniform samples. This is
+ * potentially wasteful when downsampling a curve to many fewer points. There are two possible
+ * solutions: only sample the necessary points for interpolation, or first sample curve
+ * parameter/segment indices and evaluate the curve directly. */
+ Array<int> sample_indices(dst_curves.points_num());
+ Array<float> sample_factors(dst_curves.points_num());
+
+ /* Use a "for each group of curves: for each attribute: for each curve" pattern to work on
+ * smaller sections of data that ideally fit into CPU cache better than simply one attribute at a
+ * time or one curve at a time. */
+ threading::parallel_for(selection.index_range(), 512, [&](IndexRange selection_range) {
+ const IndexMask sliced_selection = selection.slice(selection_range);
+
+ Vector<std::byte> evaluated_buffer;
+
+ /* Gather uniform samples based on the accumulated lengths of the original curve. */
+ for (const int i_curve : sliced_selection) {
+ const bool cyclic = curves_cyclic[i_curve];
+ const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
+ length_parameterize::create_uniform_samples(
+ src_curves.evaluated_lengths_for_curve(i_curve, cyclic),
+ curves_cyclic[i_curve],
+ sample_indices.as_mutable_span().slice(dst_points),
+ sample_factors.as_mutable_span().slice(dst_points));
+ }
+
+ /* For every attribute, evaluate attributes from every curve in the range in the original
+ * curve's "evaluated points", then use linear interpolation to sample to the result. */
+ for (const int i_attribute : attributes.dst.index_range()) {
+ attribute_math::convert_to_static_type(attributes.src[i_attribute].type(), [&](auto dummy) {
+ using T = decltype(dummy);
+ Span<T> src = attributes.src[i_attribute].typed<T>();
+ MutableSpan<T> dst = attributes.dst[i_attribute].typed<T>();
+
+ for (const int i_curve : sliced_selection) {
+ const IndexRange src_points = src_curves.points_for_curve(i_curve);
+ const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
+
+ if (curve_types[i_curve] == CURVE_TYPE_POLY) {
+ length_parameterize::linear_interpolation(src.slice(src_points),
+ sample_indices.as_span().slice(dst_points),
+ sample_factors.as_span().slice(dst_points),
+ dst.slice(dst_points));
+ }
+ else {
+ const int evaluated_size = src_curves.evaluated_points_for_curve(i_curve).size();
+ evaluated_buffer.clear();
+ evaluated_buffer.resize(sizeof(T) * evaluated_size);
+ MutableSpan<T> evaluated = evaluated_buffer.as_mutable_span().cast<T>();
+ src_curves.interpolate_to_evaluated(i_curve, src.slice(src_points), evaluated);
+
+ length_parameterize::linear_interpolation(evaluated.as_span(),
+ sample_indices.as_span().slice(dst_points),
+ sample_factors.as_span().slice(dst_points),
+ dst.slice(dst_points));
}
}
+ });
+ }
- BLI_assert_unreachable();
- return true;
- },
- ATTR_DOMAIN_POINT);
+ /* Interpolate the evaluated positions to the resampled curves. */
+ for (const int i_curve : sliced_selection) {
+ const IndexRange src_points = src_curves.evaluated_points_for_curve(i_curve);
+ const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
+ length_parameterize::linear_interpolation(evaluated_positions.slice(src_points),
+ sample_indices.as_span().slice(dst_points),
+ sample_factors.as_span().slice(dst_points),
+ dst_positions.slice(dst_points));
+ }
- return dst;
+ /* Fill the default value for non-interpolating attributes that still must be copied. */
+ for (GMutableSpan dst : attributes.dst_no_interpolation) {
+ for (const int i_curve : sliced_selection) {
+ const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
+ dst.type().value_initialize_n(dst.slice(dst_points).data(), dst_points.size());
+ }
+ }
+ });
+
+ /* Any attribute data from unselected curve points can be directly copied. */
+ for (const int i : attributes.src.index_range()) {
+ copy_between_curves(
+ src_curves, dst_curves, unselected_ranges, attributes.src[i], attributes.dst[i]);
+ }
+ for (const int i : attributes.src_no_interpolation.index_range()) {
+ copy_between_curves(src_curves,
+ dst_curves,
+ unselected_ranges,
+ attributes.src_no_interpolation[i],
+ attributes.dst_no_interpolation[i]);
+ }
+
+ /* Copy positions for unselected curves. */
+ Span<float3> src_positions = src_curves.positions();
+ copy_between_curves(src_curves, dst_curves, unselected_ranges, src_positions, dst_positions);
+
+ for (OutputAttribute &attribute : attributes.dst_attributes) {
+ attribute.save();
+ }
+
+ return dst_curves_id;
}
-static std::unique_ptr<CurveEval> resample_curve(const CurveComponent *component,
- const SampleModeParam &mode_param)
+/**
+ * Evaluate each selected curve to its implicit evaluated points.
+ *
+ * \warning Curves with no evaluated points must not be selected.
+ */
+static Curves *resample_to_evaluated(const CurveComponent &src_component,
+ const Field<bool> &selection_field)
{
- const std::unique_ptr<CurveEval> input_curve = curves_to_curve_eval(*component->get_for_read());
- GeometryComponentFieldContext field_context{*component, ATTR_DOMAIN_CURVE};
- const int domain_size = component->attribute_domain_size(ATTR_DOMAIN_CURVE);
-
- Span<SplinePtr> input_splines = input_curve->splines();
-
- std::unique_ptr<CurveEval> output_curve = std::make_unique<CurveEval>();
- output_curve->resize(input_splines.size());
- MutableSpan<SplinePtr> output_splines = output_curve->splines();
-
- if (mode_param.mode == GEO_NODE_CURVE_RESAMPLE_COUNT) {
- fn::FieldEvaluator evaluator{field_context, domain_size};
- evaluator.add(*mode_param.count);
- evaluator.add(mode_param.selection);
- evaluator.evaluate();
- const VArray<int> &cuts = evaluator.get_evaluated<int>(0);
- const VArray<bool> &selections = evaluator.get_evaluated<bool>(1);
-
- threading::parallel_for(input_splines.index_range(), 128, [&](IndexRange range) {
- for (const int i : range) {
- BLI_assert(mode_param.count);
- if (selections[i] && input_splines[i]->evaluated_points_size() > 0) {
- output_splines[i] = resample_spline(*input_splines[i], std::max(cuts[i], 1));
- }
- else {
- output_splines[i] = input_splines[i]->copy();
+ const Curves &src_curves_id = *src_component.get_for_read();
+ const bke::CurvesGeometry &src_curves = bke::CurvesGeometry::wrap(src_curves_id.geometry);
+
+ GeometryComponentFieldContext field_context{src_component, ATTR_DOMAIN_CURVE};
+ fn::FieldEvaluator evaluator{field_context, src_curves.curves_num()};
+ evaluator.set_selection(selection_field);
+ evaluator.evaluate();
+ const IndexMask selection = evaluator.get_evaluated_selection_as_mask();
+ const Vector<IndexRange> unselected_ranges = selection.extract_ranges_invert(
+ src_curves.curves_range(), nullptr);
+
+ Curves *dst_curves_id = bke::curves_new_nomain(0, src_curves.curves_num());
+ bke::CurvesGeometry &dst_curves = bke::CurvesGeometry::wrap(dst_curves_id->geometry);
+ CurveComponent dst_component;
+ dst_component.replace(dst_curves_id, GeometryOwnershipType::Editable);
+ /* Directly copy curve attributes, since they stay the same (except for curve types). */
+ CustomData_copy(&src_curves.curve_data,
+ &dst_curves.curve_data,
+ CD_MASK_ALL,
+ CD_DUPLICATE,
+ src_curves.curves_num());
+ /* All resampled curves are poly curves. */
+ dst_curves.curve_types().fill_indices(selection, CURVE_TYPE_POLY);
+ MutableSpan<int> dst_offsets = dst_curves.offsets();
+
+ src_curves.ensure_evaluated_offsets();
+ threading::parallel_for(selection.index_range(), 4096, [&](IndexRange range) {
+ for (const int i : selection.slice(range)) {
+ dst_offsets[i] = src_curves.evaluated_points_for_curve(i).size();
+ }
+ });
+ fill_curve_counts(src_curves, unselected_ranges, dst_offsets);
+ accumulate_counts_to_offsets(dst_offsets);
+
+ dst_curves.resize(dst_offsets.last(), dst_curves.curves_num());
+
+ /* Create the correct number of uniform-length samples for every selected curve. */
+ Span<float3> evaluated_positions = src_curves.evaluated_positions();
+ MutableSpan<float3> dst_positions = dst_curves.positions();
+
+ AttributesForInterpolation attributes;
+ gather_point_attributes_to_interpolate(src_component, dst_component, attributes);
+
+ threading::parallel_for(selection.index_range(), 512, [&](IndexRange selection_range) {
+ const IndexMask sliced_selection = selection.slice(selection_range);
+
+ /* Evaluate generic point attributes directly to the result attributes. */
+ for (const int i_attribute : attributes.dst.index_range()) {
+ attribute_math::convert_to_static_type(attributes.src[i_attribute].type(), [&](auto dummy) {
+ using T = decltype(dummy);
+ Span<T> src = attributes.src[i_attribute].typed<T>();
+ MutableSpan<T> dst = attributes.dst[i_attribute].typed<T>();
+
+ for (const int i_curve : sliced_selection) {
+ const IndexRange src_points = src_curves.points_for_curve(i_curve);
+ const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
+ src_curves.interpolate_to_evaluated(
+ i_curve, src.slice(src_points), dst.slice(dst_points));
}
+ });
+ }
+
+ /* Copy the evaluated positions to the selected curves. */
+ for (const int i_curve : sliced_selection) {
+ const IndexRange src_points = src_curves.evaluated_points_for_curve(i_curve);
+ const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
+ dst_positions.slice(dst_points).copy_from(evaluated_positions.slice(src_points));
+ }
+
+ /* Fill the default value for non-interpolating attributes that still must be copied. */
+ for (GMutableSpan dst : attributes.dst_no_interpolation) {
+ for (const int i_curve : sliced_selection) {
+ const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
+ dst.type().value_initialize_n(dst.slice(dst_points).data(), dst_points.size());
}
- });
+ }
+ });
+
+ /* Any attribute data from unselected curve points can be directly copied. */
+ for (const int i : attributes.src.index_range()) {
+ copy_between_curves(
+ src_curves, dst_curves, unselected_ranges, attributes.src[i], attributes.dst[i]);
}
- else if (mode_param.mode == GEO_NODE_CURVE_RESAMPLE_LENGTH) {
- fn::FieldEvaluator evaluator{field_context, domain_size};
- evaluator.add(*mode_param.length);
- evaluator.add(mode_param.selection);
- evaluator.evaluate();
- const VArray<float> &lengths = evaluator.get_evaluated<float>(0);
- const VArray<bool> &selections = evaluator.get_evaluated<bool>(1);
-
- threading::parallel_for(input_splines.index_range(), 128, [&](IndexRange range) {
- for (const int i : range) {
- if (selections[i] && input_splines[i]->evaluated_points_size() > 0) {
- /* Don't allow asymptotic count increase for low resolution values. */
- const float divide_length = std::max(lengths[i], 0.0001f);
- const float spline_length = input_splines[i]->length();
- const int count = std::max(int(spline_length / divide_length) + 1, 1);
- output_splines[i] = resample_spline(*input_splines[i], count);
- }
- else {
- output_splines[i] = input_splines[i]->copy();
- }
- }
- });
+ for (const int i : attributes.src_no_interpolation.index_range()) {
+ copy_between_curves(src_curves,
+ dst_curves,
+ unselected_ranges,
+ attributes.src_no_interpolation[i],
+ attributes.dst_no_interpolation[i]);
}
- else if (mode_param.mode == GEO_NODE_CURVE_RESAMPLE_EVALUATED) {
- fn::FieldEvaluator evaluator{field_context, domain_size};
- evaluator.add(mode_param.selection);
- evaluator.evaluate();
- const VArray<bool> &selections = evaluator.get_evaluated<bool>(0);
-
- threading::parallel_for(input_splines.index_range(), 128, [&](IndexRange range) {
- for (const int i : range) {
- if (selections[i] && input_splines[i]->evaluated_points_size() > 0) {
- output_splines[i] = resample_spline_evaluated(*input_splines[i]);
- }
- else {
- output_splines[i] = input_splines[i]->copy();
- }
- }
- });
+
+ /* Copy positions for unselected curves. */
+ Span<float3> src_positions = src_curves.positions();
+ copy_between_curves(src_curves, dst_curves, unselected_ranges, src_positions, dst_positions);
+
+ for (OutputAttribute &attribute : attributes.dst_attributes) {
+ attribute.save();
}
- output_curve->attributes = input_curve->attributes;
- return output_curve;
+
+ return dst_curves_id;
}
-static void geometry_set_curve_resample(GeometrySet &geometry_set,
- const SampleModeParam &mode_param)
+/**
+ * Create a resampled curve point count field for both "uniform" options.
+ * The complexity is handled here in order to make the actual resampling functions simpler.
+ */
+static Field<int> get_curve_count_field(GeoNodeExecParams params,
+ const GeometryNodeCurveResampleMode mode)
{
- if (!geometry_set.has_curves()) {
- return;
+ if (mode == GEO_NODE_CURVE_RESAMPLE_COUNT) {
+ static fn::CustomMF_SI_SO<int, int> max_one_fn("Clamp Above One",
+ [](int value) { return std::max(1, value); });
+ auto clamp_op = std::make_shared<FieldOperation>(
+ FieldOperation(max_one_fn, {Field<int>(params.extract_input<Field<int>>("Count"))}));
+
+ return Field<int>(std::move(clamp_op));
}
- std::unique_ptr<CurveEval> output_curve = resample_curve(
- geometry_set.get_component_for_read<CurveComponent>(), mode_param);
+ if (mode == GEO_NODE_CURVE_RESAMPLE_LENGTH) {
+ static fn::CustomMF_SI_SI_SO<float, float, int> get_count_fn(
+ "Length Input to Count", [](const float curve_length, const float sample_length) {
+ /* Find the number of sampled segments by dividing the total length by
+ * the sample length. Then there is one more sampled point than segment. */
+ const int count = int(curve_length / sample_length) + 1;
+ return std::max(1, count);
+ });
+
+ auto get_count_op = std::make_shared<FieldOperation>(
+ FieldOperation(get_count_fn,
+ {Field<float>(std::make_shared<SplineLengthFieldInput>()),
+ params.extract_input<Field<float>>("Length")}));
+
+ return Field<int>(std::move(get_count_op));
+ }
+
+ BLI_assert_unreachable();
+ return {};
+}
+
+/**
+ * Create a selection field that removes curves without any evaluated points (invalid NURBS curves)
+ * from the original selection provided to the node. This is here to simplify the sampling actual
+ * resampling code.
+ */
+static Field<bool> get_selection_field(GeoNodeExecParams params)
+{
+ static fn::CustomMF_SI_SI_SO<bool, int, bool> get_selection_fn(
+ "Create Curve Selection", [](const bool orig_selection, const int evaluated_points_num) {
+ return orig_selection && evaluated_points_num > 1;
+ });
+
+ auto selection_op = std::make_shared<FieldOperation>(
+ FieldOperation(get_selection_fn,
+ {params.extract_input<Field<bool>>("Selection"),
+ Field<int>(std::make_shared<EvaluatedCountFieldInput>())}));
- geometry_set.replace_curves(curve_eval_to_curves(*output_curve));
+ return Field<bool>(std::move(selection_op));
}
static void node_geo_exec(GeoNodeExecParams params)
@@ -252,25 +608,38 @@ static void node_geo_exec(GeoNodeExecParams params)
const NodeGeometryCurveResample &storage = node_storage(params.node());
const GeometryNodeCurveResampleMode mode = (GeometryNodeCurveResampleMode)storage.mode;
- SampleModeParam mode_param;
- mode_param.mode = mode;
- mode_param.selection = params.extract_input<Field<bool>>("Selection");
+ const Field<bool> selection = get_selection_field(params);
- if (mode == GEO_NODE_CURVE_RESAMPLE_COUNT) {
- Field<int> count = params.extract_input<Field<int>>("Count");
- if (count < 1) {
- params.set_default_remaining_outputs();
- return;
+ switch (mode) {
+ case GEO_NODE_CURVE_RESAMPLE_COUNT:
+ case GEO_NODE_CURVE_RESAMPLE_LENGTH: {
+ Field<int> count = get_curve_count_field(params, mode);
+
+ geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
+ if (!geometry_set.has_curves()) {
+ return;
+ }
+
+ Curves *result = resample_to_uniform_count(
+ *geometry_set.get_component_for_read<CurveComponent>(), selection, count);
+
+ geometry_set.replace_curves(result);
+ });
+ break;
}
- mode_param.count.emplace(count);
- }
- else if (mode == GEO_NODE_CURVE_RESAMPLE_LENGTH) {
- Field<float> resolution = params.extract_input<Field<float>>("Length");
- mode_param.length.emplace(resolution);
- }
+ case GEO_NODE_CURVE_RESAMPLE_EVALUATED:
+ geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
+ if (!geometry_set.has_curves()) {
+ return;
+ }
- geometry_set.modify_geometry_sets(
- [&](GeometrySet &geometry_set) { geometry_set_curve_resample(geometry_set, mode_param); });
+ Curves *result = resample_to_evaluated(
+ *geometry_set.get_component_for_read<CurveComponent>(), selection);
+
+ geometry_set.replace_curves(result);
+ });
+ break;
+ }
params.set_output("Curve", std::move(geometry_set));
}