Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTon Roosendaal <ton@blender.org>2004-04-03 18:01:13 +0400
committerTon Roosendaal <ton@blender.org>2004-04-03 18:01:13 +0400
commit07cd0ac910febc98dc4e344ea5c2a1c5e426b02c (patch)
tree46f6ab5789a66e9706de1aa6a893a95e1277c3f0 /source/blender/python/api2_2x/Noise.c
parent0ae03d16260d199c46fb5b3812ba43f91259dc63 (diff)
- oh, the new C file!
Diffstat (limited to 'source/blender/python/api2_2x/Noise.c')
-rw-r--r--source/blender/python/api2_2x/Noise.c532
1 files changed, 532 insertions, 0 deletions
diff --git a/source/blender/python/api2_2x/Noise.c b/source/blender/python/api2_2x/Noise.c
new file mode 100644
index 00000000000..0f48d03e0af
--- /dev/null
+++ b/source/blender/python/api2_2x/Noise.c
@@ -0,0 +1,532 @@
+/************************/
+/* Blender Noise Module */
+/************************/
+
+#include <Python.h>
+#include <math.h>
+#include <BLI_blenlib.h>
+#include <DNA_texture_types.h>
+#include "constant.h"
+
+/*------------------------------------------------------------------------------------*/
+/* 'mersenne twister' random number generator */
+/* Period parameters */
+#define N 624
+#define M 397
+#define MATRIX_A 0x9908b0dfUL /* constant vector a */
+#define UMASK 0x80000000UL /* most significant w-r bits */
+#define LMASK 0x7fffffffUL /* least significant r bits */
+#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
+#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
+
+static unsigned long state[N]; /* the array for the state vector */
+static int left = 1;
+static int initf = 0;
+static unsigned long *next;
+
+/* initializes state[N] with a seed */
+static void init_genrand(unsigned long s)
+{
+ int j;
+ state[0]= s & 0xffffffffUL;
+ for (j=1; j<N; j++) {
+ state[j] = (1812433253UL * (state[j-1] ^ (state[j-1] >> 30)) + j);
+ /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
+ /* In the previous versions, MSBs of the seed affect */
+ /* only MSBs of the array state[]. */
+ /* 2002/01/09 modified by Makoto Matsumoto */
+ state[j] &= 0xffffffffUL; /* for >32 bit machines */
+ }
+ left = 1; initf = 1;
+}
+
+static void next_state(void)
+{
+ unsigned long *p=state;
+ int j;
+
+ /* if init_genrand() has not been called, */
+ /* a default initial seed is used */
+ if (initf==0) init_genrand(5489UL);
+
+ left = N;
+ next = state;
+
+ for (j=N-M+1; --j; p++)
+ *p = p[M] ^ TWIST(p[0], p[1]);
+
+ for (j=M; --j; p++)
+ *p = p[M-N] ^ TWIST(p[0], p[1]);
+
+ *p = p[M-N] ^ TWIST(p[0], state[0]);
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static void setRndSeed(int seed)
+{
+ if (seed==0)
+ init_genrand(time(NULL));
+ else
+ init_genrand(seed);
+}
+
+/* float number in range [0, 1) */
+static float frand()
+{
+ unsigned long y;
+
+ if (--left == 0) next_state();
+ y = *next++;
+
+ /* Tempering */
+ y ^= (y >> 11);
+ y ^= (y << 7) & 0x9d2c5680UL;
+ y ^= (y << 15) & 0xefc60000UL;
+ y ^= (y >> 18);
+
+ return (float)y/4294967296.f;
+}
+
+/* returns random unit vector */
+static void randuvec(float v[3])
+{
+ float r;
+ v[2] = 2.f*frand()-1.f;
+ if ((r = 1.f - v[2]*v[2])>0.f) {
+ float a = 6.283185307f * frand();
+ r = sqrt(r);
+ v[0] = r * cos(a);
+ v[1] = r * sin(a);
+ }
+ else v[2] = 1.f;
+}
+
+static PyObject *Noise_random(PyObject *self)
+{
+ return Py_BuildValue("f", frand());
+}
+
+static PyObject *Noise_randuvec(PyObject *self)
+{
+ float v[3];
+ randuvec(v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*------------------------------------------------------------------------------------*/
+
+/* Random seed init. Only used for MT random() & randuvec() */
+
+static PyObject *Noise_setRandomSeed(PyObject *self, PyObject *args)
+{
+ int s;
+ if (!PyArg_ParseTuple(args, "i", &s)) return NULL;
+ setRndSeed(s);
+ Py_INCREF(Py_None);
+ return Py_None;
+}
+
+/*------------------------------------------------------------------------------------*/
+
+/* General noise */
+
+static PyObject *Noise_noise(PyObject *self, PyObject *args)
+{
+ float x, y, z;
+ int nb = 1;
+ if (!PyArg_ParseTuple(args, "(fff)|ii", &x ,&y, &z, &nb)) return NULL;
+ return Py_BuildValue("f", 2.0*BLI_gNoise(1.0, x, y, z, 0, nb)-1.0);
+}
+
+/*------------------------------------------------------------------------------------*/
+
+/* General Vector noise */
+
+static void vNoise(float x, float y ,float z, int nb, float v[3])
+{
+ /* Simply evaluate noise at 3 different positions */
+ v[0] = 2.0*BLI_gNoise(1.f, x+9.321f, y-1.531f, z-7.951f, 0, nb)-1.0;
+ v[1] = 2.0*BLI_gNoise(1.f, x, y, z, 0, nb)-1.0;
+ v[2] = 2.0*BLI_gNoise(1.f, x+6.327f, y+0.1671f, z-2.672f, 0, nb)-1.0;
+}
+
+static PyObject *Noise_vNoise(PyObject *self, PyObject *args)
+{
+ float x, y, z, v[3];
+ int nb = 1;
+ if (!PyArg_ParseTuple(args, "(fff)", &x ,&y, &z, &nb)) return NULL;
+ vNoise(x, y, z, nb, v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*------------------------------------------------------------------------------------*/
+
+/* General turbulence */
+
+static float turb(float x, float y, float z, int oct, int hard, int nb, float ampscale, float freqscale)
+{
+ float amp, out, t;
+ int i;
+ amp = 1.f;
+ out = 2.0*BLI_gNoise(1.f, x, y, z, 0, nb)-1.0;
+ if (hard) out = fabs(out);
+ for (i=1;i<oct;i++) {
+ amp*=ampscale; x*=freqscale; y*=freqscale; z*=freqscale;
+ t = amp * (2.0*BLI_gNoise(1.f, x, y, z, 0, nb)-1.0);
+ if (hard) t = fabs(t);
+ out += t;
+ }
+ return out;
+}
+
+static PyObject *Noise_turbulence(PyObject *self, PyObject *args)
+{
+ float x, y, z;
+ int oct, hd, nb=1;
+ float as=0.5, fs=2.0;
+ if (!PyArg_ParseTuple(args, "(fff)ii|iff", &x ,&y, &z, &oct, &hd, &nb, &as, &fs)) return NULL;
+ return Py_BuildValue("f", turb(x, y, z, oct, hd, nb, as, fs));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+/* Turbulence Vector */
+
+static void vTurb(float x, float y, float z, int oct, int hard, int nb, float ampscale, float freqscale, float v[3])
+{
+ float amp, t[3];
+ int i;
+ amp = 1.f;
+ vNoise(x, y, z, nb, v);
+ if (hard) { v[0]=fabs(v[0]); v[1]=fabs(v[1]); v[2]=fabs(v[2]); }
+ for (i=1;i<oct;i++) {
+ amp*=ampscale; x*=freqscale; y*=freqscale; z*=freqscale;
+ vNoise(x, y, z, nb, t);
+ if (hard) { t[0]=fabs(t[0]); t[1]=fabs(t[1]); t[2]=fabs(t[2]); }
+ v[0] += amp * t[0];
+ v[1] += amp * t[1];
+ v[2] += amp * t[2];
+ }
+}
+
+static PyObject *Noise_vTurbulence(PyObject *self, PyObject *args)
+{
+ float x, y, z, v[3];
+ int oct, hd, nb=1;
+ float as=0.5, fs=2.0;
+ if (!PyArg_ParseTuple(args, "(fff)ii|iff", &x ,&y, &z, &oct, &hd, &nb, &as, &fs)) return NULL;
+ vTurb(x, y, z, oct, hd, nb, as, fs, v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*------------------------------------------------------------------------------------*/
+
+/* F. Kenton Musgrave's fractal functions */
+
+static PyObject *Noise_fBm(PyObject *self, PyObject *args)
+{
+ float x, y, z, H, lac, oct;
+ int nb = 1;
+ if (!PyArg_ParseTuple(args, "(fff)fff|i", &x ,&y, &z, &H, &lac, &oct, &nb)) return NULL;
+ return Py_BuildValue("f", mg_fBm(x, y, z, H, lac, oct, nb));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_multiFractal(PyObject *self, PyObject *args)
+{
+ float x, y, z, H, lac, oct;
+ int nb = 1;
+ if (!PyArg_ParseTuple(args, "(fff)fff|i", &x ,&y, &z, &H, &lac, &oct, &nb)) return NULL;
+ return Py_BuildValue("f", mg_MultiFractal(x, y, z, H, lac, oct, nb));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_vlNoise(PyObject *self, PyObject *args)
+{
+ float x, y, z, d;
+ int nt1=1, nt2=1;
+ if (!PyArg_ParseTuple(args, "(fff)f|ii", &x ,&y, &z, &d, &nt1, &nt2)) return NULL;
+ return Py_BuildValue("f", mg_VLNoise(x, y, z, d, nt1, nt2));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_heteroTerrain(PyObject *self, PyObject *args)
+{
+ float x, y, z, H, lac, oct, ofs;
+ int nb = 1;
+ if (!PyArg_ParseTuple(args, "(fff)ffff|i", &x ,&y, &z, &H, &lac, &oct, &ofs, &nb)) return NULL;
+ return Py_BuildValue("f", mg_HeteroTerrain(x, y, z, H, lac, oct, ofs, nb));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_hybridMFractal(PyObject *self, PyObject *args)
+{
+ float x, y, z, H, lac, oct, ofs, gn;
+ int nb = 1;
+ if (!PyArg_ParseTuple(args, "(fff)fffff|i", &x ,&y, &z, &H, &lac, &oct, &ofs, &gn, &nb)) return NULL;
+ return Py_BuildValue("f", mg_HybridMultiFractal(x, y, z, H, lac, oct, ofs, gn, nb));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_ridgedMFractal(PyObject *self, PyObject *args)
+{
+ float x, y, z, H, lac, oct, ofs, gn;
+ int nb = 1;
+ if (!PyArg_ParseTuple(args, "(fff)fffff|i", &x ,&y, &z, &H, &lac, &oct, &ofs, &gn, &nb)) return NULL;
+ return Py_BuildValue("f", mg_RidgedMultiFractal(x, y, z, H, lac, oct, ofs, gn, nb));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_voronoi(PyObject *self, PyObject *args)
+{
+ float x, y, z, da[4], pa[12];
+ int dtype = 0;
+ float me = 2.5; /* default minkovsky exponent */
+ if (!PyArg_ParseTuple(args, "(fff)|if", &x ,&y, &z, &dtype, &me)) return NULL;
+ voronoi(x, y, z, da, pa, me, dtype);
+ return Py_BuildValue("[[ffff][[fff][fff][fff][fff]]]",
+ da[0], da[1], da[2], da[3],
+ pa[0], pa[1], pa[2],
+ pa[3], pa[4], pa[5],
+ pa[6], pa[7], pa[8],
+ pa[9], pa[10], pa[12]);
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_cellNoise(PyObject *self, PyObject *args)
+{
+ float x, y, z;
+ if (!PyArg_ParseTuple(args, "(fff)", &x ,&y, &z)) return NULL;
+ return Py_BuildValue("f", cellNoise(x,y,z));
+}
+
+/*------------------------------------------------------------------------------------*/
+
+static PyObject *Noise_cellNoiseV(PyObject *self, PyObject *args)
+{
+ float x, y, z, ca[3];
+ if (!PyArg_ParseTuple(args, "(fff)", &x ,&y, &z)) return NULL;
+ cellNoiseV(x, y, z, ca);
+ return Py_BuildValue("[fff]", ca[0], ca[1], ca[2]);
+}
+
+/*------------------------------------------------------------------------------------*/
+/* For all other Blender modules, this stuff seems to be put in a header file.
+ This doesn't seem really appropriate to me, so I just put it here, feel free to change it.
+ In the original module I actually kept the docs stings with the functions themselves,
+ but I grouped them here so that it can easily be moved to a header if anyone thinks that is necessary. */
+
+static char random__doc__[] = "() No arguments.\n\n\
+Returns a random floating point number in the range [0, 1)";
+
+static char randuvec__doc__[] = "() No arguments.\n\nReturns a random unit vector (3-float list).";
+
+static char setRandomSeed__doc__[] = "(seed value)\n\n\
+Initializes random number generator.\n\
+if seed is zero, the current time will be used instead.";
+
+static char noise__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
+Returns general noise of the optional specified type.\n\
+Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
+
+static char vNoise__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
+Returns noise vector (3-float list) of the optional specified type.\
+Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
+
+static char turbulence__doc__[] = "((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
+Returns general turbulence value using the optional specified noisebasis function.\n\
+octaves (integer) is the number of noise values added.\n\
+hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned value always positive).\n\
+Optional arguments:\n\
+noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
+ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
+freqscale sets the frequency scale factor, 2.0 by default.";
+
+static char vTurbulence__doc__[] = "((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
+Returns general turbulence vector (3-float list) using the optional specified noisebasis function.\n\
+octaves (integer) is the number of noise values added.\n\
+hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned vector always positive).\n\
+Optional arguments:\n\
+noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
+ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
+freqscale sets the frequency scale factor, 2.0 by default.";
+
+static char fBm__doc__[] = "((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
+Returns Fractal Brownian Motion noise value(fBm).\n\
+H is the fractal increment parameter.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char multiFractal__doc__[] = "((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
+Returns Multifractal noise value.\n\
+H determines the highest fractal dimension.\n\
+lacunarity is gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char vlNoise__doc__[] = "((x,y,z) tuple, distortion, [noisetype1], [noisetype2])\n\n\
+Returns Variable Lacunarity Noise value, a distorted variety of noise.\n\
+distortion sets the amount of distortion.\n\
+Optional arguments noisetype1 and noisetype2 set the noisetype to distort and the noisetype used for the distortion respectively.\n\
+See NoiseTypes, both are STDPERLIN by default.";
+
+static char heteroTerrain__doc__[] = "((x,y,z) tuple, H, lacunarity, octaves, offset, [noisebasis])\n\n\
+returns Heterogeneous Terrain value\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char hybridMFractal__doc__[] = "((x,y,z) tuple, H, lacunarity, octaves, offset, gain, [noisebasis])\n\n\
+returns Hybrid Multifractal value.\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+gain scales the values.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char ridgedMFractal__doc__[] = "((x,y,z) tuple, H, lacunarity, octaves, offset, gain [noisebasis])\n\n\
+returns Ridged Multifractal value.\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+gain scales the values.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char voronoi__doc__[] = "((x,y,z) tuple, distance_metric, [exponent])\n\n\
+returns a list, containing a list of distances in order of closest feature,\n\
+and a list containing the positions of the four closest features\n\
+Optional arguments:\n\
+distance_metric: see DistanceMetrics, default is DISTANCE\n\
+exponent is only used with MINKOVSKY, default is 2.5.";
+
+static char cellNoise__doc__[] = "((x,y,z) tuple)\n\n\
+returns cellnoise float value.";
+
+static char cellNoiseV__doc__[] = "((x,y,z) tuple)\n\n\
+returns cellnoise vector/point/color (3-float list).";
+
+static char Noise__doc__[] = "Blender Noise and Turbulence Module\n\n\
+This module can be used to generate noise of various types.\n\
+This can be used for terrain generation, to create textures,\n\
+make animations more 'animated', object deformation, etc.\n\
+As an example, this code segment when scriptlinked to a framechanged event,\n\
+will make the camera sway randomly about, by changing parameters this can\n\
+look like anything from an earthquake to a very nervous or maybe even drunk cameraman...\n\
+(the camera needs an ipo with at least one Loc & Rot key for this to work!):\n\
+\n\
+\tfrom Blender import Get, Scene, Noise\n\
+\n\
+\t####################################################\n\
+\t# This controls jitter speed\n\
+\tsl = 0.025\n\
+\t# This controls the amount of position jitter\n\
+\tsp = 0.1\n\
+\t# This controls the amount of rotation jitter\n\
+\tsr = 0.25\n\
+\t####################################################\n\
+\n\
+\ttime = Get('curtime')\n\
+\tob = Scene.GetCurrent().getCurrentCamera()\n\
+\tps = (sl*time, sl*time, sl*time)\n\
+\t# To add jitter only when the camera moves, use this next line instead\n\
+\t#ps = (sl*ob.LocX, sl*ob.LocY, sl*ob.LocZ)\n\
+\trv = Noise.vTurbulence(ps, 3, 0, Noise.NoiseTypes.NEWPERLIN)\n\
+\tob.dloc = (sp*rv[0], sp*rv[1], sp*rv[2])\n\
+\tob.drot = (sr*rv[0], sr*rv[1], sr*rv[2])\n\
+\n";
+
+/* Just in case, declarations for a header file */
+/*
+static PyObject *Noise_random(PyObject *self);
+static PyObject *Noise_randuvec(PyObject *self);
+static PyObject *Noise_setRandomSeed(PyObject *self, PyObject *args);
+static PyObject *Noise_noise(PyObject *self, PyObject *args);
+static PyObject *Noise_vNoise(PyObject *self, PyObject *args);
+static PyObject *Noise_turbulence(PyObject *self, PyObject *args);
+static PyObject *Noise_vTurbulence(PyObject *self, PyObject *args);
+static PyObject *Noise_fBm(PyObject *self, PyObject *args);
+static PyObject *Noise_multiFractal(PyObject *self, PyObject *args);
+static PyObject *Noise_vlNoise(PyObject *self, PyObject *args);
+static PyObject *Noise_heteroTerrain(PyObject *self, PyObject *args);
+static PyObject *Noise_hybridMFractal(PyObject *self, PyObject *args);
+static PyObject *Noise_ridgedMFractal(PyObject *self, PyObject *args);
+static PyObject *Noise_voronoi(PyObject *self, PyObject *args);
+static PyObject *Noise_cellNoise(PyObject *self, PyObject *args);
+static PyObject *Noise_cellNoiseV(PyObject *self, PyObject *args);
+*/
+
+static PyMethodDef NoiseMethods[] = {
+ {"setRandomSeed", (PyCFunction)Noise_setRandomSeed, METH_VARARGS, setRandomSeed__doc__},
+ {"random", (PyCFunction)Noise_random, METH_NOARGS, random__doc__},
+ {"randuvec", (PyCFunction)Noise_randuvec, METH_NOARGS, randuvec__doc__},
+ {"noise", (PyCFunction)Noise_noise, METH_VARARGS, noise__doc__},
+ {"vNoise", (PyCFunction)Noise_vNoise, METH_VARARGS, vNoise__doc__},
+ {"turbulence", (PyCFunction)Noise_turbulence, METH_VARARGS, turbulence__doc__},
+ {"vTurbulence", (PyCFunction)Noise_vTurbulence, METH_VARARGS, vTurbulence__doc__},
+ {"fBm", (PyCFunction)Noise_fBm, METH_VARARGS, fBm__doc__},
+ {"multiFractal", (PyCFunction)Noise_multiFractal, METH_VARARGS, multiFractal__doc__},
+ {"vlNoise", (PyCFunction)Noise_vlNoise, METH_VARARGS, vlNoise__doc__},
+ {"heteroTerrain", (PyCFunction)Noise_heteroTerrain, METH_VARARGS, heteroTerrain__doc__},
+ {"hybridMFractal", (PyCFunction)Noise_hybridMFractal, METH_VARARGS, hybridMFractal__doc__},
+ {"ridgedMFractal", (PyCFunction)Noise_ridgedMFractal, METH_VARARGS, ridgedMFractal__doc__},
+ {"voronoi", (PyCFunction)Noise_voronoi, METH_VARARGS, voronoi__doc__},
+ {"cellNoise", (PyCFunction)Noise_cellNoise, METH_VARARGS, cellNoise__doc__},
+ {"cellNoiseV", (PyCFunction)Noise_cellNoiseV, METH_VARARGS, cellNoiseV__doc__},
+ {NULL, NULL, 0, NULL}
+};
+
+/*------------------------------------------------------------------------------------*/
+
+PyObject *Noise_Init()
+{
+ PyObject *NoiseTypes, *DistanceMetrics,
+ *md = Py_InitModule3("Blender.Noise", NoiseMethods, Noise__doc__);
+
+ setRndSeed(0); /* use current time as seed for random number generator by default */
+
+ /* Constant noisetype dictionary */
+ NoiseTypes = M_constant_New();
+ if (NoiseTypes) {
+ BPy_constant *nt = (BPy_constant *)NoiseTypes;
+ constant_insert(nt, "BLENDER", PyInt_FromLong(TEX_BLENDER));
+ constant_insert(nt, "STDPERLIN", PyInt_FromLong(TEX_STDPERLIN));
+ constant_insert(nt, "NEWPERLIN", PyInt_FromLong(TEX_NEWPERLIN));
+ constant_insert(nt, "VORONOI_F1", PyInt_FromLong(TEX_VORONOI_F1));
+ constant_insert(nt, "VORONOI_F2", PyInt_FromLong(TEX_VORONOI_F2));
+ constant_insert(nt, "VORONOI_F3", PyInt_FromLong(TEX_VORONOI_F3));
+ constant_insert(nt, "VORONOI_F4", PyInt_FromLong(TEX_VORONOI_F4));
+ constant_insert(nt, "VORONOI_F2F1", PyInt_FromLong(TEX_VORONOI_F2F1));
+ constant_insert(nt, "VORONOI_CRACKLE", PyInt_FromLong(TEX_VORONOI_CRACKLE));
+ constant_insert(nt, "CELLNOISE", PyInt_FromLong(TEX_CELLNOISE));
+ PyModule_AddObject(md, "NoiseTypes", NoiseTypes);
+ }
+
+ /* Constant distance metric dictionary for voronoi */
+ DistanceMetrics = M_constant_New();
+ if (DistanceMetrics) {
+ BPy_constant *dm = (BPy_constant *)DistanceMetrics;
+ constant_insert(dm, "DISTANCE", PyInt_FromLong(TEX_DISTANCE));
+ constant_insert(dm, "DISTANCE_SQUARED", PyInt_FromLong(TEX_DISTANCE_SQUARED));
+ constant_insert(dm, "MAHATTAN", PyInt_FromLong(TEX_MANHATTAN));
+ constant_insert(dm, "CHEBYCHEV", PyInt_FromLong(TEX_CHEBYCHEV));
+ constant_insert(dm, "MINKOVSKY_HALF", PyInt_FromLong(TEX_MINKOVSKY_HALF));
+ constant_insert(dm, "MINKOVSKY_FOUR", PyInt_FromLong(TEX_MINKOVSKY_FOUR));
+ constant_insert(dm, "MINKOVSKY", PyInt_FromLong(TEX_MINKOVSKY));
+ PyModule_AddObject(md, "DistanceMetrics", DistanceMetrics);
+ }
+
+ return md;
+}