Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2009-06-18 00:33:34 +0400
committerCampbell Barton <ideasman42@gmail.com>2009-06-18 00:33:34 +0400
commit489db9994df0bd95ac595922b38391ee68c3088f (patch)
tree316320fd3c4c4150585afd515a7079c8aa67b3c9 /source/blender/python/generic/Geometry.c
parentcb68b9434c4967d8985da809b98305b8599a95e2 (diff)
Some generic modules from blender 2.4x building with py3k and mostly working.
* Mathutils, Geometry, BGL, Mostly working, some //XXX comments for things to fix with py3 python import override (bpy_internal_import.c) so you can import python internal scripts from the BGE and running blender normally.
Diffstat (limited to 'source/blender/python/generic/Geometry.c')
-rw-r--r--source/blender/python/generic/Geometry.c522
1 files changed, 522 insertions, 0 deletions
diff --git a/source/blender/python/generic/Geometry.c b/source/blender/python/generic/Geometry.c
new file mode 100644
index 00000000000..d1e8b471f75
--- /dev/null
+++ b/source/blender/python/generic/Geometry.c
@@ -0,0 +1,522 @@
+/*
+ * $Id: Geometry.c 20922 2009-06-16 07:16:51Z campbellbarton $
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * This is a new part of Blender.
+ *
+ * Contributor(s): Joseph Gilbert, Campbell Barton
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "Geometry.h"
+
+/* - Not needed for now though other geometry functions will probably need them
+#include "BLI_arithb.h"
+#include "BKE_utildefines.h"
+*/
+
+/* Used for PolyFill */
+#include "BKE_displist.h"
+#include "MEM_guardedalloc.h"
+#include "BLI_blenlib.h"
+
+#include "BKE_utildefines.h"
+#include "BKE_curve.h"
+#include "BLI_boxpack2d.h"
+#include "BLI_arithb.h"
+
+#define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp
+#define eul 0.000001
+
+/*-- forward declarations -- */
+static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq );
+static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args );
+static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args );
+static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args );
+static PyObject *M_Geometry_PointInQuad2D( PyObject * self, PyObject * args );
+static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args );
+static PyObject *M_Geometry_BezierInterp( PyObject * self, PyObject * args );
+
+
+/*-------------------------DOC STRINGS ---------------------------*/
+static char M_Geometry_doc[] = "The Blender Geometry module\n\n";
+static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles";
+static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None";
+static char M_Geometry_ClosestPointOnLine_doc[] = "(pt, line_p1, line_p2) - takes a point and a line and returns a (Vector, float) for the point on the line, and the bool so you can know if the point was between the 2 points";
+static char M_Geometry_PointInTriangle2D_doc[] = "(pt, tri_p1, tri_p2, tri_p3) - takes 4 vectors, one is the point and the next 3 define the triangle, only the x and y are used from the vectors";
+static char M_Geometry_PointInQuad2D_doc[] = "(pt, quad_p1, quad_p2, quad_p3, quad_p4) - takes 5 vectors, one is the point and the next 4 define the quad, only the x and y are used from the vectors";
+static char M_Geometry_BoxPack2D_doc[] = "";
+static char M_Geometry_BezierInterp_doc[] = "";
+/*-----------------------METHOD DEFINITIONS ----------------------*/
+struct PyMethodDef M_Geometry_methods[] = {
+ {"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
+ {"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
+ {"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
+ {"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
+ {"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
+ {"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
+ {"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
+ {NULL, NULL, 0, NULL}
+};
+
+#if (PY_VERSION_HEX >= 0x03000000)
+static struct PyModuleDef M_Geometry_module_def = {
+ {}, /* m_base */
+ "Geometry", /* m_name */
+ M_Geometry_doc, /* m_doc */
+ 0, /* m_size */
+ M_Geometry_methods, /* m_methods */
+ 0, /* m_reload */
+ 0, /* m_traverse */
+ 0, /* m_clear */
+ 0, /* m_free */
+};
+#endif
+
+/*----------------------------MODULE INIT-------------------------*/
+PyObject *Geometry_Init(const char *from)
+{
+ PyObject *submodule;
+
+#if (PY_VERSION_HEX >= 0x03000000)
+ submodule = PyModule_Create(&M_Geometry_module_def);
+ PyDict_SetItemString(PySys_GetObject("modules"), M_Geometry_module_def.m_name, submodule);
+#else
+ submodule = Py_InitModule3(from, M_Geometry_methods, M_Geometry_doc);
+#endif
+
+ return (submodule);
+}
+
+/*----------------------------------Geometry.PolyFill() -------------------*/
+/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
+static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
+{
+ PyObject *tri_list; /*return this list of tri's */
+ PyObject *polyLine, *polyVec;
+ int i, len_polylines, len_polypoints, ls_error = 0;
+
+ /* display listbase */
+ ListBase dispbase={NULL, NULL};
+ DispList *dl;
+ float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
+ int index, *dl_face, totpoints=0;
+
+
+ dispbase.first= dispbase.last= NULL;
+
+
+ if(!PySequence_Check(polyLineSeq)) {
+ PyErr_SetString( PyExc_TypeError, "expected a sequence of poly lines" );
+ return NULL;
+ }
+
+ len_polylines = PySequence_Size( polyLineSeq );
+
+ for( i = 0; i < len_polylines; ++i ) {
+ polyLine= PySequence_GetItem( polyLineSeq, i );
+ if (!PySequence_Check(polyLine)) {
+ freedisplist(&dispbase);
+ Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
+ PyErr_SetString( PyExc_TypeError, "One or more of the polylines is not a sequence of Mathutils.Vector's" );
+ return NULL;
+ }
+
+ len_polypoints= PySequence_Size( polyLine );
+ if (len_polypoints>0) { /* dont bother adding edges as polylines */
+#if 0
+ if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
+ freedisplist(&dispbase);
+ Py_DECREF(polyLine);
+ PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
+ return NULL;
+ }
+#endif
+ dl= MEM_callocN(sizeof(DispList), "poly disp");
+ BLI_addtail(&dispbase, dl);
+ dl->type= DL_INDEX3;
+ dl->nr= len_polypoints;
+ dl->type= DL_POLY;
+ dl->parts= 1; /* no faces, 1 edge loop */
+ dl->col= 0; /* no material */
+ dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts");
+ dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
+
+ for( index = 0; index<len_polypoints; ++index, fp+=3) {
+ polyVec= PySequence_GetItem( polyLine, index );
+ if(VectorObject_Check(polyVec)) {
+ fp[0] = ((VectorObject *)polyVec)->vec[0];
+ fp[1] = ((VectorObject *)polyVec)->vec[1];
+ if( ((VectorObject *)polyVec)->size > 2 )
+ fp[2] = ((VectorObject *)polyVec)->vec[2];
+ else
+ fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
+ }
+ else {
+ ls_error= 1;
+ }
+
+ totpoints++;
+ Py_DECREF(polyVec);
+ }
+ }
+ Py_DECREF(polyLine);
+ }
+
+ if(ls_error) {
+ freedisplist(&dispbase); /* possible some dl was allocated */
+ PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
+ return NULL;
+ }
+ else if (totpoints) {
+ /* now make the list to return */
+ filldisplist(&dispbase, &dispbase);
+
+ /* The faces are stored in a new DisplayList
+ thats added to the head of the listbase */
+ dl= dispbase.first;
+
+ tri_list= PyList_New(dl->parts);
+ if( !tri_list ) {
+ freedisplist(&dispbase);
+ PyErr_SetString( PyExc_RuntimeError, "Geometry.PolyFill failed to make a new list" );
+ return NULL;
+ }
+
+ index= 0;
+ dl_face= dl->index;
+ while(index < dl->parts) {
+ PyList_SetItem(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) );
+ dl_face+= 3;
+ index++;
+ }
+ freedisplist(&dispbase);
+ } else {
+ /* no points, do this so scripts dont barf */
+ freedisplist(&dispbase); /* possible some dl was allocated */
+ tri_list= PyList_New(0);
+ }
+
+ return tri_list;
+}
+
+
+static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args )
+{
+ VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
+ float a1x, a1y, a2x, a2y, b1x, b1y, b2x, b2y, xi, yi, a1,a2,b1,b2, newvec[2];
+ if( !PyArg_ParseTuple ( args, "O!O!O!O!",
+ &vector_Type, &line_a1,
+ &vector_Type, &line_a2,
+ &vector_Type, &line_b1,
+ &vector_Type, &line_b2)
+ ) {
+ PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
+ return NULL;
+ }
+
+ a1x= line_a1->vec[0];
+ a1y= line_a1->vec[1];
+ a2x= line_a2->vec[0];
+ a2y= line_a2->vec[1];
+
+ b1x= line_b1->vec[0];
+ b1y= line_b1->vec[1];
+ b2x= line_b2->vec[0];
+ b2y= line_b2->vec[1];
+
+ if((MIN2(a1x, a2x) > MAX2(b1x, b2x)) ||
+ (MAX2(a1x, a2x) < MIN2(b1x, b2x)) ||
+ (MIN2(a1y, a2y) > MAX2(b1y, b2y)) ||
+ (MAX2(a1y, a2y) < MIN2(b1y, b2y)) ) {
+ Py_RETURN_NONE;
+ }
+ /* Make sure the hoz/vert line comes first. */
+ if (fabs(b1x - b2x) < eul || fabs(b1y - b2y) < eul) {
+ SWAP_FLOAT(a1x, b1x, xi); /*abuse xi*/
+ SWAP_FLOAT(a1y, b1y, xi);
+ SWAP_FLOAT(a2x, b2x, xi);
+ SWAP_FLOAT(a2y, b2y, xi);
+ }
+
+ if (fabs(a1x-a2x) < eul) { /* verticle line */
+ if (fabs(b1x-b2x) < eul){ /*verticle second line */
+ Py_RETURN_NONE; /* 2 verticle lines dont intersect. */
+ }
+ else if (fabs(b1y-b2y) < eul) {
+ /*X of vert, Y of hoz. no calculation needed */
+ newvec[0]= a1x;
+ newvec[1]= b1y;
+ return newVectorObject(newvec, 2, Py_NEW);
+ }
+
+ yi = (float)(((b1y / fabs(b1x - b2x)) * fabs(b2x - a1x)) + ((b2y / fabs(b1x - b2x)) * fabs(b1x - a1x)));
+
+ if (yi > MAX2(a1y, a2y)) {/* New point above seg1's vert line */
+ Py_RETURN_NONE;
+ } else if (yi < MIN2(a1y, a2y)) { /* New point below seg1's vert line */
+ Py_RETURN_NONE;
+ }
+ newvec[0]= a1x;
+ newvec[1]= yi;
+ return newVectorObject(newvec, 2, Py_NEW);
+ } else if (fabs(a2y-a1y) < eul) { /* hoz line1 */
+ if (fabs(b2y-b1y) < eul) { /*hoz line2*/
+ Py_RETURN_NONE; /*2 hoz lines dont intersect*/
+ }
+
+ /* Can skip vert line check for seg 2 since its covered above. */
+ xi = (float)(((b1x / fabs(b1y - b2y)) * fabs(b2y - a1y)) + ((b2x / fabs(b1y - b2y)) * fabs(b1y - a1y)));
+ if (xi > MAX2(a1x, a2x)) { /* New point right of hoz line1's */
+ Py_RETURN_NONE;
+ } else if (xi < MIN2(a1x, a2x)) { /*New point left of seg1's hoz line */
+ Py_RETURN_NONE;
+ }
+ newvec[0]= xi;
+ newvec[1]= a1y;
+ return newVectorObject(newvec, 2, Py_NEW);
+ }
+
+ b1 = (a2y-a1y)/(a2x-a1x);
+ b2 = (b2y-b1y)/(b2x-b1x);
+ a1 = a1y-b1*a1x;
+ a2 = b1y-b2*b1x;
+
+ if (b1 - b2 == 0.0) {
+ Py_RETURN_NONE;
+ }
+
+ xi = - (a1-a2)/(b1-b2);
+ yi = a1+b1*xi;
+ if ((a1x-xi)*(xi-a2x) >= 0 && (b1x-xi)*(xi-b2x) >= 0 && (a1y-yi)*(yi-a2y) >= 0 && (b1y-yi)*(yi-b2y)>=0) {
+ newvec[0]= xi;
+ newvec[1]= yi;
+ return newVectorObject(newvec, 2, Py_NEW);
+ }
+ Py_RETURN_NONE;
+}
+
+static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args )
+{
+ VectorObject *pt, *line_1, *line_2;
+ float pt_in[3], pt_out[3], l1[3], l2[3];
+ float lambda;
+ PyObject *ret;
+
+ if( !PyArg_ParseTuple ( args, "O!O!O!",
+ &vector_Type, &pt,
+ &vector_Type, &line_1,
+ &vector_Type, &line_2)
+ ) {
+ PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
+ return NULL;
+ }
+ /* accept 2d verts */
+ if (pt->size==3) { VECCOPY(pt_in, pt->vec);}
+ else { pt_in[2]=0.0; VECCOPY2D(pt_in, pt->vec) }
+
+ if (line_1->size==3) { VECCOPY(l1, line_1->vec);}
+ else { l1[2]=0.0; VECCOPY2D(l1, line_1->vec) }
+
+ if (line_2->size==3) { VECCOPY(l2, line_2->vec);}
+ else { l2[2]=0.0; VECCOPY2D(l2, line_2->vec) }
+
+ /* do the calculation */
+ lambda = lambda_cp_line_ex(pt_in, l1, l2, pt_out);
+
+ ret = PyTuple_New(2);
+ PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW) );
+ PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) );
+ return ret;
+}
+
+static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args )
+{
+ VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
+
+ if( !PyArg_ParseTuple ( args, "O!O!O!O!",
+ &vector_Type, &pt_vec,
+ &vector_Type, &tri_p1,
+ &vector_Type, &tri_p2,
+ &vector_Type, &tri_p3)
+ ) {
+ PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
+ return NULL;
+ }
+
+ return PyLong_FromLong(IsectPT2Df(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
+}
+
+static PyObject *M_Geometry_PointInQuad2D( PyObject * self, PyObject * args )
+{
+ VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
+
+ if( !PyArg_ParseTuple ( args, "O!O!O!O!O!",
+ &vector_Type, &pt_vec,
+ &vector_Type, &quad_p1,
+ &vector_Type, &quad_p2,
+ &vector_Type, &quad_p3,
+ &vector_Type, &quad_p4)
+ ) {
+ PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
+ return NULL;
+ }
+
+ return PyLong_FromLong(IsectPQ2Df(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
+}
+
+static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
+{
+ int len, i;
+ PyObject *list_item, *item_1, *item_2;
+ boxPack *box;
+
+
+ /* Error checking must alredy be done */
+ if( !PyList_Check( value ) ) {
+ PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
+ return -1;
+ }
+
+ len = PyList_Size( value );
+
+ (*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
+
+
+ for( i = 0; i < len; i++ ) {
+ list_item = PyList_GET_ITEM( value, i );
+ if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
+ MEM_freeN(*boxarray);
+ PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
+ return -1;
+ }
+
+ box = (*boxarray)+i;
+
+ item_1 = PyList_GET_ITEM(list_item, 2);
+ item_2 = PyList_GET_ITEM(list_item, 3);
+
+ if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
+ MEM_freeN(*boxarray);
+ PyErr_SetString( PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" );
+ return -1;
+ }
+
+ box->w = (float)PyFloat_AsDouble( item_1 );
+ box->h = (float)PyFloat_AsDouble( item_2 );
+ box->index = i;
+ /* verts will be added later */
+ }
+ return 0;
+}
+
+static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
+{
+ int len, i;
+ PyObject *list_item;
+ boxPack *box;
+
+ len = PyList_Size( value );
+
+ for( i = 0; i < len; i++ ) {
+ box = (*boxarray)+i;
+ list_item = PyList_GET_ITEM( value, box->index );
+ PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
+ PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
+ }
+ MEM_freeN(*boxarray);
+}
+
+
+static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * boxlist )
+{
+ boxPack *boxarray = NULL;
+ float tot_width, tot_height;
+ int len;
+ int error;
+
+ if(!PyList_Check(boxlist)) {
+ PyErr_SetString( PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" );
+ return NULL;
+ }
+
+ len = PyList_Size( boxlist );
+
+ if (!len)
+ return Py_BuildValue( "ff", 0.0, 0.0);
+
+ error = boxPack_FromPyObject(boxlist, &boxarray);
+ if (error!=0) return NULL;
+
+ /* Non Python function */
+ boxPack2D(boxarray, len, &tot_width, &tot_height);
+
+ boxPack_ToPyObject(boxlist, &boxarray);
+
+ return Py_BuildValue( "ff", tot_width, tot_height);
+}
+
+static PyObject *M_Geometry_BezierInterp( PyObject * self, PyObject * args )
+{
+ VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
+ int resolu;
+ int dims;
+ int i;
+ float *coord_array, *fp;
+ PyObject *list;
+
+ float k1[4] = {0.0, 0.0, 0.0, 0.0};
+ float h1[4] = {0.0, 0.0, 0.0, 0.0};
+ float k2[4] = {0.0, 0.0, 0.0, 0.0};
+ float h2[4] = {0.0, 0.0, 0.0, 0.0};
+
+
+ if( !PyArg_ParseTuple ( args, "O!O!O!O!i",
+ &vector_Type, &vec_k1,
+ &vector_Type, &vec_h1,
+ &vector_Type, &vec_h2,
+ &vector_Type, &vec_k2, &resolu) || (resolu<=1)
+ ) {
+ PyErr_SetString( PyExc_TypeError, "expected 4 vector types and an int greater then 1\n" );
+ return NULL;
+ }
+
+ dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
+
+ for(i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i];
+ for(i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i];
+ for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i];
+ for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i];
+
+ coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "BezierInterp");
+ for(i=0; i<dims; i++) {
+ forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array+i, resolu-1, dims);
+ }
+
+ list= PyList_New(resolu);
+ fp= coord_array;
+ for(i=0; i<resolu; i++, fp= fp+dims) {
+ PyList_SET_ITEM(list, i, newVectorObject(fp, dims, Py_NEW));
+ }
+ MEM_freeN(coord_array);
+ return list;
+}