Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLukas Tönne <lukas.toenne@gmail.com>2014-11-06 17:05:42 +0300
committerLukas Tönne <lukas.toenne@gmail.com>2015-01-20 11:30:06 +0300
commit9cd8e9f146b373e17d36d9ba8b82d2f7f6ec919c (patch)
treee33bc78c36361b82b6e4aabc4844fe2c354c12e1 /source/blender/physics/intern/hair_volume.cpp
parent46db2888327a212ef6b3bbb4d16360f7b9e563c7 (diff)
Compile hair volumetrics code as C++, so we can use Eigen easier.
Diffstat (limited to 'source/blender/physics/intern/hair_volume.cpp')
-rw-r--r--source/blender/physics/intern/hair_volume.cpp749
1 files changed, 749 insertions, 0 deletions
diff --git a/source/blender/physics/intern/hair_volume.cpp b/source/blender/physics/intern/hair_volume.cpp
new file mode 100644
index 00000000000..23abe917935
--- /dev/null
+++ b/source/blender/physics/intern/hair_volume.cpp
@@ -0,0 +1,749 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) Blender Foundation
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Janne Karhu, Lukas Toenne
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/** \file blender/blenkernel/intern/hair_volume.c
+ * \ingroup bph
+ */
+
+#include "MEM_guardedalloc.h"
+
+#include "BLI_math.h"
+#include "BLI_utildefines.h"
+
+#include "DNA_texture_types.h"
+
+#include "BKE_effect.h"
+
+#include "implicit.h"
+
+/* ================ Volumetric Hair Interaction ================
+ * adapted from
+ *
+ * Volumetric Methods for Simulation and Rendering of Hair
+ * (Petrovic, Henne, Anderson, Pixar Technical Memo #06-08, Pixar Animation Studios)
+ *
+ * as well as
+ *
+ * "Detail Preserving Continuum Simulation of Straight Hair"
+ * (McAdams, Selle 2009)
+ */
+
+/* Note about array indexing:
+ * Generally the arrays here are one-dimensional.
+ * The relation between 3D indices and the array offset is
+ * offset = x + res_x * y + res_y * z
+ */
+
+/* TODO: This is an initial implementation and should be made much better in due time.
+ * What should at least be implemented is a grid size parameter and a smoothing kernel
+ * for bigger grids.
+ */
+
+
+static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
+
+BLI_INLINE int hair_grid_size(const int res[3])
+{
+ return res[0] * res[1] * res[2];
+}
+
+typedef struct HairGridVert {
+ float velocity[3];
+ float density;
+
+ float velocity_smooth[3];
+} HairGridVert;
+
+typedef struct HairGrid {
+ HairGridVert *verts;
+ int res[3];
+ float gmin[3], gmax[3];
+ float cellsize, inv_cellsize;
+
+ struct SimDebugData *debug_data;
+} HairGrid;
+
+#define HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, axis) ( min_ii( max_ii( (int)((vec[axis] - gmin[axis]) * scale), 0), res[axis]-2 ) )
+
+BLI_INLINE int hair_grid_offset(const float vec[3], const int res[3], const float gmin[3], float scale)
+{
+ int i, j, k;
+ i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
+ j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
+ k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
+ return i + (j + k*res[1])*res[0];
+}
+
+BLI_INLINE int hair_grid_interp_weights(const int res[3], const float gmin[3], float scale, const float vec[3], float uvw[3])
+{
+ int i, j, k, offset;
+
+ i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
+ j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
+ k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
+ offset = i + (j + k*res[1])*res[0];
+
+ uvw[0] = (vec[0] - gmin[0]) * scale - (float)i;
+ uvw[1] = (vec[1] - gmin[1]) * scale - (float)j;
+ uvw[2] = (vec[2] - gmin[2]) * scale - (float)k;
+
+// BLI_assert(0.0f <= uvw[0] && uvw[0] <= 1.0001f);
+// BLI_assert(0.0f <= uvw[1] && uvw[1] <= 1.0001f);
+// BLI_assert(0.0f <= uvw[2] && uvw[2] <= 1.0001f);
+
+ return offset;
+}
+
+BLI_INLINE void hair_grid_interpolate(const HairGridVert *grid, const int res[3], const float gmin[3], float scale, const float vec[3],
+ float *density, float velocity[3], float density_gradient[3], float velocity_gradient[3][3])
+{
+ HairGridVert data[8];
+ float uvw[3], muvw[3];
+ int res2 = res[1] * res[0];
+ int offset;
+
+ offset = hair_grid_interp_weights(res, gmin, scale, vec, uvw);
+ muvw[0] = 1.0f - uvw[0];
+ muvw[1] = 1.0f - uvw[1];
+ muvw[2] = 1.0f - uvw[2];
+
+ data[0] = grid[offset ];
+ data[1] = grid[offset +1];
+ data[2] = grid[offset +res[0] ];
+ data[3] = grid[offset +res[0]+1];
+ data[4] = grid[offset+res2 ];
+ data[5] = grid[offset+res2 +1];
+ data[6] = grid[offset+res2+res[0] ];
+ data[7] = grid[offset+res2+res[0]+1];
+
+ if (density) {
+ *density = muvw[2]*( muvw[1]*( muvw[0]*data[0].density + uvw[0]*data[1].density ) +
+ uvw[1]*( muvw[0]*data[2].density + uvw[0]*data[3].density ) ) +
+ uvw[2]*( muvw[1]*( muvw[0]*data[4].density + uvw[0]*data[5].density ) +
+ uvw[1]*( muvw[0]*data[6].density + uvw[0]*data[7].density ) );
+ }
+
+ if (velocity) {
+ int k;
+ for (k = 0; k < 3; ++k) {
+ velocity[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity[k] + uvw[0]*data[1].velocity[k] ) +
+ uvw[1]*( muvw[0]*data[2].velocity[k] + uvw[0]*data[3].velocity[k] ) ) +
+ uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity[k] + uvw[0]*data[5].velocity[k] ) +
+ uvw[1]*( muvw[0]*data[6].velocity[k] + uvw[0]*data[7].velocity[k] ) );
+ }
+ }
+
+ if (density_gradient) {
+ density_gradient[0] = muvw[1] * muvw[2] * ( data[0].density - data[1].density ) +
+ uvw[1] * muvw[2] * ( data[2].density - data[3].density ) +
+ muvw[1] * uvw[2] * ( data[4].density - data[5].density ) +
+ uvw[1] * uvw[2] * ( data[6].density - data[7].density );
+
+ density_gradient[1] = muvw[2] * muvw[0] * ( data[0].density - data[2].density ) +
+ uvw[2] * muvw[0] * ( data[4].density - data[6].density ) +
+ muvw[2] * uvw[0] * ( data[1].density - data[3].density ) +
+ uvw[2] * uvw[0] * ( data[5].density - data[7].density );
+
+ density_gradient[2] = muvw[2] * muvw[0] * ( data[0].density - data[4].density ) +
+ uvw[2] * muvw[0] * ( data[1].density - data[5].density ) +
+ muvw[2] * uvw[0] * ( data[2].density - data[6].density ) +
+ uvw[2] * uvw[0] * ( data[3].density - data[7].density );
+ }
+
+ if (velocity_gradient) {
+ /* XXX TODO */
+ zero_m3(velocity_gradient);
+ }
+}
+
+void BPH_hair_volume_vertex_grid_forces(HairGrid *grid, const float x[3], const float v[3],
+ float smoothfac, float pressurefac, float minpressure,
+ float f[3], float dfdx[3][3], float dfdv[3][3])
+{
+ float gdensity, gvelocity[3], ggrad[3], gvelgrad[3][3], gradlen;
+
+ hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->inv_cellsize, x, &gdensity, gvelocity, ggrad, gvelgrad);
+
+ zero_v3(f);
+ sub_v3_v3(gvelocity, v);
+ mul_v3_v3fl(f, gvelocity, smoothfac);
+
+ gradlen = normalize_v3(ggrad) - minpressure;
+ if (gradlen > 0.0f) {
+ mul_v3_fl(ggrad, gradlen);
+ madd_v3_v3fl(f, ggrad, pressurefac);
+ }
+
+ zero_m3(dfdx);
+
+ sub_m3_m3m3(dfdv, gvelgrad, I);
+ mul_m3_fl(dfdv, smoothfac);
+}
+
+void BPH_hair_volume_grid_interpolate(HairGrid *grid, const float x[3],
+ float *density, float velocity[3], float density_gradient[3], float velocity_gradient[3][3])
+{
+ hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->inv_cellsize, x, density, velocity, density_gradient, velocity_gradient);
+}
+
+void BPH_hair_volume_grid_velocity(HairGrid *grid, const float x[3], const float v[3],
+ float fluid_factor,
+ float r_v[3])
+{
+ float gdensity, gvelocity[3], ggrad[3], gvelgrad[3][3];
+
+ hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->inv_cellsize, x, &gdensity, gvelocity, ggrad, gvelgrad);
+
+ /* XXX TODO implement FLIP method and use fluid_factor to blend between FLIP and PIC */
+ copy_v3_v3(r_v, gvelocity);
+}
+
+BLI_INLINE bool hair_grid_point_valid(const float vec[3], float gmin[3], float gmax[3])
+{
+ return !(vec[0] < gmin[0] || vec[1] < gmin[1] || vec[2] < gmin[2] ||
+ vec[0] > gmax[0] || vec[1] > gmax[1] || vec[2] > gmax[2]);
+}
+
+BLI_INLINE float dist_tent_v3f3(const float a[3], float x, float y, float z)
+{
+ float w = (1.0f - fabsf(a[0] - x)) * (1.0f - fabsf(a[1] - y)) * (1.0f - fabsf(a[2] - z));
+ return w;
+}
+
+BLI_INLINE float weights_sum(const float weights[8])
+{
+ float totweight = 0.0f;
+ int i;
+ for (i = 0; i < 8; ++i)
+ totweight += weights[i];
+ return totweight;
+}
+
+/* returns the grid array offset as well to avoid redundant calculation */
+BLI_INLINE int hair_grid_weights(const int res[3], const float gmin[3], float scale, const float vec[3], float weights[8])
+{
+ int i, j, k, offset;
+ float uvw[3];
+
+ i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
+ j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
+ k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
+ offset = i + (j + k*res[1])*res[0];
+
+ uvw[0] = (vec[0] - gmin[0]) * scale;
+ uvw[1] = (vec[1] - gmin[1]) * scale;
+ uvw[2] = (vec[2] - gmin[2]) * scale;
+
+ weights[0] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)k );
+ weights[1] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)k );
+ weights[2] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)k );
+ weights[3] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)k );
+ weights[4] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)(k+1));
+ weights[5] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)(k+1));
+ weights[6] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)(k+1));
+ weights[7] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)(k+1));
+
+// BLI_assert(fabsf(weights_sum(weights) - 1.0f) < 0.0001f);
+
+ return offset;
+}
+
+void BPH_hair_volume_add_vertex(HairGrid *grid, const float x[3], const float v[3])
+{
+ const int res[3] = { grid->res[0], grid->res[1], grid->res[2] };
+ float weights[8];
+ int di, dj, dk;
+ int offset;
+
+ if (!hair_grid_point_valid(x, grid->gmin, grid->gmax))
+ return;
+
+ offset = hair_grid_weights(res, grid->gmin, grid->inv_cellsize, x, weights);
+
+ for (di = 0; di < 2; ++di) {
+ for (dj = 0; dj < 2; ++dj) {
+ for (dk = 0; dk < 2; ++dk) {
+ int voffset = offset + di + (dj + dk*res[1])*res[0];
+ int iw = di + dj*2 + dk*4;
+
+ grid->verts[voffset].density += weights[iw];
+ madd_v3_v3fl(grid->verts[voffset].velocity, v, weights[iw]);
+ }
+ }
+ }
+}
+
+BLI_INLINE void hair_volume_eval_grid_vertex(HairGridVert *vert, const float loc[3], float radius, float dist_scale,
+ const float x2[3], const float v2[3], const float x3[3], const float v3[3])
+{
+ float closest[3], lambda, dist, weight;
+
+ lambda = closest_to_line_v3(closest, loc, x2, x3);
+ dist = len_v3v3(closest, loc);
+
+ weight = (radius - dist) * dist_scale;
+
+ if (weight > 0.0f) {
+ float vel[3];
+
+ interp_v3_v3v3(vel, v2, v3, lambda);
+ madd_v3_v3fl(vert->velocity, vel, weight);
+ vert->density += weight;
+ }
+}
+
+BLI_INLINE int major_axis_v3(const float v[3])
+{
+ return v[0] > v[1] ? (v[0] > v[2] ? 0 : 2) : (v[1] > v[2] ? 1 : 2);
+}
+
+BLI_INLINE void grid_to_world(HairGrid *grid, float vecw[3], const float vec[3])
+{
+ copy_v3_v3(vecw, vec);
+ mul_v3_fl(vecw, grid->cellsize);
+ add_v3_v3(vecw, grid->gmin);
+}
+
+/* Uses a variation of Bresenham's algorithm for rasterizing a 3D grid with a line segment.
+ *
+ * The radius of influence around a segment is assumed to be at most 2*cellsize,
+ * i.e. only cells containing the segment and their direct neighbors are examined.
+ *
+ *
+ */
+void BPH_hair_volume_add_segment(HairGrid *grid,
+ const float UNUSED(x1[3]), const float UNUSED(v1[3]), const float x2[3], const float v2[3],
+ const float x3[3], const float v3[3], const float UNUSED(x4[3]), const float UNUSED(v4[3]),
+ const float UNUSED(dir1[3]), const float dir2[3], const float UNUSED(dir3[3]))
+{
+ SimDebugData *debug_data = grid->debug_data;
+
+ const int res[3] = { grid->res[0], grid->res[1], grid->res[2] };
+
+ /* find the primary direction from the major axis of the direction vector */
+ const int axis0 = major_axis_v3(dir2);
+ const int axis1 = (axis0 + 1) % 3;
+ const int axis2 = (axis0 + 2) % 3;
+
+ /* range along primary direction */
+ const float h2 = x2[axis0], h3 = x3[axis0];
+ const float hmin = min_ff(h2, h3);
+ const float hmax = max_ff(h2, h3);
+ const int imin = max_ii((int)hmin, 0);
+ const int imax = min_ii((int)hmax + 1, res[axis0]);
+
+ const float inc[2] = { dir2[axis1], dir2[axis2] }; /* increment of secondary directions per step in the primary direction */
+ const int grid_start1 = (int)x2[axis1]; /* offset of cells on minor axes */
+ const int grid_start2 = (int)x2[axis2]; /* offset of cells on minor axes */
+
+ const float cellsize = grid->cellsize;
+ float shift[2] = { x2[axis1] - floorf(x2[axis1]), /* fraction of a full cell shift [0.0, 1.0) */
+ x2[axis2] - floorf(x2[axis2]) };
+
+ /* vertex buffer offset factors along cardinal axes */
+ const int strides[3] = { 1, res[0], res[0] * res[1] };
+ /* change in offset when incrementing one of the axes */
+ const int stride0 = strides[axis0];
+ const int stride1 = strides[axis1];
+ const int stride2 = strides[axis2];
+
+ const float radius = 1.5f;
+ /* XXX cell size should be fixed and uniform! */
+ const float dist_scale = grid->inv_cellsize;
+
+ HairGridVert *vert0;
+ float loc0[3];
+ int j0, k0;
+ int i;
+
+ (void)debug_data;
+
+ j0 = grid_start1 - 1;
+ k0 = grid_start2 - 1;
+ vert0 = grid->verts + stride0 * imin + stride1 * j0 + stride2 * k0;
+ loc0[axis0] = (float)imin;
+ loc0[axis1] = (float)j0;
+ loc0[axis2] = (float)k0;
+
+ /* loop over all planes crossed along the primary direction */
+ for (i = imin; i < imax; ++i, vert0 += stride0, loc0[axis0] += cellsize) {
+ const int jmin = max_ii(j0, 0);
+ const int jmax = min_ii(j0 + 5, res[axis1]);
+ const int kmin = max_ii(k0, 0);
+ const int kmax = min_ii(k0 + 5, res[axis2]);
+
+ /* XXX problem: this can be offset beyond range of this plane when jmin/kmin gets clamped,
+ * for now simply calculate in outer loop with multiplication once
+ */
+// HairGridVert *vert1 = vert0;
+// float loc1[3] = { loc0[0], loc0[1], loc0[2] };
+ HairGridVert *vert1 = grid->verts + stride0 * i + stride1 * jmin + stride2 * kmin;
+ float loc1[3];
+ int j, k;
+
+ /* note: loc is in grid cell units,
+ * distances are be scaled by cell size for weighting
+ */
+ loc1[axis0] = (float)i;
+ loc1[axis1] = (float)jmin;
+ loc1[axis2] = (float)kmin;
+
+ /* 2x2 cells can be hit directly by the segment between two planes,
+ * margin is 1 cell, i.e. 4x4 cells are influenced at most,
+ * -> evaluate 5x5 grid vertices on cell borders
+ */
+
+ for (j = jmin; j < jmax; ++j, vert1 += stride1, loc1[axis1] += 1.0f) {
+ HairGridVert *vert2 = vert1;
+ float loc2[3] = { loc1[0], loc1[1], loc1[2] };
+
+ for (k = kmin; k < kmax; ++k, vert2 += stride2, loc2[axis2] += 1.0f) {
+ hair_volume_eval_grid_vertex(vert2, loc2, radius, dist_scale, x2, v2, x3, v3);
+ }
+ }
+
+ /* increment */
+ add_v2_v2(shift, inc);
+ if (shift[0] > 1.0f) {
+ shift[0] -= 1.0f;
+
+ j0 += 1;
+ vert0 += stride1;
+ loc0[axis1] += 1.0f;
+ }
+ else if (shift[0] < -1.0f) {
+ shift[0] += 1.0f;
+
+ j0 -= 1;
+ vert0 -= stride1;
+ loc0[axis1] -= 1.0f;
+ }
+ if (shift[1] > 1.0f) {
+ shift[1] -= 1.0f;
+
+ k0 += 1;
+ vert0 += stride2;
+ loc0[axis2] += 1.0f;
+ }
+ else if (shift[1] < -1.0f) {
+ shift[1] += 1.0f;
+
+ k0 -= 1;
+ vert0 -= stride2;
+ loc0[axis2] -= 1.0f;
+ }
+ }
+}
+
+void BPH_hair_volume_normalize_vertex_grid(HairGrid *grid)
+{
+ int i, size = hair_grid_size(grid->res);
+ /* divide velocity with density */
+ for (i = 0; i < size; i++) {
+ float density = grid->verts[i].density;
+ if (density > 0.0f)
+ mul_v3_fl(grid->verts[i].velocity, 1.0f/density);
+ }
+}
+
+#if 0 /* XXX weighting is incorrect, disabled for now */
+/* Velocity filter kernel
+ * See http://en.wikipedia.org/wiki/Filter_%28large_eddy_simulation%29
+ */
+
+BLI_INLINE void hair_volume_filter_box_convolute(HairVertexGrid *grid, float invD, const int kernel_size[3], int i, int j, int k)
+{
+ int res = grid->res;
+ int p, q, r;
+ int minp = max_ii(i - kernel_size[0], 0), maxp = min_ii(i + kernel_size[0], res-1);
+ int minq = max_ii(j - kernel_size[1], 0), maxq = min_ii(j + kernel_size[1], res-1);
+ int minr = max_ii(k - kernel_size[2], 0), maxr = min_ii(k + kernel_size[2], res-1);
+ int offset, kernel_offset, kernel_dq, kernel_dr;
+ HairGridVert *verts;
+ float *vel_smooth;
+
+ offset = i + (j + k*res)*res;
+ verts = grid->verts;
+ vel_smooth = verts[offset].velocity_smooth;
+
+ kernel_offset = minp + (minq + minr*res)*res;
+ kernel_dq = res;
+ kernel_dr = res * res;
+ for (r = minr; r <= maxr; ++r) {
+ for (q = minq; q <= maxq; ++q) {
+ for (p = minp; p <= maxp; ++p) {
+
+ madd_v3_v3fl(vel_smooth, verts[kernel_offset].velocity, invD);
+
+ kernel_offset += 1;
+ }
+ kernel_offset += kernel_dq;
+ }
+ kernel_offset += kernel_dr;
+ }
+}
+
+void BPH_hair_volume_vertex_grid_filter_box(HairVertexGrid *grid, int kernel_size)
+{
+ int size = hair_grid_size(grid->res);
+ int kernel_sizev[3] = {kernel_size, kernel_size, kernel_size};
+ int tot;
+ float invD;
+ int i, j, k;
+
+ if (kernel_size <= 0)
+ return;
+
+ tot = kernel_size * 2 + 1;
+ invD = 1.0f / (float)(tot*tot*tot);
+
+ /* clear values for convolution */
+ for (i = 0; i < size; ++i) {
+ zero_v3(grid->verts[i].velocity_smooth);
+ }
+
+ for (i = 0; i < grid->res; ++i) {
+ for (j = 0; j < grid->res; ++j) {
+ for (k = 0; k < grid->res; ++k) {
+ hair_volume_filter_box_convolute(grid, invD, kernel_sizev, i, j, k);
+ }
+ }
+ }
+
+ /* apply as new velocity */
+ for (i = 0; i < size; ++i) {
+ copy_v3_v3(grid->verts[i].velocity, grid->verts[i].velocity_smooth);
+ }
+}
+#endif
+
+HairGrid *BPH_hair_volume_create_vertex_grid(float cellsize, const float gmin[3], const float gmax[3])
+{
+ float scale;
+ float extent[3];
+ int resmin[3], resmax[3], res[3];
+ float gmin_margin[3], gmax_margin[3];
+ int size;
+ HairGrid *grid;
+ int i;
+
+ /* sanity check */
+ if (cellsize <= 0.0f)
+ cellsize = 1.0f;
+ scale = 1.0f / cellsize;
+
+ sub_v3_v3v3(extent, gmax, gmin);
+ for (i = 0; i < 3; ++i) {
+ resmin[i] = (int)(gmin[i] * scale);
+ resmax[i] = (int)(gmax[i] * scale) + 1;
+
+ /* add margin of 1 cell */
+ resmin[i] -= 1;
+ resmax[i] += 1;
+
+ res[i] = resmax[i] - resmin[i];
+ /* sanity check: avoid null-sized grid */
+ if (res[i] < 3) {
+ res[i] = 3;
+ resmax[i] = resmin[i] + 3;
+ }
+ /* sanity check: avoid too large grid size */
+ if (res[i] > MAX_HAIR_GRID_RES) {
+ res[i] = MAX_HAIR_GRID_RES;
+ resmax[i] = resmin[i] + MAX_HAIR_GRID_RES;
+ }
+
+ gmin_margin[i] = (float)resmin[i] * cellsize;
+ gmax_margin[i] = (float)resmax[i] * cellsize;
+ }
+ size = hair_grid_size(res);
+
+ grid = (HairGrid *)MEM_callocN(sizeof(HairGrid), "hair grid");
+ grid->res[0] = res[0];
+ grid->res[1] = res[1];
+ grid->res[2] = res[2];
+ copy_v3_v3(grid->gmin, gmin_margin);
+ copy_v3_v3(grid->gmax, gmax_margin);
+ grid->cellsize = cellsize;
+ grid->inv_cellsize = scale;
+ grid->verts = (HairGridVert *)MEM_mallocN(sizeof(HairGridVert) * size, "hair voxel data");
+
+ /* initialize grid */
+ for (i = 0; i < size; ++i) {
+ zero_v3(grid->verts[i].velocity);
+ grid->verts[i].density = 0.0f;
+ }
+
+ return grid;
+}
+
+void BPH_hair_volume_free_vertex_grid(HairGrid *grid)
+{
+ if (grid) {
+ if (grid->verts)
+ MEM_freeN(grid->verts);
+ MEM_freeN(grid);
+ }
+}
+
+void BPH_hair_volume_set_debug_data(HairGrid *grid, SimDebugData *debug_data)
+{
+ grid->debug_data = debug_data;
+}
+
+void BPH_hair_volume_grid_geometry(HairGrid *grid, float *cellsize, int res[3], float gmin[3], float gmax[3])
+{
+ if (cellsize) *cellsize = grid->cellsize;
+ if (res) copy_v3_v3_int(res, grid->res);
+ if (gmin) copy_v3_v3(gmin, grid->gmin);
+ if (gmax) copy_v3_v3(gmax, grid->gmax);
+}
+
+#if 0
+static HairGridVert *hair_volume_create_collision_grid(ClothModifierData *clmd, lfVector *lX, unsigned int numverts)
+{
+ int res = hair_grid_res;
+ int size = hair_grid_size(res);
+ HairGridVert *collgrid;
+ ListBase *colliders;
+ ColliderCache *col = NULL;
+ float gmin[3], gmax[3], scale[3];
+ /* 2.0f is an experimental value that seems to give good results */
+ float collfac = 2.0f * clmd->sim_parms->collider_friction;
+ unsigned int v = 0;
+ int i = 0;
+
+ hair_volume_get_boundbox(lX, numverts, gmin, gmax);
+ hair_grid_get_scale(res, gmin, gmax, scale);
+
+ collgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair collider voxel data");
+
+ /* initialize grid */
+ for (i = 0; i < size; ++i) {
+ zero_v3(collgrid[i].velocity);
+ collgrid[i].density = 0.0f;
+ }
+
+ /* gather colliders */
+ colliders = get_collider_cache(clmd->scene, NULL, NULL);
+ if (colliders && collfac > 0.0f) {
+ for (col = colliders->first; col; col = col->next) {
+ MVert *loc0 = col->collmd->x;
+ MVert *loc1 = col->collmd->xnew;
+ float vel[3];
+ float weights[8];
+ int di, dj, dk;
+
+ for (v=0; v < col->collmd->numverts; v++, loc0++, loc1++) {
+ int offset;
+
+ if (!hair_grid_point_valid(loc1->co, gmin, gmax))
+ continue;
+
+ offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
+
+ sub_v3_v3v3(vel, loc1->co, loc0->co);
+
+ for (di = 0; di < 2; ++di) {
+ for (dj = 0; dj < 2; ++dj) {
+ for (dk = 0; dk < 2; ++dk) {
+ int voffset = offset + di + (dj + dk*res)*res;
+ int iw = di + dj*2 + dk*4;
+
+ collgrid[voffset].density += weights[iw];
+ madd_v3_v3fl(collgrid[voffset].velocity, vel, weights[iw]);
+ }
+ }
+ }
+ }
+ }
+ }
+ free_collider_cache(&colliders);
+
+ /* divide velocity with density */
+ for (i = 0; i < size; i++) {
+ float density = collgrid[i].density;
+ if (density > 0.0f)
+ mul_v3_fl(collgrid[i].velocity, 1.0f/density);
+ }
+
+ return collgrid;
+}
+#endif
+
+bool BPH_hair_volume_get_texture_data(HairGrid *grid, VoxelData *vd)
+{
+ int totres, i;
+ int depth;
+
+ vd->resol[0] = grid->res[0];
+ vd->resol[1] = grid->res[1];
+ vd->resol[2] = grid->res[2];
+
+ totres = hair_grid_size(grid->res);
+
+ if (vd->hair_type == TEX_VD_HAIRVELOCITY) {
+ depth = 4;
+ vd->data_type = TEX_VD_RGBA_PREMUL;
+ }
+ else {
+ depth = 1;
+ vd->data_type = TEX_VD_INTENSITY;
+ }
+
+ if (totres > 0) {
+ vd->dataset = (float *)MEM_mapallocN(sizeof(float) * depth * (totres), "hair volume texture data");
+
+ for (i = 0; i < totres; ++i) {
+ switch (vd->hair_type) {
+ case TEX_VD_HAIRDENSITY:
+ vd->dataset[i] = grid->verts[i].density;
+ break;
+
+ case TEX_VD_HAIRRESTDENSITY:
+ vd->dataset[i] = 0.0f; // TODO
+ break;
+
+ case TEX_VD_HAIRVELOCITY: {
+ vd->dataset[i + 0*totres] = grid->verts[i].velocity[0];
+ vd->dataset[i + 1*totres] = grid->verts[i].velocity[1];
+ vd->dataset[i + 2*totres] = grid->verts[i].velocity[2];
+ vd->dataset[i + 3*totres] = len_v3(grid->verts[i].velocity);
+ break;
+ }
+ case TEX_VD_HAIRENERGY:
+ vd->dataset[i] = 0.0f; // TODO
+ break;
+ }
+ }
+ }
+ else {
+ vd->dataset = NULL;
+ }
+
+ return true;
+}