Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2007-10-26 19:32:36 +0400
committerCampbell Barton <ideasman42@gmail.com>2007-10-26 19:32:36 +0400
commit2a2453d3e20e662d5af05b359a71458fa8daabf1 (patch)
tree059356f764dcab1911e0785c098284eabcccad22 /source/blender/nodes
parent83eba96db23fd438369ffae1197b5b40737164c0 (diff)
nodes from eechlo
* glare * tonemap * lense distort * fast gauss blur http://projects.blender.org/tracker/?func=detail&atid=127&aid=7505&group_id=9 made fast gauss blur an option for the blur node rather then a separate node.
Diffstat (limited to 'source/blender/nodes')
-rw-r--r--source/blender/nodes/CMP_node.h6
-rw-r--r--source/blender/nodes/intern/CMP_nodes/CMP_blur.c131
-rw-r--r--source/blender/nodes/intern/CMP_nodes/CMP_defocus.c6
-rw-r--r--source/blender/nodes/intern/CMP_nodes/CMP_glare.c498
-rw-r--r--source/blender/nodes/intern/CMP_nodes/CMP_lensdist.c192
-rw-r--r--source/blender/nodes/intern/CMP_nodes/CMP_tonemap.c173
-rw-r--r--source/blender/nodes/intern/CMP_util.c593
-rw-r--r--source/blender/nodes/intern/CMP_util.h39
8 files changed, 1581 insertions, 57 deletions
diff --git a/source/blender/nodes/CMP_node.h b/source/blender/nodes/CMP_node.h
index 6e800303887..14cb7b2f2ae 100644
--- a/source/blender/nodes/CMP_node.h
+++ b/source/blender/nodes/CMP_node.h
@@ -97,6 +97,8 @@ extern bNodeType cmp_node_flip;
extern bNodeType cmp_node_displace;
extern bNodeType cmp_node_mapuv;
-#endif
-
+extern bNodeType cmp_node_glare;
+extern bNodeType cmp_node_tonemap;
+extern bNodeType cmp_node_lensdist;
+#endif
diff --git a/source/blender/nodes/intern/CMP_nodes/CMP_blur.c b/source/blender/nodes/intern/CMP_nodes/CMP_blur.c
index 91a04e3128a..8ef4af4d219 100644
--- a/source/blender/nodes/intern/CMP_nodes/CMP_blur.c
+++ b/source/blender/nodes/intern/CMP_nodes/CMP_blur.c
@@ -29,8 +29,6 @@
#include "../CMP_util.h"
-
-
/* **************** BLUR ******************** */
static bNodeSocketType cmp_node_blur_in[]= {
{ SOCK_RGBA, 1, "Image", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f},
@@ -555,8 +553,6 @@ static void blur_with_reference(bNode *node, CompBuf *new, CompBuf *img, CompBuf
free_compbuf(ref_use);
}
-
-
static void node_composit_exec_blur(void *data, bNode *node, bNodeStack **in, bNodeStack **out)
{
CompBuf *new, *img= in[0]->data;
@@ -564,35 +560,48 @@ static void node_composit_exec_blur(void *data, bNode *node, bNodeStack **in, bN
if(img==NULL || out[0]->hasoutput==0)
return;
- if(img->type==CB_VEC2 || img->type==CB_VEC3) {
- img= typecheck_compbuf(in[0]->data, CB_RGBA);
- }
+ if (((NodeBlurData *)node->storage)->filtertype == R_FILTER_FAST_GAUSS) {
+ CompBuf *new, *img = in[0]->data;
+ /*from eeshlo's original patch, removed to fit in with the existing blur node */
+ /*const float sx = in[1]->vec[0], sy = in[2]->vec[0];*/
- /* if fac input, we do it different */
- if(in[1]->data) {
-
- /* make output size of input image */
- new= alloc_compbuf(img->x, img->y, img->type, 1); /* allocs */
-
- /* accept image offsets from other nodes */
- new->xof = img->xof;
- new->yof = img->yof;
-
- blur_with_reference(node, new, img, in[1]->data);
- if(node->exec & NODE_BREAK) {
- free_compbuf(new);
- new= NULL;
+ NodeBlurData *nbd= node->storage;
+ const float sx = ((float)nbd->sizex)/2.0f, sy = ((float)nbd->sizey)/2.0f;
+ int c;
+
+ if ((img==NULL) || (out[0]->hasoutput==0)) return;
+
+ if (img->type == CB_VEC2)
+ new = typecheck_compbuf(img, CB_VAL);
+ else if (img->type == CB_VEC3)
+ new = typecheck_compbuf(img, CB_RGBA);
+ else
+ new = dupalloc_compbuf(img);
+
+ if ((sx == sy) && (sx > 0.f)) {
+ for (c=0; c<new->type; ++c)
+ IIR_gauss(new, sx, c, 3);
}
- out[0]->data= new;
- }
- else {
+ else {
+ if (sx > 0.f) {
+ for (c=0; c<new->type; ++c)
+ IIR_gauss(new, sx, c, 1);
+ }
+ if (sy > 0.f) {
+ for (c=0; c<new->type; ++c)
+ IIR_gauss(new, sy, c, 2);
+ }
+ }
+ out[0]->data = new;
- if(in[1]->vec[0]<=0.001f) { /* time node inputs can be a tiny value */
- new= pass_on_compbuf(img);
+ } else {
+ /* All non fast gauss blur methods */
+ if(img->type==CB_VEC2 || img->type==CB_VEC3) {
+ img= typecheck_compbuf(in[0]->data, CB_RGBA);
}
- else {
- NodeBlurData *nbd= node->storage;
- CompBuf *gammabuf;
+
+ /* if fac input, we do it different */
+ if(in[1]->data) {
/* make output size of input image */
new= alloc_compbuf(img->x, img->y, img->type, 1); /* allocs */
@@ -600,33 +609,57 @@ static void node_composit_exec_blur(void *data, bNode *node, bNodeStack **in, bN
/* accept image offsets from other nodes */
new->xof = img->xof;
new->yof = img->yof;
-
- if(nbd->gamma) {
- gammabuf= dupalloc_compbuf(img);
- gamma_correct_compbuf(gammabuf, 0);
- }
- else gammabuf= img;
-
- if(nbd->bokeh)
- bokeh_single_image(node, new, gammabuf, in[1]->vec[0]);
- else if(1)
- blur_single_image(node, new, gammabuf, in[1]->vec[0]);
- else /* bloom experimental... */
- bloom_with_reference(new, gammabuf, NULL, in[1]->vec[0], nbd);
- if(nbd->gamma) {
- gamma_correct_compbuf(new, 1);
- free_compbuf(gammabuf);
- }
+ blur_with_reference(node, new, img, in[1]->data);
if(node->exec & NODE_BREAK) {
free_compbuf(new);
new= NULL;
}
+ out[0]->data= new;
+ }
+ else {
+
+ if(in[1]->vec[0]<=0.001f) { /* time node inputs can be a tiny value */
+ new= pass_on_compbuf(img);
+ }
+ else {
+ NodeBlurData *nbd= node->storage;
+ CompBuf *gammabuf;
+
+ /* make output size of input image */
+ new= alloc_compbuf(img->x, img->y, img->type, 1); /* allocs */
+
+ /* accept image offsets from other nodes */
+ new->xof = img->xof;
+ new->yof = img->yof;
+
+ if(nbd->gamma) {
+ gammabuf= dupalloc_compbuf(img);
+ gamma_correct_compbuf(gammabuf, 0);
+ }
+ else gammabuf= img;
+
+ if(nbd->bokeh)
+ bokeh_single_image(node, new, gammabuf, in[1]->vec[0]);
+ else if(1)
+ blur_single_image(node, new, gammabuf, in[1]->vec[0]);
+ else /* bloom experimental... */
+ bloom_with_reference(new, gammabuf, NULL, in[1]->vec[0], nbd);
+
+ if(nbd->gamma) {
+ gamma_correct_compbuf(new, 1);
+ free_compbuf(gammabuf);
+ }
+ if(node->exec & NODE_BREAK) {
+ free_compbuf(new);
+ new= NULL;
+ }
+ }
+ out[0]->data= new;
}
- out[0]->data= new;
+ if(img!=in[0]->data)
+ free_compbuf(img);
}
- if(img!=in[0]->data)
- free_compbuf(img);
}
static void node_composit_init_blur(bNode* node)
diff --git a/source/blender/nodes/intern/CMP_nodes/CMP_defocus.c b/source/blender/nodes/intern/CMP_nodes/CMP_defocus.c
index ee68b81cde8..53d01ab1d12 100644
--- a/source/blender/nodes/intern/CMP_nodes/CMP_defocus.c
+++ b/source/blender/nodes/intern/CMP_nodes/CMP_defocus.c
@@ -143,7 +143,7 @@ static float RI_vdC(unsigned int bits, unsigned int r)
// single channel IIR gaussian filtering
// much faster than anything else, constant time independent of width
// should extend to multichannel and make this a node, could be useful
-static void IIR_gauss(CompBuf* buf, float sigma)
+static void IIR_gauss_single(CompBuf* buf, float sigma)
{
double q, q2, sc, cf[4], tsM[9], tsu[3], tsv[3];
float *X, *Y, *W;
@@ -322,8 +322,8 @@ static void defocus_blur(bNode *node, CompBuf *new, CompBuf *img, CompBuf *zbuf,
// bug #6656 part 1, probably when previous node_composite.c was split into separate files, it was not properly updated
// to include recent cvs commits (well, at least not defocus node), so this part was missing...
wt = aperture*128.f;
- IIR_gauss(crad, wt);
- IIR_gauss(wts, wt);
+ IIR_gauss_single(crad, wt);
+ IIR_gauss_single(wts, wt);
// bug #6656 part 2a, although foreground blur is not based anymore on closest object,
// the rescaling op below was still based on that anyway, and unlike the comment in below code,
diff --git a/source/blender/nodes/intern/CMP_nodes/CMP_glare.c b/source/blender/nodes/intern/CMP_nodes/CMP_glare.c
new file mode 100644
index 00000000000..9943dd2246d
--- /dev/null
+++ b/source/blender/nodes/intern/CMP_nodes/CMP_glare.c
@@ -0,0 +1,498 @@
+/**
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2006 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Alfredo de Greef (eeshlo)
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "../CMP_util.h"
+
+static bNodeSocketType cmp_node_glare_in[]= {
+ { SOCK_RGBA, 1, "Image", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f},
+ { -1, 0, "" }
+};
+static bNodeSocketType cmp_node_glare_out[]= {
+ { SOCK_RGBA, 0, "Image", 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f},
+ { -1, 0, "" }
+};
+
+
+// mix two images, src buffer does not have to be same size,
+static void mixImages(CompBuf *dst, CompBuf *src, float mix)
+{
+ int x, y;
+ fRGB c1, c2, *dcolp, *scolp;
+ const float mf = 2.f - 2.f*fabsf(mix - 0.5f);
+ if ((dst->x == src->x) && (dst->y == src->y)) {
+ for (y=0; y<dst->y; y++) {
+ dcolp = (fRGB*)&dst->rect[y*dst->x*dst->type];
+ scolp = (fRGB*)&src->rect[y*dst->x*dst->type];
+ for (x=0; x<dst->x; x++) {
+ fRGB_copy(c1, dcolp[x]);
+ fRGB_copy(c2, scolp[x]);
+ c1[0] += mix*(c2[0] - c1[0]);
+ c1[1] += mix*(c2[1] - c1[1]);
+ c1[2] += mix*(c2[2] - c1[2]);
+ if (c1[0] < 0.f) c1[0] = 0.f;
+ if (c1[1] < 0.f) c1[1] = 0.f;
+ if (c1[2] < 0.f) c1[2] = 0.f;
+ fRGB_mult(c1, mf);
+ fRGB_copy(dcolp[x], c1);
+ }
+ }
+ }
+ else {
+ float xr = src->x / (float)dst->x;
+ float yr = src->y / (float)dst->y;
+ for (y=0; y<dst->y; y++) {
+ dcolp = (fRGB*)&dst->rect[y*dst->x*dst->type];
+ for (x=0; x<dst->x; x++) {
+ fRGB_copy(c1, dcolp[x]);
+ qd_getPixelLerp(src, (x + 0.5f)*xr - 0.5f, (y + 0.5f)*yr - 0.5f, c2);
+ c1[0] += mix*(c2[0] - c1[0]);
+ c1[1] += mix*(c2[1] - c1[1]);
+ c1[2] += mix*(c2[2] - c1[2]);
+ if (c1[0] < 0.f) c1[0] = 0.f;
+ if (c1[1] < 0.f) c1[1] = 0.f;
+ if (c1[2] < 0.f) c1[2] = 0.f;
+ fRGB_mult(c1, mf);
+ fRGB_copy(dcolp[x], c1);
+ }
+ }
+ }
+}
+
+
+// adds src to dst image, must be of same size
+static void addImage(CompBuf* dst, CompBuf* src, float scale)
+{
+ if ((dst->x == src->x) && (dst->y == src->y)) {
+ int p = dst->x*dst->y*dst->type;
+ float *dcol = dst->rect, *scol = src->rect;
+ while (p--) *dcol++ += *scol++ * scale;
+ }
+}
+
+
+// returns possibly downscaled copy of all pixels above threshold
+static CompBuf* BTP(CompBuf* src, float threshold, int scaledown)
+{
+ int x, y;
+ CompBuf* bsrc = qd_downScaledCopy(src, scaledown);
+ float* cr = bsrc->rect;
+ for (y=0; y<bsrc->y; ++y)
+ for (x=0; x<bsrc->x; ++x, cr+=4) {
+ if ((0.212671f*cr[0] + 0.71516f*cr[1] + 0.072169f*cr[2]) >= threshold) {
+ cr[0] -= threshold, cr[1] -= threshold, cr[2] -= threshold;
+ cr[0] = MAX2(cr[0], 0.f);
+ cr[1] = MAX2(cr[1], 0.f);
+ cr[2] = MAX2(cr[2], 0.f);
+ }
+ else cr[0] = cr[1] = cr[2] = 0.f;
+ }
+ return bsrc;
+}
+
+//--------------------------------------------------------------------------------------------
+// simple 4-point star filter
+
+static void star4(NodeGlare* ndg, CompBuf* dst, CompBuf* src)
+{
+ int x, y, i, xm, xp, ym, yp;
+ float c[4] = {0,0,0,0}, tc[4] = {0,0,0,0};
+ CompBuf *tbuf1, *tbuf2, *tsrc;
+ const float f1 = 1.f - ndg->fade, f2 = (1.f - f1)*0.5f;
+ //const float t3 = ndg->threshold*3.f;
+ const float sc = (float)(1 << ndg->quality);
+ const float isc = 1.f/sc;
+
+ tsrc = BTP(src, ndg->threshold, (int)sc);
+
+ tbuf1 = dupalloc_compbuf(tsrc);
+ tbuf2 = dupalloc_compbuf(tsrc);
+
+ for (i=0; i<ndg->iter; i++) {
+ // (x || x-1, y-1) to (x || x+1, y+1)
+ // F
+ for (y=0; y<tbuf1->y; y++) {
+ ym = y - i;
+ yp = y + i;
+ for (x=0; x<tbuf1->x; x++) {
+ xm = x - i;
+ xp = x + i;
+ qd_getPixel(tbuf1, x, y, c);
+ fRGB_mult(c, f1);
+ qd_getPixel(tbuf1, (ndg->angle ? xm : x), ym, tc);
+ fRGB_madd(c, tc, f2);
+ qd_getPixel(tbuf1, (ndg->angle ? xp : x), yp, tc);
+ fRGB_madd(c, tc, f2);
+ qd_setPixel(tbuf1, x, y, c);
+ }
+ }
+ // B
+ for (y=tbuf1->y-1; y>=0; y--) {
+ ym = y - i;
+ yp = y + i;
+ for (x=tbuf1->x-1; x>=0; x--) {
+ xm = x - i;
+ xp = x + i;
+ qd_getPixel(tbuf1, x, y, c);
+ fRGB_mult(c, f1);
+ qd_getPixel(tbuf1, (ndg->angle ? xm : x), ym, tc);
+ fRGB_madd(c, tc, f2);
+ qd_getPixel(tbuf1, (ndg->angle ? xp : x), yp, tc);
+ fRGB_madd(c, tc, f2);
+ qd_setPixel(tbuf1, x, y, c);
+ }
+ }
+ // (x-1, y || y+1) to (x+1, y || y-1)
+ // F
+ for (y=0; y<tbuf2->y; y++) {
+ ym = y - i;
+ yp = y + i;
+ for (x=0; x<tbuf2->x; x++) {
+ xm = x - i;
+ xp = x + i;
+ qd_getPixel(tbuf2, x, y, c);
+ fRGB_mult(c, f1);
+ qd_getPixel(tbuf2, xm, (ndg->angle ? yp : y), tc);
+ fRGB_madd(c, tc, f2);
+ qd_getPixel(tbuf2, xp, (ndg->angle ? ym : y), tc);
+ fRGB_madd(c, tc, f2);
+ qd_setPixel(tbuf2, x, y, c);
+ }
+ }
+ // B
+ for (y=tbuf2->y-1; y>=0; y--) {
+ ym = y - i;
+ yp = y + i;
+ for (x=tbuf2->x-1; x>=0; x--) {
+ xm = x - i;
+ xp = x + i;
+ qd_getPixel(tbuf2, x, y, c);
+ fRGB_mult(c, f1);
+ qd_getPixel(tbuf2, xm, (ndg->angle ? yp : y), tc);
+ fRGB_madd(c, tc, f2);
+ qd_getPixel(tbuf2, xp, (ndg->angle ? ym : y), tc);
+ fRGB_madd(c, tc, f2);
+ qd_setPixel(tbuf2, x, y, c);
+ }
+ }
+ }
+
+ for (y=0; y<tbuf1->y; ++y)
+ for (x=0; x<tbuf1->x; ++x) {
+ unsigned int p = (x + y*tbuf1->x)*tbuf1->type;
+ tbuf1->rect[p] += tbuf2->rect[p];
+ tbuf1->rect[p+1] += tbuf2->rect[p+1];
+ tbuf1->rect[p+2] += tbuf2->rect[p+2];
+ }
+
+ for (y=0; y<dst->y; ++y) {
+ const float m = 0.5f + 0.5f*ndg->mix;
+ for (x=0; x<dst->x; ++x) {
+ unsigned int p = (x + y*dst->x)*dst->type;
+ qd_getPixelLerp(tbuf1, x*isc, y*isc, tc);
+ dst->rect[p] = src->rect[p] + m*(tc[0] - src->rect[p]);
+ dst->rect[p+1] = src->rect[p+1] + m*(tc[1] - src->rect[p+1]);
+ dst->rect[p+2] = src->rect[p+2] + m*(tc[2] - src->rect[p+2]);
+ }
+ }
+
+ free_compbuf(tbuf1);
+ free_compbuf(tbuf2);
+ free_compbuf(tsrc);
+}
+
+//--------------------------------------------------------------------------------------------
+// streak filter
+
+static void streaks(NodeGlare* ndg, CompBuf* dst, CompBuf* src)
+{
+ CompBuf *bsrc, *tsrc, *tdst, *sbuf;
+ int x, y, n;
+ unsigned int nump=0;
+ fRGB c1, c2, c3, c4;
+ float a, ang = 360.f/(float)ndg->angle;
+
+ bsrc = BTP(src, ndg->threshold, 1 << ndg->quality);
+ tsrc = dupalloc_compbuf(bsrc); // sample from buffer
+ tdst = alloc_compbuf(tsrc->x, tsrc->y, tsrc->type, 1); // sample to buffer
+ sbuf = alloc_compbuf(tsrc->x, tsrc->y, tsrc->type, 1); // streak sum buffer
+
+
+ for (a=0.f; a<360.f; a+=ang) {
+ const float an = (a + (float)ndg->angle_ofs)*(float)M_PI/180.f;
+ const float vx = cosf(an), vy = sinf(an);
+ for (n=0; n<ndg->iter; ++n) {
+ const float p4 = powf(4.f, n);
+ const float vxp = vx*p4, vyp = vy*p4;
+ const float wt = powf(ndg->fade, p4);
+ const float cmo = 1.f - powf(ndg->colmod, n+1); // colormodulation amount relative to current pass
+ float* tdstcol = tdst->rect;
+ for (y=0; y<tsrc->y; ++y) {
+ for (x=0; x<tsrc->x; ++x, tdstcol+=4) {
+ // first pass no offset, always same for every pass, exact copy,
+ // otherwise results in uneven brightness, only need once
+ if (n==0) qd_getPixel(tsrc, x, y, c1); else c1[0]=c1[1]=c1[2]=0;
+ qd_getPixelLerp(tsrc, x + vxp, y + vyp, c2);
+ qd_getPixelLerp(tsrc, x + vxp*2.f, y + vyp*2.f, c3);
+ qd_getPixelLerp(tsrc, x + vxp*3.f, y + vyp*3.f, c4);
+ // modulate color to look vaguely similar to a color spectrum
+ fRGB_rgbmult(c2, 1.f, cmo, cmo);
+ fRGB_rgbmult(c3, cmo, cmo, 1.f);
+ fRGB_rgbmult(c4, cmo, 1.f, cmo);
+ tdstcol[0] = 0.5f*(tdstcol[0] + c1[0] + wt*(c2[0] + wt*(c3[0] + wt*c4[0])));
+ tdstcol[1] = 0.5f*(tdstcol[1] + c1[1] + wt*(c2[1] + wt*(c3[1] + wt*c4[1])));
+ tdstcol[2] = 0.5f*(tdstcol[2] + c1[2] + wt*(c2[2] + wt*(c3[2] + wt*c4[2])));
+ }
+ }
+ memcpy(tsrc->rect, tdst->rect, sizeof(float)*tdst->x*tdst->y*tdst->type);
+ }
+
+ addImage(sbuf, tsrc, 1.f/(float)(6 - ndg->iter));
+ memset(tdst->rect, 0, tdst->x*tdst->y*tdst->type*sizeof(float));
+ memcpy(tsrc->rect, bsrc->rect, bsrc->x*bsrc->y*bsrc->type*sizeof(float));
+ nump++;
+ }
+
+ mixImages(dst, sbuf, 0.5f + 0.5f*ndg->mix);
+
+ free_compbuf(tsrc);
+ free_compbuf(tdst);
+ free_compbuf(sbuf);
+ free_compbuf(bsrc);
+}
+
+
+//--------------------------------------------------------------------------------------------
+// Ghosts (lensflare)
+
+static float smoothMask(float x, float y)
+{
+ float t;
+ x = 2.f*x - 1.f, y = 2.f*y - 1.f;
+ if ((t = 1.f - sqrtf(x*x + y*y)) <= 0.f) return 0.f;
+ return t;
+}
+
+static void ghosts(NodeGlare* ndg, CompBuf* dst, CompBuf* src)
+{
+ // colormodulation and scale factors (cm & scalef) for 16 passes max: 64
+ int x, y, n, p, np;
+ fRGB c, tc, cm[64];
+ float sc, isc, u, v, sm, s, t, ofs, scalef[64];
+ CompBuf *tbuf1, *tbuf2, *gbuf;
+ const float cmo = 1.f - ndg->colmod;
+ const int qt = 1 << ndg->quality;
+ const float s1 = 4.f/(float)qt, s2 = 2.f*s1;
+
+ gbuf = BTP(src, ndg->threshold, qt);
+ tbuf1 = dupalloc_compbuf(gbuf);
+ IIR_gauss(tbuf1, s1, 0, 3);
+ IIR_gauss(tbuf1, s1, 1, 3);
+ IIR_gauss(tbuf1, s1, 2, 3);
+ tbuf2 = dupalloc_compbuf(tbuf1);
+ IIR_gauss(tbuf2, s2, 0, 3);
+ IIR_gauss(tbuf2, s2, 1, 3);
+ IIR_gauss(tbuf2, s2, 2, 3);
+
+ if (ndg->iter & 1) ofs = 0.5f; else ofs = 0.f;
+ for (x=0; x<(ndg->iter*4); x++) {
+ y = x & 3;
+ cm[x][0] = cm[x][1] = cm[x][2] = 1;
+ if (y==1) fRGB_rgbmult(cm[x], 1.f, cmo, cmo);
+ if (y==2) fRGB_rgbmult(cm[x], cmo, cmo, 1.f);
+ if (y==3) fRGB_rgbmult(cm[x], cmo, 1.f, cmo);
+ scalef[x] = 2.1f*(1.f-(x+ofs)/(float)(ndg->iter*4));
+ if (x & 1) scalef[x] = -0.99f/scalef[x];
+ }
+
+ sc = 2.13;
+ isc = -0.97;
+ for (y=0; y<gbuf->y; y++) {
+ v = (float)(y+0.5f) / (float)gbuf->y;
+ for (x=0; x<gbuf->x; x++) {
+ u = (float)(x+0.5f) / (float)gbuf->x;
+ s = (u-0.5f)*sc + 0.5f, t = (v-0.5f)*sc + 0.5f;
+ qd_getPixelLerp(tbuf1, s*gbuf->x, t*gbuf->y, c);
+ sm = smoothMask(s, t);
+ fRGB_mult(c, sm);
+ s = (u-0.5f)*isc + 0.5f, t = (v-0.5f)*isc + 0.5f;
+ qd_getPixelLerp(tbuf2, s*gbuf->x - 0.5f, t*gbuf->y - 0.5f, tc);
+ sm = smoothMask(s, t);
+ fRGB_madd(c, tc, sm);
+ qd_setPixel(gbuf, x, y, c);
+ }
+ }
+
+ memset(tbuf1->rect, 0, tbuf1->x*tbuf1->y*tbuf1->type*sizeof(float));
+ for (n=1; n<ndg->iter; n++) {
+ for (y=0; y<gbuf->y; y++) {
+ v = (float)(y+0.5f) / (float)gbuf->y;
+ for (x=0; x<gbuf->x; x++) {
+ u = (float)(x+0.5f) / (float)gbuf->x;
+ tc[0] = tc[1] = tc[2] = 0.f;
+ for (p=0;p<4;p++) {
+ np = (n<<2) + p;
+ s = (u-0.5f)*scalef[np] + 0.5f;
+ t = (v-0.5f)*scalef[np] + 0.5f;
+ qd_getPixelLerp(gbuf, s*gbuf->x - 0.5f, t*gbuf->y - 0.5f, c);
+ fRGB_colormult(c, cm[np]);
+ sm = smoothMask(s, t)*0.25f;
+ fRGB_madd(tc, c, sm);
+ }
+ p = (x + y*tbuf1->x)*tbuf1->type;
+ tbuf1->rect[p] += tc[0];
+ tbuf1->rect[p+1] += tc[1];
+ tbuf1->rect[p+2] += tc[2];
+ }
+ }
+ memcpy(gbuf->rect, tbuf1->rect, tbuf1->x*tbuf1->y*tbuf1->type*sizeof(float));
+ }
+
+ free_compbuf(tbuf1);
+ free_compbuf(tbuf2);
+
+ mixImages(dst, gbuf, 0.5f + 0.5f*ndg->mix);
+ free_compbuf(gbuf);
+}
+
+//--------------------------------------------------------------------------------------------
+// Fog glow (convolution with kernel of exponential falloff)
+
+static void fglow(NodeGlare* ndg, CompBuf* dst, CompBuf* src)
+{
+ int x, y;
+ float scale, u, v, r, w, d;
+ fRGB fcol;
+ CompBuf *tsrc, *ckrn;
+ unsigned int sz = 1 << ndg->size;
+ const float cs_r = 1.f, cs_g = 1.f, cs_b = 1.f;
+
+ // temp. src image
+ tsrc = BTP(src, ndg->threshold, 1 << ndg->quality);
+ // make the convolution kernel
+ ckrn = alloc_compbuf(sz, sz, CB_RGBA, 1);
+
+ scale = 0.25f*sqrtf(sz*sz);
+
+ for (y=0; y<sz; ++y) {
+ v = 2.f*(y / (float)sz) - 1.f;
+ for (x=0; x<sz; ++x) {
+ u = 2.f*(x / (float)sz) - 1.f;
+ r = (u*u + v*v)*scale;
+ d = -sqrtf(sqrtf(sqrtf(r)))*9.f;
+ fcol[0] = expf(d*cs_r), fcol[1] = expf(d*cs_g), fcol[2] = expf(d*cs_b);
+ // linear window good enough here, visual result counts, not scientific analysis
+ //w = (1.f-fabs(u))*(1.f-fabs(v));
+ // actually, Hanning window is ok, cos^2 for some reason is slower
+ w = (0.5f + 0.5f*cosf(u*(float)M_PI))*(0.5f + 0.5f*cosf(v*(float)M_PI));
+ fRGB_mult(fcol, w);
+ qd_setPixel(ckrn, x, y, fcol);
+ }
+ }
+
+ convolve(tsrc, tsrc, ckrn);
+ free_compbuf(ckrn);
+ mixImages(dst, tsrc, 0.5f + 0.5f*ndg->mix);
+ free_compbuf(tsrc);
+}
+
+//--------------------------------------------------------------------------------------------
+
+static void node_composit_exec_glare(void *data, bNode *node, bNodeStack **in, bNodeStack **out)
+{
+ CompBuf *new, *img = in[0]->data;
+ NodeGlare* ndg = node->storage;
+
+ if ((img == NULL) || (out[0]->hasoutput == 0)) return;
+
+ if (img->type != CB_RGBA)
+ new = typecheck_compbuf(img, CB_RGBA);
+ else
+ new = dupalloc_compbuf(img);
+
+ {
+ int x, y;
+ for (y=0; y<new->y; ++y) {
+ fRGB* col = (fRGB*)&new->rect[y*new->x*new->type];
+ for (x=0; x<new->x; ++x) {
+ col[x][0] = MAX2(col[x][0], 0.f);
+ col[x][1] = MAX2(col[x][1], 0.f);
+ col[x][2] = MAX2(col[x][2], 0.f);
+ }
+ }
+ }
+
+ switch (ndg->type) {
+ case 0:
+ star4(ndg, new, img);
+ break;
+ case 1:
+ fglow(ndg, new, img);
+ break;
+ case 3:
+ ghosts(ndg, new, img);
+ break;
+ case 2:
+ default:
+ streaks(ndg, new, img);
+ }
+
+ out[0]->data = new;
+}
+
+static void node_composit_init_glare(bNode* node)
+{
+ NodeGlare *ndg = MEM_callocN(sizeof(NodeGlare), "node glare data");
+ ndg->quality = 1;
+ ndg->type = 2;
+ ndg->iter = 3;
+ ndg->colmod = 0.25;
+ ndg->mix = 0;
+ ndg->threshold = 1;
+ ndg->angle = 4;
+ ndg->angle_ofs = 0;
+ ndg->fade = 0.9;
+ ndg->size = 8;
+ node->storage = ndg;
+}
+
+bNodeType cmp_node_glare = {
+ /* *next,*prev */ NULL, NULL,
+ /* type code */ CMP_NODE_GLARE,
+ /* name */ "Glare",
+ /* width+range */ 150, 120, 200,
+ /* class+opts */ NODE_CLASS_OP_FILTER, NODE_OPTIONS,
+ /* input sock */ cmp_node_glare_in,
+ /* output sock */ cmp_node_glare_out,
+ /* storage */ "NodeGlare",
+ /* execfunc */ node_composit_exec_glare,
+ /* butfunc */ NULL,
+ /* initfunc */ node_composit_init_glare,
+ /* freestoragefunc */ node_free_standard_storage,
+ /* copystoragefunc */ node_copy_standard_storage,
+ /* id */ NULL
+};
diff --git a/source/blender/nodes/intern/CMP_nodes/CMP_lensdist.c b/source/blender/nodes/intern/CMP_nodes/CMP_lensdist.c
new file mode 100644
index 00000000000..5dec6115fba
--- /dev/null
+++ b/source/blender/nodes/intern/CMP_nodes/CMP_lensdist.c
@@ -0,0 +1,192 @@
+/**
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2006 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Alfredo de Greef (eeshlo)
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "../CMP_util.h"
+
+static bNodeSocketType cmp_node_lensdist_in[]= {
+ { SOCK_RGBA, 1, "Image", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f},
+ { SOCK_VALUE, 1, "Distort", 0.f, 0.f, 0.f, 0.f, -0.999f, 1.f},
+ { SOCK_VALUE, 1, "Dispersion", 0.f, 0.f, 0.f, 0.f, 0.f, 1.f},
+ { -1, 0, "" }
+};
+static bNodeSocketType cmp_node_lensdist_out[]= {
+ { SOCK_RGBA, 0, "Image", 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f},
+ { -1, 0, "" }
+};
+
+
+static void lensDistort(CompBuf* dst, CompBuf* src, float kr, float kg, float kb, int jit, int proj, int fit)
+{
+ int x, y, z;
+ const float cx = 0.5f*(float)dst->x, cy = 0.5f*(float)dst->y;
+
+ if (proj) {
+ // shift
+ CompBuf* tsrc = dupalloc_compbuf(src);
+ for (z=0; z<tsrc->type; ++z)
+ IIR_gauss(tsrc, (kr+0.5f)*(kr+0.5f), z, 1);
+ kr *= 20.f;
+ for (y=0; y<dst->y; y++) {
+ fRGB* colp = (fRGB*)&dst->rect[y*dst->x*dst->type];
+ const float v = (y + 0.5f)/(float)dst->y;
+ for (x=0; x<dst->x; x++) {
+ const float u = (x + 0.5f)/(float)dst->x;
+ qd_getPixelLerpChan(tsrc, (u*dst->x + kr) - 0.5f, v*dst->y - 0.5f, 0, colp[x]);
+ if (tsrc->type == CB_VAL)
+ colp[x][1] = tsrc->rect[x + y*tsrc->x];
+ else
+ colp[x][1] = tsrc->rect[(x + y*tsrc->x)*tsrc->type + 1];
+ qd_getPixelLerpChan(tsrc, (u*dst->x - kr) - 0.5f, v*dst->y - 0.5f, 2, colp[x]+2);
+ }
+ }
+ free_compbuf(tsrc);
+ }
+ else {
+ // Spherical
+ // Scale factor to make bottom/top & right/left sides fit in window after deform
+ // so in the case of pincushion (kn < 0), corners will be outside window.
+ // Now also optionally scales image such that black areas are not visible when distort factor is positive
+ // (makes distorted corners match window corners, but really only valid if mk<=0.5)
+ const float mk = MAX3(kr, kg, kb);
+ const float sc = (fit && (mk > 0.f)) ? (1.f/(1.f + 2.f*mk)) : (1.f/(1.f + mk));
+ const float drg = 4.f*(kg - kr), dgb = 4.f*(kb - kg);
+ kr *= 4.f, kg *= 4.f, kb *= 4.f;
+
+ for (y=0; y<dst->y; y++) {
+ fRGB* colp = (fRGB*)&dst->rect[y*dst->x*dst->type];
+ const float v = sc*((y + 0.5f) - cy)/cy;
+ for (x=0; x<dst->x; x++) {
+ int dr = 0, dg = 0, db = 0;
+ float d, t, ln[6] = {0, 0, 0, 0, 0, 0};
+ fRGB c1, tc = {0, 0, 0, 0};
+ const float u = sc*((x + 0.5f) - cx)/cx;
+ int sta = 0, mid = 0, end = 0;
+ if ((t = 1.f - kr*(u*u + v*v)) >= 0.f) {
+ d = 1.f/(1.f + sqrtf(t));
+ ln[0] = (u*d + 0.5f)*dst->x - 0.5f, ln[1] = (v*d + 0.5f)*dst->y - 0.5f;
+ sta = 1;
+ }
+ if ((t = 1.f - kg*(u*u + v*v)) >= 0.f) {
+ d = 1.f/(1.f + sqrtf(t));
+ ln[2] = (u*d + 0.5f)*dst->x - 0.5f, ln[3] = (v*d + 0.5f)*dst->y - 0.5f;
+ mid = 1;
+ }
+ if ((t = 1.f - kb*(u*u + v*v)) >= 0.f) {
+ d = 1.f/(1.f + sqrtf(t));
+ ln[4] = (u*d + 0.5f)*dst->x - 0.5f, ln[5] = (v*d + 0.5f)*dst->y - 0.5f;
+ end = 1;
+ }
+
+ if (sta && mid && end) {
+ // RG
+ const int dx = ln[2] - ln[0], dy = ln[3] - ln[1];
+ const float dsf = sqrtf(dx*dx + dy*dy) + 1.f;
+ const int ds = (int)(jit ? ((dsf < 4.f) ? 2.f : sqrtf(dsf)) : dsf);
+ const float sd = 1.f/(float)ds;
+ for (z=0; z<ds; ++z) {
+ const float tz = ((float)z + (jit ? BLI_frand() : 0.5f))*sd;
+ t = 1.f - (kr + tz*drg)*(u*u + v*v);
+ d = 1.f / (1.f + sqrtf(t));
+ qd_getPixelLerp(src, (u*d + 0.5f)*dst->x - 0.5f, (v*d + 0.5f)*dst->y - 0.5f, c1);
+ if (src->type == CB_VAL) c1[1] = c1[2] = c1[0];
+ tc[0] += (1.f-tz)*c1[0], tc[1] += tz*c1[1];
+ dr++, dg++;
+ }
+ // GB
+ {
+ const int dx = ln[4] - ln[2], dy = ln[5] - ln[3];
+ const float dsf = sqrtf(dx*dx + dy*dy) + 1.f;
+ const int ds = (int)(jit ? ((dsf < 4.f) ? 2.f : sqrtf(dsf)) : dsf);
+ const float sd = 1.f/(float)ds;
+ for (z=0; z<ds; ++z) {
+ const float tz = ((float)z + (jit ? BLI_frand() : 0.5f))*sd;
+ t = 1.f - (kg + tz*dgb)*(u*u + v*v);
+ d = 1.f / (1.f + sqrtf(t));
+ qd_getPixelLerp(src, (u*d + 0.5f)*dst->x - 0.5f, (v*d + 0.5f)*dst->y - 0.5f, c1);
+ if (src->type == CB_VAL) c1[1] = c1[2] = c1[0];
+ tc[1] += (1.f-tz)*c1[1], tc[2] += tz*c1[2];
+ dg++, db++;
+ }
+ }
+ }
+
+ if (dr) colp[x][0] = 2.f*tc[0] / (float)dr;
+ if (dg) colp[x][1] = 2.f*tc[1] / (float)dg;
+ if (db) colp[x][2] = 2.f*tc[2] / (float)db;
+
+ }
+ }
+
+ }
+
+}
+
+
+static void node_composit_exec_lensdist(void *data, bNode *node, bNodeStack **in, bNodeStack **out)
+{
+ CompBuf *new, *img = in[0]->data;
+ NodeLensDist* nld = node->storage;
+ const float k = MAX2(MIN2(in[1]->vec[0], 1.f), -0.999f);
+ // smaller dispersion range for somewhat more control
+ const float d = 0.25f*MAX2(MIN2(in[2]->vec[0], 1.f), 0.f);
+ const float kr = MAX2(MIN2((k+d), 1.f), -0.999f), kb = MAX2(MIN2((k-d), 1.f), -0.999f);
+
+ if ((img==NULL) || (out[0]->hasoutput==0)) return;
+
+ new = alloc_compbuf(img->x, img->y, CB_RGBA, 1);
+
+ lensDistort(new, img, (nld->proj ? d : kr), k, kb, nld->jit, nld->proj, nld->fit);
+
+ out[0]->data = new;
+}
+
+
+static void node_composit_init_lensdist(bNode* node)
+{
+ NodeLensDist *nld = MEM_callocN(sizeof(NodeLensDist), "node lensdist data");
+ nld->jit = nld->proj = nld->fit = 0;
+ node->storage = nld;
+}
+
+
+bNodeType cmp_node_lensdist = {
+ /* *next,*prev */ NULL, NULL,
+ /* type code */ CMP_NODE_LENSDIST,
+ /* name */ "Lens Distortion",
+ /* width+range */ 150, 120, 200,
+ /* class+opts */ NODE_CLASS_DISTORT, NODE_OPTIONS,
+ /* input sock */ cmp_node_lensdist_in,
+ /* output sock */ cmp_node_lensdist_out,
+ /* storage */ "NodeLensDist",
+ /* execfunc */ node_composit_exec_lensdist,
+ /* butfunc */ NULL,
+ /* initfunc */ node_composit_init_lensdist,
+ /* freestoragefunc */ node_free_standard_storage,
+ /* copystoragefunc */ node_copy_standard_storage,
+ /* id */ NULL
+};
diff --git a/source/blender/nodes/intern/CMP_nodes/CMP_tonemap.c b/source/blender/nodes/intern/CMP_nodes/CMP_tonemap.c
new file mode 100644
index 00000000000..b7c0475884b
--- /dev/null
+++ b/source/blender/nodes/intern/CMP_nodes/CMP_tonemap.c
@@ -0,0 +1,173 @@
+/**
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2006 Blender Foundation.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Alfredo de Greef (eeshlo)
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "../CMP_util.h"
+
+static bNodeSocketType cmp_node_tonemap_in[]= {
+ { SOCK_RGBA, 1, "Image", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f},
+ { -1, 0, "" }
+};
+static bNodeSocketType cmp_node_tonemap_out[]= {
+ { SOCK_RGBA, 0, "Image", 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f},
+ { -1, 0, "" }
+};
+
+
+static float avgLogLum(CompBuf *src, float* auto_key, float* Lav, float* Cav)
+{
+ float lsum = 0;
+ int p = src->x*src->y;
+ fRGB* bc = (fRGB*)src->rect;
+ float avl, maxl = -1e10f, minl = 1e10f;
+ const float sc = 1.f/(src->x*src->y);
+ *Lav = 0.f;
+ while (p--) {
+ float L = 0.212671f*bc[0][0] + 0.71516f*bc[0][1] + 0.072169f*bc[0][2];
+ *Lav += L;
+ fRGB_add(Cav, bc[0]);
+ lsum += logf(MAX2(L, 0.f) + 1e-5f);
+ maxl = (L > maxl) ? L : maxl;
+ minl = (L < minl) ? L : minl;
+ bc++;
+ }
+ *Lav *= sc;
+ fRGB_mult(Cav, sc);
+ maxl = logf(maxl + 1e-5f), minl = logf(minl + 1e-5f), avl = lsum*sc;
+ *auto_key = (maxl > minl) ? ((maxl - avl) / (maxl - minl)) : 1.f;
+ return expf(avl);
+}
+
+
+void static tonemap(NodeTonemap* ntm, CompBuf* dst, CompBuf* src)
+{
+ int x, y;
+ float dr, dg, db, al, igm = (ntm->gamma==0.f) ? 1 : (1.f / ntm->gamma);
+ float auto_key, Lav, Cav[3] = {0, 0, 0};
+
+ al = avgLogLum(src, &auto_key, &Lav, Cav);
+ al = (al == 0.f) ? 0.f : (ntm->key / al);
+
+ if (ntm->type == 1) {
+ // Reinhard/Devlin photoreceptor
+ const float f = expf(-ntm->f);
+ const float m = (ntm->m > 0.f) ? ntm->m : (0.3f + 0.7f*powf(auto_key, 1.4f));
+ const float ic = 1.f - ntm->c, ia = 1.f - ntm->a;
+ if (ntm->m == 0.f) printf("tonemap node, M: %g\n", m);
+ for (y=0; y<src->y; ++y) {
+ fRGB* sp = (fRGB*)&src->rect[y*src->x*src->type];
+ fRGB* dp = (fRGB*)&dst->rect[y*src->x*src->type];
+ for (x=0; x<src->x; ++x) {
+ const float L = 0.212671f*sp[x][0] + 0.71516f*sp[x][1] + 0.072169f*sp[x][2];
+ float I_l = sp[x][0] + ic*(L - sp[x][0]);
+ float I_g = Cav[0] + ic*(Lav - Cav[0]);
+ float I_a = I_l + ia*(I_g - I_l);
+ dp[x][0] /= (dp[x][0] + powf(f*I_a, m));
+ I_l = sp[x][1] + ic*(L - sp[x][1]);
+ I_g = Cav[1] + ic*(Lav - Cav[1]);
+ I_a = I_l + ia*(I_g - I_l);
+ dp[x][1] /= (dp[x][1] + powf(f*I_a, m));
+ I_l = sp[x][2] + ic*(L - sp[x][2]);
+ I_g = Cav[2] + ic*(Lav - Cav[2]);
+ I_a = I_l + ia*(I_g - I_l);
+ dp[x][2] /= (dp[x][2] + powf(f*I_a, m));
+ }
+ }
+ return;
+ }
+
+ // Reinhard simple photographic tm (simplest, not using whitepoint var)
+ for (y=0; y<src->y; y++) {
+ fRGB* sp = (fRGB*)&src->rect[y*src->x*src->type];
+ fRGB* dp = (fRGB*)&dst->rect[y*src->x*src->type];
+ for (x=0; x<src->x; x++) {
+ fRGB_copy(dp[x], sp[x]);
+ fRGB_mult(dp[x], al);
+ dr = dp[x][0] + ntm->offset;
+ dg = dp[x][1] + ntm->offset;
+ db = dp[x][2] + ntm->offset;
+ dp[x][0] /= ((dr == 0.f) ? 1.f : dr);
+ dp[x][1] /= ((dg == 0.f) ? 1.f : dg);
+ dp[x][2] /= ((db == 0.f) ? 1.f : db);
+ if (igm != 0.f) {
+ dp[x][0] = powf(MAX2(dp[x][0], 0.f), igm);
+ dp[x][1] = powf(MAX2(dp[x][1], 0.f), igm);
+ dp[x][2] = powf(MAX2(dp[x][2], 0.f), igm);
+ }
+ }
+ }
+}
+
+
+static void node_composit_exec_tonemap(void *data, bNode *node, bNodeStack **in, bNodeStack **out)
+{
+ CompBuf *new, *img = in[0]->data;
+
+ if ((img==NULL) || (out[0]->hasoutput==0)) return;
+
+ if (img->type != CB_RGBA)
+ new = typecheck_compbuf(img, CB_RGBA);
+ else
+ new = dupalloc_compbuf(img);
+
+ tonemap(node->storage, new, img);
+
+ out[0]->data = new;
+}
+
+static void node_composit_init_tonemap(bNode* node)
+{
+ NodeTonemap *ntm = MEM_callocN(sizeof(NodeTonemap), "node tonemap data");
+ ntm->type = 1;
+ ntm->key = 0.18;
+ ntm->offset = 1;
+ ntm->gamma = 1;
+ ntm->f = 0;
+ ntm->m = 0; // actual value is set according to input
+ // default a of 1 works well with natural HDR images, but not always so for cgi.
+ // Maybe should use 0 or at least lower initial value instead
+ ntm->a = 1;
+ ntm->c = 0;
+ node->storage = ntm;
+}
+
+bNodeType cmp_node_tonemap = {
+ /* *next,*prev */ NULL, NULL,
+ /* type code */ CMP_NODE_TONEMAP,
+ /* name */ "Tonemap",
+ /* width+range */ 150, 120, 200,
+ /* class+opts */ NODE_CLASS_OP_COLOR, NODE_OPTIONS,
+ /* input sock */ cmp_node_tonemap_in,
+ /* output sock */ cmp_node_tonemap_out,
+ /* storage */ "NodeTonemap",
+ /* execfunc */ node_composit_exec_tonemap,
+ /* butfunc */ NULL,
+ /* initfunc */ node_composit_init_tonemap,
+ /* freestoragefunc */ node_free_standard_storage,
+ /* copystoragefunc */ node_copy_standard_storage,
+ /* id */ NULL
+};
diff --git a/source/blender/nodes/intern/CMP_util.c b/source/blender/nodes/intern/CMP_util.c
index 0c6834315aa..b6b73221384 100644
--- a/source/blender/nodes/intern/CMP_util.c
+++ b/source/blender/nodes/intern/CMP_util.c
@@ -29,9 +29,6 @@
#include "CMP_util.h"
-
-
-
CompBuf *alloc_compbuf(int sizex, int sizey, int type, int alloc)
{
CompBuf *cbuf= MEM_callocN(sizeof(CompBuf), "compbuf");
@@ -577,3 +574,593 @@ void gamma_correct_compbuf(CompBuf *img, int inversed)
}
}
}
+
+
+
+
+/*
+ * 2D Fast Hartley Transform, used for convolution
+ */
+
+typedef float fREAL;
+
+// returns next highest power of 2 of x, as well it's log2 in L2
+static unsigned int nextPow2(unsigned int x, unsigned int* L2)
+{
+ unsigned int pw, x_notpow2 = x & (x-1);
+ *L2 = 0;
+ while (x>>=1) ++(*L2);
+ pw = 1 << (*L2);
+ if (x_notpow2) { (*L2)++; pw<<=1; }
+ return pw;
+}
+
+//------------------------------------------------------------------------------
+
+// from FXT library by Joerg Arndt, faster in order bitreversal
+// use: r = revbin_upd(r, h) where h = N>>1
+static unsigned int revbin_upd(unsigned int r, unsigned int h)
+{
+ while (!((r^=h)&h)) h >>= 1;
+ return r;
+}
+//------------------------------------------------------------------------------
+static void FHT(fREAL* data, unsigned int M, unsigned int inverse)
+{
+ double tt, fc, dc, fs, ds, a = M_PI;
+ fREAL t1, t2;
+ int n2, bd, bl, istep, k, len = 1 << M, n = 1;
+
+ int i, j = 0;
+ unsigned int Nh = len >> 1;
+ for (i=1;i<(len-1);++i) {
+ j = revbin_upd(j, Nh);
+ if (j>i) {
+ t1 = data[i];
+ data[i] = data[j];
+ data[j] = t1;
+ }
+ }
+
+ do {
+ fREAL* data_n = &data[n];
+
+ istep = n << 1;
+ for (k=0; k<len; k+=istep) {
+ t1 = data_n[k];
+ data_n[k] = data[k] - t1;
+ data[k] += t1;
+ }
+
+ n2 = n >> 1;
+ if (n>2) {
+ fc = dc = cos(a);
+ fs = ds = sqrt(1.0 - fc*fc); //sin(a);
+ bd = n-2;
+ for (bl=1; bl<n2; bl++) {
+ fREAL* data_nbd = &data_n[bd];
+ fREAL* data_bd = &data[bd];
+ for (k=bl; k<len; k+=istep) {
+ t1 = fc*data_n[k] + fs*data_nbd[k];
+ t2 = fs*data_n[k] - fc*data_nbd[k];
+ data_n[k] = data[k] - t1;
+ data_nbd[k] = data_bd[k] - t2;
+ data[k] += t1;
+ data_bd[k] += t2;
+ }
+ tt = fc*dc - fs*ds;
+ fs = fs*dc + fc*ds;
+ fc = tt;
+ bd -= 2;
+ }
+ }
+
+ if (n>1) {
+ for (k=n2; k<len; k+=istep) {
+ t1 = data_n[k];
+ data_n[k] = data[k] - t1;
+ data[k] += t1;
+ }
+ }
+
+ n = istep;
+ a *= 0.5;
+ } while (n<len);
+
+ if (inverse) {
+ fREAL sc = (fREAL)1 / (fREAL)len;
+ for (k=0; k<len; ++k)
+ data[k] *= sc;
+ }
+}
+//------------------------------------------------------------------------------
+/* 2D Fast Hartley Transform, Mx/My -> log2 of width/height,
+ nzp -> the row where zero pad data starts,
+ inverse -> see above */
+static void FHT2D(fREAL *data, unsigned int Mx, unsigned int My,
+ unsigned int nzp, unsigned int inverse)
+{
+ unsigned int i, j, Nx, Ny, maxy;
+ fREAL t;
+
+ Nx = 1 << Mx;
+ Ny = 1 << My;
+
+ // rows (forward transform skips 0 pad data)
+ maxy = inverse ? Ny : nzp;
+ for (j=0; j<maxy; ++j)
+ FHT(&data[Nx*j], Mx, inverse);
+
+ // transpose data
+ if (Nx==Ny) { // square
+ for (j=0; j<Ny; ++j)
+ for (i=j+1; i<Nx; ++i) {
+ unsigned int op = i + (j << Mx), np = j + (i << My);
+ t=data[op], data[op]=data[np], data[np]=t;
+ }
+ }
+ else { // rectangular
+ unsigned int k, Nym = Ny-1, stm = 1 << (Mx + My);
+ for (i=0; stm>0; i++) {
+ #define pred(k) (((k & Nym) << Mx) + (k >> My))
+ for (j=pred(i); j>i; j=pred(j));
+ if (j < i) continue;
+ for (k=i, j=pred(i); j!=i; k=j, j=pred(j), stm--)
+ { t=data[j], data[j]=data[k], data[k]=t; }
+ #undef pred
+ stm--;
+ }
+ }
+ // swap Mx/My & Nx/Ny
+ i = Nx, Nx = Ny, Ny = i;
+ i = Mx, Mx = My, My = i;
+
+ // now columns == transposed rows
+ for (j=0; j<Ny; ++j)
+ FHT(&data[Nx*j], Mx, inverse);
+
+ // finalize
+ for (j=0; j<=(Ny >> 1); j++) {
+ unsigned int jm = (Ny - j) & (Ny-1);
+ unsigned int ji = j << Mx;
+ unsigned int jmi = jm << Mx;
+ for (i=0; i<=(Nx >> 1); i++) {
+ unsigned int im = (Nx - i) & (Nx-1);
+ fREAL A = data[ji + i];
+ fREAL B = data[jmi + i];
+ fREAL C = data[ji + im];
+ fREAL D = data[jmi + im];
+ fREAL E = (fREAL)0.5*((A + D) - (B + C));
+ data[ji + i] = A - E;
+ data[jmi + i] = B + E;
+ data[ji + im] = C + E;
+ data[jmi + im] = D - E;
+ }
+ }
+
+}
+
+//------------------------------------------------------------------------------
+
+/* 2D convolution calc, d1 *= d2, M/N - > log2 of width/height */
+static void fht_convolve(fREAL* d1, fREAL* d2, unsigned int M, unsigned int N)
+{
+ fREAL a, b;
+ unsigned int i, j, k, L, mj, mL;
+ unsigned int m = 1 << M, n = 1 << N;
+ unsigned int m2 = 1 << (M-1), n2 = 1 << (N-1);
+ unsigned int mn2 = m << (N-1);
+
+ d1[0] *= d2[0];
+ d1[mn2] *= d2[mn2];
+ d1[m2] *= d2[m2];
+ d1[m2 + mn2] *= d2[m2 + mn2];
+ for (i=1; i<m2; i++) {
+ k = m - i;
+ a = d1[i]*d2[i] - d1[k]*d2[k];
+ b = d1[k]*d2[i] + d1[i]*d2[k];
+ d1[i] = (b + a)*(fREAL)0.5;
+ d1[k] = (b - a)*(fREAL)0.5;
+ a = d1[i + mn2]*d2[i + mn2] - d1[k + mn2]*d2[k + mn2];
+ b = d1[k + mn2]*d2[i + mn2] + d1[i + mn2]*d2[k + mn2];
+ d1[i + mn2] = (b + a)*(fREAL)0.5;
+ d1[k + mn2] = (b - a)*(fREAL)0.5;
+ }
+ for (j=1; j<n2; j++) {
+ L = n - j;
+ mj = j << M;
+ mL = L << M;
+ a = d1[mj]*d2[mj] - d1[mL]*d2[mL];
+ b = d1[mL]*d2[mj] + d1[mj]*d2[mL];
+ d1[mj] = (b + a)*(fREAL)0.5;
+ d1[mL] = (b - a)*(fREAL)0.5;
+ a = d1[m2 + mj]*d2[m2 + mj] - d1[m2 + mL]*d2[m2 + mL];
+ b = d1[m2 + mL]*d2[m2 + mj] + d1[m2 + mj]*d2[m2 + mL];
+ d1[m2 + mj] = (b + a)*(fREAL)0.5;
+ d1[m2 + mL] = (b - a)*(fREAL)0.5;
+ }
+ for (i=1; i<m2; i++) {
+ k = m - i;
+ for (j=1; j<n2; j++) {
+ L = n - j;
+ mj = j << M;
+ mL = L << M;
+ a = d1[i + mj]*d2[i + mj] - d1[k + mL]*d2[k + mL];
+ b = d1[k + mL]*d2[i + mj] + d1[i + mj]*d2[k + mL];
+ d1[i + mj] = (b + a)*(fREAL)0.5;
+ d1[k + mL] = (b - a)*(fREAL)0.5;
+ a = d1[i + mL]*d2[i + mL] - d1[k + mj]*d2[k + mj];
+ b = d1[k + mj]*d2[i + mL] + d1[i + mL]*d2[k + mj];
+ d1[i + mL] = (b + a)*(fREAL)0.5;
+ d1[k + mj] = (b - a)*(fREAL)0.5;
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+
+void convolve(CompBuf* dst, CompBuf* in1, CompBuf* in2)
+{
+ fREAL *data1, *data2, *fp;
+ unsigned int w2, h2, hw, hh, log2_w, log2_h;
+ fRGB wt, *colp;
+ int x, y, ch;
+ int xbl, ybl, nxb, nyb, xbsz, ybsz;
+ int in2done = 0;
+
+ CompBuf* rdst = alloc_compbuf(in1->x, in1->y, in1->type, 1);
+
+ // convolution result width & height
+ w2 = 2*in2->x - 1;
+ h2 = 2*in2->y - 1;
+ // FFT pow2 required size & log2
+ w2 = nextPow2(w2, &log2_w);
+ h2 = nextPow2(h2, &log2_h);
+
+ // alloc space
+ data1 = (fREAL*)MEM_callocN(3*w2*h2*sizeof(fREAL), "convolve_fast FHT data1");
+ data2 = (fREAL*)MEM_callocN(w2*h2*sizeof(fREAL), "convolve_fast FHT data2");
+
+ // normalize convolutor
+ wt[0] = wt[1] = wt[2] = 0.f;
+ for (y=0; y<in2->y; y++) {
+ colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
+ for (x=0; x<in2->x; x++)
+ fRGB_add(wt, colp[x]);
+ }
+ if (wt[0] != 0.f) wt[0] = 1.f/wt[0];
+ if (wt[1] != 0.f) wt[1] = 1.f/wt[1];
+ if (wt[2] != 0.f) wt[2] = 1.f/wt[2];
+ for (y=0; y<in2->y; y++) {
+ colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
+ for (x=0; x<in2->x; x++)
+ fRGB_colormult(colp[x], wt);
+ }
+
+ // copy image data, unpacking interleaved RGBA into separate channels
+ // only need to calc data1 once
+
+ // block add-overlap
+ hw = in2->x >> 1;
+ hh = in2->y >> 1;
+ xbsz = (w2 + 1) - in2->x;
+ ybsz = (h2 + 1) - in2->y;
+ nxb = in1->x / xbsz;
+ if (in1->x % xbsz) nxb++;
+ nyb = in1->y / ybsz;
+ if (in1->y % ybsz) nyb++;
+ for (ybl=0; ybl<nyb; ybl++) {
+ for (xbl=0; xbl<nxb; xbl++) {
+
+ // each channel one by one
+ for (ch=0; ch<3; ch++) {
+ fREAL* data1ch = &data1[ch*w2*h2];
+
+ // only need to calc fht data from in2 once, can re-use for every block
+ if (!in2done) {
+ // in2, channel ch -> data1
+ for (y=0; y<in2->y; y++) {
+ fp = &data1ch[y*w2];
+ colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
+ for (x=0; x<in2->x; x++)
+ fp[x] = colp[x][ch];
+ }
+ }
+
+ // in1, channel ch -> data2
+ memset(data2, 0, w2*h2*sizeof(fREAL));
+ for (y=0; y<ybsz; y++) {
+ int yy = ybl*ybsz + y;
+ if (yy >= in1->y) continue;
+ fp = &data2[y*w2];
+ colp = (fRGB*)&in1->rect[yy*in1->x*in1->type];
+ for (x=0; x<xbsz; x++) {
+ int xx = xbl*xbsz + x;
+ if (xx >= in1->x) continue;
+ fp[x] = colp[xx][ch];
+ }
+ }
+
+ // forward FHT
+ // zero pad data start is different for each == height+1
+ if (!in2done) FHT2D(data1ch, log2_w, log2_h, in2->y+1, 0);
+ FHT2D(data2, log2_w, log2_h, in2->y+1, 0);
+
+ // FHT2D transposed data, row/col now swapped
+ // convolve & inverse FHT
+ fht_convolve(data2, data1ch, log2_h, log2_w);
+ FHT2D(data2, log2_h, log2_w, 0, 1);
+ // data again transposed, so in order again
+
+ // overlap-add result
+ for (y=0; y<(int)h2; y++) {
+ const int yy = ybl*ybsz + y - hh;
+ if ((yy < 0) || (yy >= in1->y)) continue;
+ fp = &data2[y*w2];
+ colp = (fRGB*)&rdst->rect[yy*in1->x*in1->type];
+ for (x=0; x<(int)w2; x++) {
+ const int xx = xbl*xbsz + x - hw;
+ if ((xx < 0) || (xx >= in1->x)) continue;
+ colp[xx][ch] += fp[x];
+ }
+ }
+
+ }
+ in2done = 1;
+ }
+ }
+
+ MEM_freeN(data2);
+ MEM_freeN(data1);
+ memcpy(dst->rect, rdst->rect, sizeof(float)*dst->x*dst->y*dst->type);
+ free_compbuf(rdst);
+}
+
+
+/*
+ *
+ * Utility functions qd_* should probably be intergrated better with other functions here.
+ *
+ */
+// sets fcol to pixelcolor at (x, y)
+void qd_getPixel(CompBuf* src, int x, int y, float* col)
+{
+ if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ col[0] = bc[0], col[1] = bc[1], col[2] = bc[2];
+ }
+ else col[0] = col[1] = col[2] = 0.f;
+}
+
+// sets pixel (x, y) to color col
+void qd_setPixel(CompBuf* src, int x, int y, float* col)
+{
+ if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ bc[0] = col[0], bc[1] = col[1], bc[2] = col[2];
+ }
+}
+
+// adds fcol to pixelcolor (x, y)
+void qd_addPixel(CompBuf* src, int x, int y, float* col)
+{
+ if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ bc[0] += col[0], bc[1] += col[1], bc[2] += col[2];
+ }
+}
+
+// multiplies pixel by factor value f
+void qd_multPixel(CompBuf* src, int x, int y, float f)
+{
+ if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
+ float* bc = &src->rect[(x + y*src->x)*src->type];
+ bc[0] *= f, bc[1] *= f, bc[2] *= f;
+ }
+}
+
+// bilinear interpolation with wraparound
+void qd_getPixelLerpWrap(CompBuf* src, float u, float v, float* col)
+{
+ const float ufl = floorf(u), vfl = floorf(v);
+ const int nx = (int)ufl % src->x, ny = (int)vfl % src->y;
+ const int x1 = (nx < 0) ? (nx + src->x) : nx;
+ const int y1 = (ny < 0) ? (ny + src->y) : ny;
+ const int x2 = (x1 + 1) % src->x, y2 = (y1 + 1) % src->y;
+ const float* c00 = &src->rect[(x1 + y1*src->x)*src->type];
+ const float* c10 = &src->rect[(x2 + y1*src->x)*src->type];
+ const float* c01 = &src->rect[(x1 + y2*src->x)*src->type];
+ const float* c11 = &src->rect[(x2 + y2*src->x)*src->type];
+ const float uf = u - ufl, vf = v - vfl;
+ const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
+ col[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
+ if (src->type != CB_VAL) {
+ col[1] = w00*c00[1] + w10*c10[1] + w01*c01[1] + w11*c11[1];
+ col[2] = w00*c00[2] + w10*c10[2] + w01*c01[2] + w11*c11[2];
+ col[3] = w00*c00[3] + w10*c10[3] + w01*c01[3] + w11*c11[3];
+ }
+}
+
+// as above, without wrap around
+void qd_getPixelLerp(CompBuf* src, float u, float v, float* col)
+{
+ const float ufl = floorf(u), vfl = floorf(v);
+ const int x1 = (int)ufl, y1 = (int)vfl;
+ const int x2 = (int)ceilf(u), y2 = (int)ceilf(v);
+ if ((x2 >= 0) && (y2 >= 0) && (x1 < src->x) && (y1 < src->y)) {
+ const float B[4] = {0,0,0,0};
+ const int ox1 = (x1 < 0), oy1 = (y1 < 0), ox2 = (x2 >= src->x), oy2 = (y2 >= src->y);
+ const float* c00 = (ox1 || oy1) ? B : &src->rect[(x1 + y1*src->x)*src->type];
+ const float* c10 = (ox2 || oy1) ? B : &src->rect[(x2 + y1*src->x)*src->type];
+ const float* c01 = (ox1 || oy2) ? B : &src->rect[(x1 + y2*src->x)*src->type];
+ const float* c11 = (ox2 || oy2) ? B : &src->rect[(x2 + y2*src->x)*src->type];
+ const float uf = u - ufl, vf = v - vfl;
+ const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
+ col[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
+ if (src->type != CB_VAL) {
+ col[1] = w00*c00[1] + w10*c10[1] + w01*c01[1] + w11*c11[1];
+ col[2] = w00*c00[2] + w10*c10[2] + w01*c01[2] + w11*c11[2];
+ col[3] = w00*c00[3] + w10*c10[3] + w01*c01[3] + w11*c11[3];
+ }
+ }
+ else col[0] = col[1] = col[2] = col[3] = 0.f;
+}
+
+// as above, sampling only one channel
+void qd_getPixelLerpChan(CompBuf* src, float u, float v, int chan, float* out)
+{
+ const float ufl = floorf(u), vfl = floorf(v);
+ const int x1 = (int)ufl, y1 = (int)vfl;
+ const int x2 = (int)ceilf(u), y2 = (int)ceilf(v);
+ if (chan >= src->type) chan = 0;
+ if ((x2 >= 0) && (y2 >= 0) && (x1 < src->x) && (y1 < src->y)) {
+ const float B[4] = {0,0,0,0};
+ const int ox1 = (x1 < 0), oy1 = (y1 < 0), ox2 = (x2 >= src->x), oy2 = (y2 >= src->y);
+ const float* c00 = (ox1 || oy1) ? B : &src->rect[(x1 + y1*src->x)*src->type + chan];
+ const float* c10 = (ox2 || oy1) ? B : &src->rect[(x2 + y1*src->x)*src->type + chan];
+ const float* c01 = (ox1 || oy2) ? B : &src->rect[(x1 + y2*src->x)*src->type + chan];
+ const float* c11 = (ox2 || oy2) ? B : &src->rect[(x2 + y2*src->x)*src->type + chan];
+ const float uf = u - ufl, vf = v - vfl;
+ const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
+ out[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
+ }
+ else *out = 0.f;
+}
+
+
+CompBuf* qd_downScaledCopy(CompBuf* src, int scale)
+{
+ CompBuf* fbuf;
+ if (scale <= 1)
+ fbuf = dupalloc_compbuf(src);
+ else {
+ int nw = src->x/scale, nh = src->y/scale;
+ if ((2*(src->x % scale)) > scale) nw++;
+ if ((2*(src->y % scale)) > scale) nh++;
+ fbuf = alloc_compbuf(nw, nh, src->type, 1);
+ {
+ int x, y, xx, yy, sx, sy, mx, my;
+ float colsum[4];
+ float fscale = 1.f/(float)(scale*scale);
+ for (y=0; y<nh; y++) {
+ fRGB* fcolp = (fRGB*)&fbuf->rect[y*fbuf->x*fbuf->type];
+ yy = y*scale;
+ my = yy + scale;
+ if (my > src->y) my = src->y;
+ for (x=0; x<nw; x++) {
+ xx = x*scale;
+ mx = xx + scale;
+ if (mx > src->x) mx = src->x;
+ colsum[0] = colsum[1] = colsum[2] = 0.f;
+ for (sy=yy; sy<my; sy++) {
+ fRGB* scolp = (fRGB*)&src->rect[sy*src->x*src->type];
+ for (sx=xx; sx<mx; sx++)
+ fRGB_add(colsum, scolp[sx]);
+ }
+ fRGB_mult(colsum, fscale);
+ fRGB_copy(fcolp[x], colsum);
+ }
+ }
+ }
+ }
+ return fbuf;
+}
+
+// fast g.blur, per channel
+// xy var. bits 1 & 2 ca be used to blur in x or y direction separately
+void IIR_gauss(CompBuf* src, float sigma, int chan, int xy)
+{
+ double q, q2, sc, cf[4], tsM[9], tsu[3], tsv[3];
+ float *X, *Y, *W;
+ int i, x, y, sz;
+
+ // <0.5 not valid, though can have a possibly useful sort of sharpening effect
+ if (sigma < 0.5) return;
+
+ if ((xy < 1) || (xy > 3)) xy = 3;
+
+ // see "Recursive Gabor Filtering" by Young/VanVliet
+ // all factors here in double.prec. Required, because for single.prec it seems to blow up if sigma > ~200
+ if (sigma >= 3.556)
+ q = 0.9804*(sigma - 3.556) + 2.5091;
+ else // sigma >= 0.5
+ q = (0.0561*sigma + 0.5784)*sigma - 0.2568;
+ q2 = q*q;
+ sc = (1.1668 + q)*(3.203729649 + (2.21566 + q)*q);
+ // no gabor filtering here, so no complex multiplies, just the regular coefs.
+ // all negated here, so as not to have to recalc Triggs/Sdika matrix
+ cf[1] = q*(5.788961737 + (6.76492 + 3.0*q)*q)/ sc;
+ cf[2] = -q2*(3.38246 + 3.0*q)/sc;
+ // 0 & 3 unchanged
+ cf[3] = q2*q/sc;
+ cf[0] = 1.0 - cf[1] - cf[2] - cf[3];
+
+ // Triggs/Sdika border corrections,
+ // it seems to work, not entirely sure if it is actually totally correct,
+ // Besides J.M.Geusebroek's anigauss.c (see http://www.science.uva.nl/~mark),
+ // found one other implementation by Cristoph Lampert,
+ // but neither seem to be quite the same, result seems to be ok sofar anyway.
+ // Extra scale factor here to not have to do it in filter,
+ // though maybe this had something to with the precision errors
+ sc = cf[0]/((1.0 + cf[1] - cf[2] + cf[3])*(1.0 - cf[1] - cf[2] - cf[3])*(1.0 + cf[2] + (cf[1] - cf[3])*cf[3]));
+ tsM[0] = sc*(-cf[3]*cf[1] + 1.0 - cf[3]*cf[3] - cf[2]);
+ tsM[1] = sc*((cf[3] + cf[1])*(cf[2] + cf[3]*cf[1]));
+ tsM[2] = sc*(cf[3]*(cf[1] + cf[3]*cf[2]));
+ tsM[3] = sc*(cf[1] + cf[3]*cf[2]);
+ tsM[4] = sc*(-(cf[2] - 1.0)*(cf[2] + cf[3]*cf[1]));
+ tsM[5] = sc*(-(cf[3]*cf[1] + cf[3]*cf[3] + cf[2] - 1.0)*cf[3]);
+ tsM[6] = sc*(cf[3]*cf[1] + cf[2] + cf[1]*cf[1] - cf[2]*cf[2]);
+ tsM[7] = sc*(cf[1]*cf[2] + cf[3]*cf[2]*cf[2] - cf[1]*cf[3]*cf[3] - cf[3]*cf[3]*cf[3] - cf[3]*cf[2] + cf[3]);
+ tsM[8] = sc*(cf[3]*(cf[1] + cf[3]*cf[2]));
+
+#define YVV(L)\
+{\
+ W[0] = cf[0]*X[0] + cf[1]*X[0] + cf[2]*X[0] + cf[3]*X[0];\
+ W[1] = cf[0]*X[1] + cf[1]*W[0] + cf[2]*X[0] + cf[3]*X[0];\
+ W[2] = cf[0]*X[2] + cf[1]*W[1] + cf[2]*W[0] + cf[3]*X[0];\
+ for (i=3; i<L; i++)\
+ W[i] = cf[0]*X[i] + cf[1]*W[i-1] + cf[2]*W[i-2] + cf[3]*W[i-3];\
+ tsu[0] = W[L-1] - X[L-1];\
+ tsu[1] = W[L-2] - X[L-1];\
+ tsu[2] = W[L-3] - X[L-1];\
+ tsv[0] = tsM[0]*tsu[0] + tsM[1]*tsu[1] + tsM[2]*tsu[2] + X[L-1];\
+ tsv[1] = tsM[3]*tsu[0] + tsM[4]*tsu[1] + tsM[5]*tsu[2] + X[L-1];\
+ tsv[2] = tsM[6]*tsu[0] + tsM[7]*tsu[1] + tsM[8]*tsu[2] + X[L-1];\
+ Y[L-1] = cf[0]*W[L-1] + cf[1]*tsv[0] + cf[2]*tsv[1] + cf[3]*tsv[2];\
+ Y[L-2] = cf[0]*W[L-2] + cf[1]*Y[L-1] + cf[2]*tsv[0] + cf[3]*tsv[1];\
+ Y[L-3] = cf[0]*W[L-3] + cf[1]*Y[L-2] + cf[2]*Y[L-1] + cf[3]*tsv[0];\
+ for (i=L-4; i>=0; i--)\
+ Y[i] = cf[0]*W[i] + cf[1]*Y[i+1] + cf[2]*Y[i+2] + cf[3]*Y[i+3];\
+}
+
+ // intermediate buffers
+ sz = MAX2(src->x, src->y);
+ X = MEM_callocN(sz*sizeof(float), "IIR_gauss X buf");
+ Y = MEM_callocN(sz*sizeof(float), "IIR_gauss Y buf");
+ W = MEM_callocN(sz*sizeof(float), "IIR_gauss W buf");
+ if (xy & 1) { // H
+ for (y=0; y<src->y; ++y) {
+ const int yx = y*src->x;
+ for (x=0; x<src->x; ++x)
+ X[x] = src->rect[(x + yx)*src->type + chan];
+ YVV(src->x);
+ for (x=0; x<src->x; ++x)
+ src->rect[(x + yx)*src->type + chan] = Y[x];
+ }
+ }
+ if (xy & 2) { // V
+ for (x=0; x<src->x; ++x) {
+ for (y=0; y<src->y; ++y)
+ X[y] = src->rect[(x + y*src->x)*src->type + chan];
+ YVV(src->y);
+ for (y=0; y<src->y; ++y)
+ src->rect[(x + y*src->x)*src->type + chan] = Y[y];
+ }
+ }
+
+ MEM_freeN(X);
+ MEM_freeN(W);
+ MEM_freeN(Y);
+#undef YVV
+}
+
diff --git a/source/blender/nodes/intern/CMP_util.h b/source/blender/nodes/intern/CMP_util.h
index 83f85160625..7cb10b75f3a 100644
--- a/source/blender/nodes/intern/CMP_util.h
+++ b/source/blender/nodes/intern/CMP_util.h
@@ -176,7 +176,46 @@ void do_hsva_to_rgba(bNode *node, float *out, float *in);
void do_ycca_to_rgba(bNode *node, float *out, float *in);
void gamma_correct_compbuf(CompBuf *img, int inversed);
+void convolve(CompBuf* dst, CompBuf* in1, CompBuf* in2);
extern void node_ID_title_cb(void *node_v, void *unused_v);
+
+/* utility functions used by glare, tonemap and lense distortion */
+/* soms macros for color handling */
+typedef float fRGB[4];
+/* clear color */
+#define fRGB_clear(c) { c[0]=c[1]=c[2]=0.f; }
+/* copy c2 to c1 */
+#define fRGB_copy(c1, c2) { c1[0]=c2[0]; c1[1]=c2[1]; c1[2]=c2[2]; }
+/* add c2 to c1 */
+#define fRGB_add(c1, c2) { c1[0]+=c2[0]; c1[1]+=c2[1]; c1[2]+=c2[2]; }
+/* subtract c2 from c1 */
+#define fRGB_sub(c1, c2) { c1[0]-=c2[0]; c1[1]-=c2[1]; c1[2]-=c2[2]; }
+/* multiply c by float value s */
+#define fRGB_mult(c, s) { c[0]*=s; c[1]*=s; c[2]*=s; }
+/* multiply c2 by s and add to c1 */
+#define fRGB_madd(c1, c2, s) { c1[0]+=c2[0]*s; c1[1]+=c2[1]*s; c1[2]+=c2[2]*s; }
+/* multiply c2 by color c1 */
+#define fRGB_colormult(c, cs) { c[0]*=cs[0]; c[1]*=cs[1]; c[2]*=cs[2]; }
+/* multiply c2 by color c3 and add to c1 */
+#define fRGB_colormadd(c1, c2, c3) { c1[0]+=c2[0]*c3[0]; c1[1]+=c2[1]*c3[1]; c1[2]+=c2[2]*c3[2]; }
+/* multiply c2 by color rgb, rgb as separate arguments */
+#define fRGB_rgbmult(c, r, g, b) { c[0]*=(r); c[1]*=(g); c[2]*=(b); }
+/* swap colors c1 & c2 */
+#define fRGB_swap(c1, c2) { float _t=c1[0]; c1[0]=c2[0]; c2[0]=_t;\
+ _t=c1[1]; c1[1]=c2[1]; c2[1]=_t;\
+ _t=c1[2]; c1[2]=c2[2]; c2[2]=_t; }
+
+void qd_getPixel(CompBuf* src, int x, int y, float* col);
+void qd_setPixel(CompBuf* src, int x, int y, float* col);
+void qd_addPixel(CompBuf* src, int x, int y, float* col);
+void qd_multPixel(CompBuf* src, int x, int y, float f);
+void qd_getPixelLerpWrap(CompBuf* src, float u, float v, float* col);
+void qd_getPixelLerp(CompBuf* src, float u, float v, float* col);
+void qd_getPixelLerpChan(CompBuf* src, float u, float v, int chan, float* out);
+CompBuf* qd_downScaledCopy(CompBuf* src, int scale);
+void IIR_gauss(CompBuf* src, float sigma, int chan, int xy);
+/* end utility funcs */
+
#endif