Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2010-04-11 16:05:27 +0400
committerCampbell Barton <ideasman42@gmail.com>2010-04-11 16:05:27 +0400
commitfe9a22a0182689125c8147934bc20bbc86141aab (patch)
tree8eb0e68bbb59f31438bd1fec1f991b0c07af9923 /source/blender/python/generic/matrix.c
parent4c5fe03c9fedb50b1223933337df6d4a8a43db00 (diff)
py api file rename
- prefix mathutils api. - 2 blf.c files (annoying for debugging) - py api docs ignore keying sets as with operators.
Diffstat (limited to 'source/blender/python/generic/matrix.c')
-rw-r--r--source/blender/python/generic/matrix.c1523
1 files changed, 0 insertions, 1523 deletions
diff --git a/source/blender/python/generic/matrix.c b/source/blender/python/generic/matrix.c
deleted file mode 100644
index 216139dc44f..00000000000
--- a/source/blender/python/generic/matrix.c
+++ /dev/null
@@ -1,1523 +0,0 @@
-/*
- * $Id$
- *
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
- * All rights reserved.
- *
- * Contributor(s): Michel Selten & Joseph Gilbert
- *
- * ***** END GPL LICENSE BLOCK *****
- */
-
-#include "Mathutils.h"
-
-#include "BKE_utildefines.h"
-#include "BLI_math.h"
-#include "BLI_blenlib.h"
-
-static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec); /* utility func */
-
-
-/* matrix vector callbacks */
-int mathutils_matrix_vector_cb_index= -1;
-
-static int mathutils_matrix_vector_check(PyObject *self_p)
-{
- MatrixObject *self= (MatrixObject*)self_p;
- return BaseMath_ReadCallback(self);
-}
-
-static int mathutils_matrix_vector_get(PyObject *self_p, int subtype, float *vec_from)
-{
- MatrixObject *self= (MatrixObject*)self_p;
- int i;
-
- if(!BaseMath_ReadCallback(self))
- return 0;
-
- for(i=0; i<self->colSize; i++)
- vec_from[i]= self->matrix[subtype][i];
-
- return 1;
-}
-
-static int mathutils_matrix_vector_set(PyObject *self_p, int subtype, float *vec_to)
-{
- MatrixObject *self= (MatrixObject*)self_p;
- int i;
-
- if(!BaseMath_ReadCallback(self))
- return 0;
-
- for(i=0; i<self->colSize; i++)
- self->matrix[subtype][i]= vec_to[i];
-
- BaseMath_WriteCallback(self);
- return 1;
-}
-
-static int mathutils_matrix_vector_get_index(PyObject *self_p, int subtype, float *vec_from, int index)
-{
- MatrixObject *self= (MatrixObject*)self_p;
-
- if(!BaseMath_ReadCallback(self))
- return 0;
-
- vec_from[index]= self->matrix[subtype][index];
- return 1;
-}
-
-static int mathutils_matrix_vector_set_index(PyObject *self_p, int subtype, float *vec_to, int index)
-{
- MatrixObject *self= (MatrixObject*)self_p;
-
- if(!BaseMath_ReadCallback(self))
- return 0;
-
- self->matrix[subtype][index]= vec_to[index];
-
- BaseMath_WriteCallback(self);
- return 1;
-}
-
-Mathutils_Callback mathutils_matrix_vector_cb = {
- mathutils_matrix_vector_check,
- mathutils_matrix_vector_get,
- mathutils_matrix_vector_set,
- mathutils_matrix_vector_get_index,
- mathutils_matrix_vector_set_index
-};
-/* matrix vector callbacks, this is so you can do matrix[i][j] = val */
-
-//----------------------------------Mathutils.Matrix() -----------------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//create a new matrix type
-static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
-{
- PyObject *argObject, *m, *s;
- MatrixObject *mat;
- int argSize, seqSize = 0, i, j;
- float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- float scalar;
-
- argSize = PyTuple_GET_SIZE(args);
- if(argSize > 4){ //bad arg nums
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- return NULL;
- } else if (argSize == 0) { //return empty 4D matrix
- return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
- }else if (argSize == 1){
- //copy constructor for matrix objects
- argObject = PyTuple_GET_ITEM(args, 0);
- if(MatrixObject_Check(argObject)){
- mat = (MatrixObject*)argObject;
- if(!BaseMath_ReadCallback(mat))
- return NULL;
-
- memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize);
- argSize = mat->rowSize;
- seqSize = mat->colSize;
- }
- }else{ //2-4 arguments (all seqs? all same size?)
- for(i =0; i < argSize; i++){
- argObject = PyTuple_GET_ITEM(args, i);
- if (PySequence_Check(argObject)) { //seq?
- if(seqSize){ //0 at first
- if(PySequence_Length(argObject) != seqSize){ //seq size not same
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- return NULL;
- }
- }
- seqSize = PySequence_Length(argObject);
- }else{ //arg not a sequence
- PyErr_SetString(PyExc_TypeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- return NULL;
- }
- }
- //all is well... let's continue parsing
- for (i = 0; i < argSize; i++){
- m = PyTuple_GET_ITEM(args, i);
- if (m == NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
- return NULL;
- }
-
- for (j = 0; j < seqSize; j++) {
- s = PySequence_GetItem(m, j);
- if (s == NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
- return NULL;
- }
-
- scalar= (float)PyFloat_AsDouble(s);
- Py_DECREF(s);
-
- if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- return NULL;
- }
-
- matrix[(seqSize*i)+j]= scalar;
- }
- }
- }
- return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
-}
-
-/* assumes rowsize == colsize is checked and the read callback has run */
-static float matrix_determinant(MatrixObject * self)
-{
- if(self->rowSize == 2) {
- return determinant_m2(self->matrix[0][0], self->matrix[0][1],
- self->matrix[1][0], self->matrix[1][1]);
- } else if(self->rowSize == 3) {
- return determinant_m3(self->matrix[0][0], self->matrix[0][1],
- self->matrix[0][2], self->matrix[1][0],
- self->matrix[1][1], self->matrix[1][2],
- self->matrix[2][0], self->matrix[2][1],
- self->matrix[2][2]);
- } else {
- return determinant_m4((float (*)[4])self->contigPtr);
- }
-}
-
-
-/*-----------------------------METHODS----------------------------*/
-static char Matrix_toQuat_doc[] =
-".. method:: to_quat()\n"
-"\n"
-" Return a quaternion representation of the rotation matrix.\n"
-"\n"
-" :return: Quaternion representation of the rotation matrix.\n"
-" :rtype: :class:`Quaternion`\n";
-
-static PyObject *Matrix_toQuat(MatrixObject * self)
-{
- float quat[4];
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
- PyErr_SetString(PyExc_AttributeError, "Matrix.to_quat(): inappropriate matrix size - expects 3x3 or 4x4 matrix");
- return NULL;
- }
- if(self->colSize == 3){
- mat3_to_quat( quat,(float (*)[3])self->contigPtr);
- }else{
- mat4_to_quat( quat,(float (*)[4])self->contigPtr);
- }
-
- return newQuaternionObject(quat, Py_NEW, NULL);
-}
-
-/*---------------------------Matrix.toEuler() --------------------*/
-static char Matrix_toEuler_doc[] =
-".. method:: to_euler(order, euler_compat)\n"
-"\n"
-" Return an Euler representation of the rotation matrix (3x3 or 4x4 matrix only).\n"
-"\n"
-" :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
-" :type order: string\n"
-" :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
-" :type euler_compat: :class:`Euler`\n"
-" :return: Euler representation of the matrix.\n"
-" :rtype: :class:`Euler`\n";
-
-PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
-{
- char *order_str= NULL;
- short order= 0;
- float eul[3], eul_compatf[3];
- EulerObject *eul_compat = NULL;
-
- float tmat[3][3];
- float (*mat)[3];
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
- return NULL;
-
- if(eul_compat) {
- if(!BaseMath_ReadCallback(eul_compat))
- return NULL;
-
- VECCOPY(eul_compatf, eul_compat->eul);
- }
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize ==3 && self->rowSize ==3) {
- mat= (float (*)[3])self->contigPtr;
- }else if (self->colSize ==4 && self->rowSize ==4) {
- copy_m3_m4(tmat, (float (*)[4])self->contigPtr);
- mat= tmat;
- }else {
- PyErr_SetString(PyExc_AttributeError, "Matrix.to_euler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
- return NULL;
- }
-
- if(order_str) {
- order= euler_order_from_string(order_str, "Matrix.to_euler()");
-
- if(order < 0)
- return NULL;
- }
-
- if(eul_compat) {
- if(order == 0) mat3_to_compatible_eul( eul, eul_compatf, mat);
- else mat3_to_compatible_eulO(eul, eul_compatf, order, mat);
- }
- else {
- if(order == 0) mat3_to_eul(eul, mat);
- else mat3_to_eulO(eul, order, mat);
- }
-
- return newEulerObject(eul, order, Py_NEW, NULL);
-}
-/*---------------------------Matrix.resize4x4() ------------------*/
-static char Matrix_Resize4x4_doc[] =
-".. method:: resize4x4()\n"
-"\n"
-" Resize the matrix to 4x4.\n"
-"\n"
-" :return: an instance of itself.\n"
-" :rtype: :class:`Matrix`\n";
-
-PyObject *Matrix_Resize4x4(MatrixObject * self)
-{
- int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
-
- if(self->wrapped==Py_WRAP){
- PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that");
- return NULL;
- }
- if(self->cb_user){
- PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that");
- return NULL;
- }
-
- self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
- if(self->contigPtr == NULL) {
- PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
- return NULL;
- }
- self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4));
- if(self->matrix == NULL) {
- PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
- return NULL;
- }
- /*set row pointers*/
- for(x = 0; x < 4; x++) {
- self->matrix[x] = self->contigPtr + (x * 4);
- }
- /*move data to new spot in array + clean*/
- for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
- for(x = 0; x < 4; x++){
- index = (4 * (self->rowSize + (blank_rows - 1))) + x;
- if (index == 10 || index == 15){
- self->contigPtr[index] = 1.0f;
- }else{
- self->contigPtr[index] = 0.0f;
- }
- }
- }
- for(x = 1; x <= self->rowSize; x++){
- first_row_elem = (self->colSize * (self->rowSize - x));
- curr_pos = (first_row_elem + (self->colSize -1));
- new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
- for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
- self->contigPtr[new_pos + blank_columns] = 0.0f;
- }
- for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
- self->contigPtr[new_pos] = self->contigPtr[curr_pos];
- new_pos--;
- }
- }
- self->rowSize = 4;
- self->colSize = 4;
-
- Py_INCREF(self);
- return (PyObject *)self;
-}
-
-static char Matrix_to_4x4_doc[] =
-".. method:: to_4x4()\n"
-"\n"
-" Return a 4x4 copy of this matrix.\n"
-"\n"
-" :return: a new matrix.\n"
-" :rtype: :class:`Matrix`\n";
-PyObject *Matrix_to_4x4(MatrixObject * self)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->colSize==4 && self->rowSize==4) {
- return (PyObject *)newMatrixObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self));
- }
- else if(self->colSize==3 && self->rowSize==3) {
- float mat[4][4];
- copy_m4_m3(mat, (float (*)[3])self->contigPtr);
- return (PyObject *)newMatrixObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self));
- }
- /* TODO, 2x2 matrix */
-
- PyErr_SetString(PyExc_TypeError, "Matrix.to_4x4(): inappropriate matrix size");
- return NULL;
-}
-
-static char Matrix_to_3x3_doc[] =
-".. method:: to_3x3()\n"
-"\n"
-" Return a 3x3 copy of this matrix.\n"
-"\n"
-" :return: a new matrix.\n"
-" :rtype: :class:`Matrix`\n";
-PyObject *Matrix_to_3x3(MatrixObject * self)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->colSize==3 && self->rowSize==3) {
- return (PyObject *)newMatrixObject(self->contigPtr, 3, 3, Py_NEW, Py_TYPE(self));
- }
- else if(self->colSize==4 && self->rowSize==4) {
- float mat[3][3];
- copy_m3_m4(mat, (float (*)[4])self->contigPtr);
- return (PyObject *)newMatrixObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self));
- }
- /* TODO, 2x2 matrix */
-
- PyErr_SetString(PyExc_TypeError, "Matrix.to_3x3(): inappropriate matrix size");
- return NULL;
-}
-
-/*---------------------------Matrix.translationPart() ------------*/
-static char Matrix_TranslationPart_doc[] =
-".. method:: translation_part()\n"
-"\n"
-" Return a the translation part of a 4 row matrix.\n"
-"\n"
-" :return: Return a the translation of a matrix.\n"
-" :rtype: :class:`Matrix`\n"
-"\n"
-" .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
-
-PyObject *Matrix_TranslationPart(MatrixObject * self)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->colSize < 3 || self->rowSize < 4){
- PyErr_SetString(PyExc_AttributeError, "Matrix.translation_part(): inappropriate matrix size");
- return NULL;
- }
-
- return newVectorObject(self->matrix[3], 3, Py_NEW, NULL);
-}
-/*---------------------------Matrix.rotationPart() ---------------*/
-static char Matrix_RotationPart_doc[] =
-".. method:: rotation_part()\n"
-"\n"
-" Return the 3d submatrix corresponding to the linear term of the embedded affine transformation in 3d. This matrix represents rotation and scale.\n"
-"\n"
-" :return: Return the 3d matrix for rotation and scale.\n"
-" :rtype: :class:`Matrix`\n"
-"\n"
-" .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
-
-PyObject *Matrix_RotationPart(MatrixObject * self)
-{
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->colSize < 3 || self->rowSize < 3){
- PyErr_SetString(PyExc_AttributeError, "Matrix.rotation_part(): inappropriate matrix size\n");
- return NULL;
- }
-
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[3] = self->matrix[1][0];
- mat[4] = self->matrix[1][1];
- mat[5] = self->matrix[1][2];
- mat[6] = self->matrix[2][0];
- mat[7] = self->matrix[2][1];
- mat[8] = self->matrix[2][2];
-
- return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self));
-}
-/*---------------------------Matrix.scalePart() --------------------*/
-static char Matrix_scalePart_doc[] =
-".. method:: scale_part()\n"
-"\n"
-" Return a the scale part of a 3x3 or 4x4 matrix.\n"
-"\n"
-" :return: Return a the scale of a matrix.\n"
-" :rtype: :class:`Vector`\n"
-"\n"
-" .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n";
-
-PyObject *Matrix_scalePart(MatrixObject * self)
-{
- float scale[3], rot[3];
- float mat[3][3], imat[3][3], tmat[3][3];
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize == 4 && self->rowSize == 4)
- copy_m3_m4(mat, (float (*)[4])self->contigPtr);
- else if(self->colSize == 3 && self->rowSize == 3)
- copy_m3_m3(mat, (float (*)[3])self->contigPtr);
- else {
- PyErr_SetString(PyExc_AttributeError, "Matrix.scale_part(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
- return NULL;
- }
- /* functionality copied from editobject.c apply_obmat */
- mat3_to_eul( rot,mat);
- eul_to_mat3( tmat,rot);
- invert_m3_m3(imat, tmat);
- mul_m3_m3m3(tmat, imat, mat);
-
- scale[0]= tmat[0][0];
- scale[1]= tmat[1][1];
- scale[2]= tmat[2][2];
- return newVectorObject(scale, 3, Py_NEW, NULL);
-}
-/*---------------------------Matrix.invert() ---------------------*/
-static char Matrix_Invert_doc[] =
-".. method:: invert()\n"
-"\n"
-" Set the matrix to its inverse.\n"
-"\n"
-" :return: an instance of itself.\n"
-" :rtype: :class:`Matrix`\n"
-"\n"
-" .. note:: :exc:`ValueError` exception is raised.\n"
-"\n"
-" .. seealso:: <http://en.wikipedia.org/wiki/Inverse_matrix>\n";
-
-PyObject *Matrix_Invert(MatrixObject * self)
-{
-
- int x, y, z = 0;
- float det = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->rowSize != self->colSize){
- PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported");
- return NULL;
- }
-
- /*calculate the determinant*/
- det = matrix_determinant(self);
-
- if(det != 0) {
- /*calculate the classical adjoint*/
- if(self->rowSize == 2) {
- mat[0] = self->matrix[1][1];
- mat[1] = -self->matrix[0][1];
- mat[2] = -self->matrix[1][0];
- mat[3] = self->matrix[0][0];
- } else if(self->rowSize == 3) {
- adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr);
- } else if(self->rowSize == 4) {
- adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr);
- }
- /*divide by determinate*/
- for(x = 0; x < (self->rowSize * self->colSize); x++) {
- mat[x] /= det;
- }
- /*set values*/
- for(x = 0; x < self->rowSize; x++) {
- for(y = 0; y < self->colSize; y++) {
- self->matrix[x][y] = mat[z];
- z++;
- }
- }
- /*transpose
- Matrix_Transpose(self);*/
- } else {
- PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse");
- return NULL;
- }
-
- BaseMath_WriteCallback(self);
- Py_INCREF(self);
- return (PyObject *)self;
-}
-
-
-/*---------------------------Matrix.determinant() ----------------*/
-static char Matrix_Determinant_doc[] =
-".. method:: determinant()\n"
-"\n"
-" Return the determinant of a matrix.\n"
-"\n"
-" :return: Return a the determinant of a matrix.\n"
-" :rtype: float\n"
-"\n"
-" .. seealso:: <http://en.wikipedia.org/wiki/Determinant>\n";
-
-PyObject *Matrix_Determinant(MatrixObject * self)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->rowSize != self->colSize){
- PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported");
- return NULL;
- }
-
- return PyFloat_FromDouble((double)matrix_determinant(self));
-}
-/*---------------------------Matrix.transpose() ------------------*/
-static char Matrix_Transpose_doc[] =
-".. method:: transpose()\n"
-"\n"
-" Set the matrix to its transpose.\n"
-"\n"
-" :return: an instance of itself\n"
-" :rtype: :class:`Matrix`\n"
-"\n"
-" .. seealso:: <http://en.wikipedia.org/wiki/Transpose>\n";
-
-PyObject *Matrix_Transpose(MatrixObject * self)
-{
- float t = 0.0f;
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->rowSize != self->colSize){
- PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported");
- return NULL;
- }
-
- if(self->rowSize == 2) {
- t = self->matrix[1][0];
- self->matrix[1][0] = self->matrix[0][1];
- self->matrix[0][1] = t;
- } else if(self->rowSize == 3) {
- transpose_m3((float (*)[3])self->contigPtr);
- } else {
- transpose_m4((float (*)[4])self->contigPtr);
- }
-
- BaseMath_WriteCallback(self);
- Py_INCREF(self);
- return (PyObject *)self;
-}
-
-
-/*---------------------------Matrix.zero() -----------------------*/
-static char Matrix_Zero_doc[] =
-".. method:: zero()\n"
-"\n"
-" Set all the matrix values to zero.\n"
-"\n"
-" :return: an instance of itself\n"
-" :rtype: :class:`Matrix`\n";
-
-PyObject *Matrix_Zero(MatrixObject * self)
-{
- int row, col;
-
- for(row = 0; row < self->rowSize; row++) {
- for(col = 0; col < self->colSize; col++) {
- self->matrix[row][col] = 0.0f;
- }
- }
-
- if(!BaseMath_WriteCallback(self))
- return NULL;
-
- Py_INCREF(self);
- return (PyObject *)self;
-}
-/*---------------------------Matrix.identity(() ------------------*/
-static char Matrix_Identity_doc[] =
-".. method:: identity()\n"
-"\n"
-" Set the matrix to the identity matrix.\n"
-"\n"
-" :return: an instance of itself\n"
-" :rtype: :class:`Matrix`\n"
-"\n"
-" .. note:: An object with zero location and rotation, a scale of one, will have an identity matrix.\n"
-"\n"
-" .. seealso:: <http://en.wikipedia.org/wiki/Identity_matrix>\n";
-
-PyObject *Matrix_Identity(MatrixObject * self)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(self->rowSize != self->colSize){
- PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n");
- return NULL;
- }
-
- if(self->rowSize == 2) {
- self->matrix[0][0] = 1.0f;
- self->matrix[0][1] = 0.0f;
- self->matrix[1][0] = 0.0f;
- self->matrix[1][1] = 1.0f;
- } else if(self->rowSize == 3) {
- unit_m3((float (*)[3])self->contigPtr);
- } else {
- unit_m4((float (*)[4])self->contigPtr);
- }
-
- if(!BaseMath_WriteCallback(self))
- return NULL;
-
- Py_INCREF(self);
- return (PyObject *)self;
-}
-
-/*---------------------------Matrix.copy() ------------------*/
-static char Matrix_copy_doc[] =
-".. method:: copy()\n"
-"\n"
-" Returns a copy of this matrix.\n"
-"\n"
-" :return: an instance of itself\n"
-" :rtype: :class:`Matrix`\n";
-
-PyObject *Matrix_copy(MatrixObject * self)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- return (PyObject*)newMatrixObject((float (*))self->contigPtr, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self));
-}
-
-/*----------------------------print object (internal)-------------*/
-/*print the object to screen*/
-static PyObject *Matrix_repr(MatrixObject * self)
-{
- int x, y;
- char buffer[48], str[1024];
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- BLI_strncpy(str,"",1024);
- for(x = 0; x < self->colSize; x++){
- sprintf(buffer, "[");
- strcat(str,buffer);
- for(y = 0; y < (self->rowSize - 1); y++) {
- sprintf(buffer, "%.6f, ", self->matrix[y][x]);
- strcat(str,buffer);
- }
- if(x < (self->colSize-1)){
- sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[y][x], x);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[y][x], x);
- strcat(str,buffer);
- }
- }
-
- return PyUnicode_FromString(str);
-}
-/*------------------------tp_richcmpr*/
-/*returns -1 execption, 0 false, 1 true*/
-static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
-{
- MatrixObject *matA = NULL, *matB = NULL;
- int result = 0;
-
- if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
- if (comparison_type == Py_NE){
- Py_RETURN_TRUE;
- }else{
- Py_RETURN_FALSE;
- }
- }
- matA = (MatrixObject*)objectA;
- matB = (MatrixObject*)objectB;
-
- if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB))
- return NULL;
-
- if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
- if (comparison_type == Py_NE){
- Py_RETURN_TRUE;
- }else{
- Py_RETURN_FALSE;
- }
- }
-
- switch (comparison_type){
- case Py_EQ:
- /*contigPtr is basically a really long vector*/
- result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
- (matA->rowSize * matA->colSize), 1);
- break;
- case Py_NE:
- result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
- (matA->rowSize * matA->colSize), 1);
- if (result == 0){
- result = 1;
- }else{
- result = 0;
- }
- break;
- default:
- printf("The result of the comparison could not be evaluated");
- break;
- }
- if (result == 1){
- Py_RETURN_TRUE;
- }else{
- Py_RETURN_FALSE;
- }
-}
-
-/*---------------------SEQUENCE PROTOCOLS------------------------
- ----------------------------len(object)------------------------
- sequence length*/
-static int Matrix_len(MatrixObject * self)
-{
- return (self->rowSize);
-}
-/*----------------------------object[]---------------------------
- sequence accessor (get)
- the wrapped vector gives direct access to the matrix data*/
-static PyObject *Matrix_item(MatrixObject * self, int i)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- if(i < 0 || i >= self->rowSize) {
- PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range");
- return NULL;
- }
- return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i);
-}
-/*----------------------------object[]-------------------------
- sequence accessor (set)*/
-static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
-{
- int y, x, size = 0;
- float vec[4];
- PyObject *m, *f;
-
- if(!BaseMath_ReadCallback(self))
- return -1;
-
- if(i >= self->rowSize || i < 0){
- PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad column\n");
- return -1;
- }
-
- if(PySequence_Check(ob)){
- size = PySequence_Length(ob);
- if(size != self->colSize){
- PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n");
- return -1;
- }
- for (x = 0; x < size; x++) {
- m = PySequence_GetItem(ob, x);
- if (m == NULL) { /*Failed to read sequence*/
- PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n");
- return -1;
- }
-
- f = PyNumber_Float(m);
- if(f == NULL) { /*parsed item not a number*/
- Py_DECREF(m);
- PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n");
- return -1;
- }
-
- vec[x] = (float)PyFloat_AS_DOUBLE(f);
- Py_DECREF(m);
- Py_DECREF(f);
- }
- /*parsed well - now set in matrix*/
- for(y = 0; y < size; y++){
- self->matrix[i][y] = vec[y];
- }
-
- BaseMath_WriteCallback(self);
- return 0;
- }else{
- PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n");
- return -1;
- }
-}
-/*----------------------------object[z:y]------------------------
- sequence slice (get)*/
-static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
-{
-
- PyObject *list = NULL;
- int count;
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- CLAMP(begin, 0, self->rowSize);
- CLAMP(end, 0, self->rowSize);
- begin = MIN2(begin,end);
-
- list = PyList_New(end - begin);
- for(count = begin; count < end; count++) {
- PyList_SetItem(list, count - begin,
- newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count));
-
- }
-
- return list;
-}
-/*----------------------------object[z:y]------------------------
- sequence slice (set)*/
-static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq)
-{
- int i, x, y, size, sub_size = 0;
- float mat[16], f;
- PyObject *subseq;
- PyObject *m;
-
- if(!BaseMath_ReadCallback(self))
- return -1;
-
- CLAMP(begin, 0, self->rowSize);
- CLAMP(end, 0, self->rowSize);
- begin = MIN2(begin,end);
-
- if(PySequence_Check(seq)){
- size = PySequence_Length(seq);
- if(size != (end - begin)){
- PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
- return -1;
- }
- /*parse sub items*/
- for (i = 0; i < size; i++) {
- /*parse each sub sequence*/
- subseq = PySequence_GetItem(seq, i);
- if (subseq == NULL) { /*Failed to read sequence*/
- PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence");
- return -1;
- }
-
- if(PySequence_Check(subseq)){
- /*subsequence is also a sequence*/
- sub_size = PySequence_Length(subseq);
- if(sub_size != self->colSize){
- Py_DECREF(subseq);
- PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
- return -1;
- }
- for (y = 0; y < sub_size; y++) {
- m = PySequence_GetItem(subseq, y);
- if (m == NULL) { /*Failed to read sequence*/
- Py_DECREF(subseq);
- PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n");
- return -1;
- }
-
- f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */
- if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/
- Py_DECREF(m);
- Py_DECREF(subseq);
- PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n");
- return -1;
- }
-
- mat[(i * self->colSize) + y] = f;
- Py_DECREF(m);
- }
- }else{
- Py_DECREF(subseq);
- PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
- return -1;
- }
- Py_DECREF(subseq);
- }
- /*parsed well - now set in matrix*/
- for(x = 0; x < (size * sub_size); x++){
- self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
- }
-
- BaseMath_WriteCallback(self);
- return 0;
- }else{
- PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
- return -1;
- }
-}
-/*------------------------NUMERIC PROTOCOLS----------------------
- ------------------------obj + obj------------------------------*/
-static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
-{
- int x, y;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- MatrixObject *mat1 = NULL, *mat2 = NULL;
-
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
-
- if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
- PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
- return NULL;
-
- if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
- PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
- return NULL;
- }
-
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
- }
- }
-
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
-}
-/*------------------------obj - obj------------------------------
- subtraction*/
-static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
-{
- int x, y;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- MatrixObject *mat1 = NULL, *mat2 = NULL;
-
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
-
- if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
- PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
- return NULL;
-
- if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
- PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
- return NULL;
- }
-
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
- }
- }
-
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
-}
-/*------------------------obj * obj------------------------------
- mulplication*/
-static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
-{
- int x, y, z;
- float scalar;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- double dot = 0.0f;
- MatrixObject *mat1 = NULL, *mat2 = NULL;
-
- if(MatrixObject_Check(m1)) {
- mat1 = (MatrixObject*)m1;
- if(!BaseMath_ReadCallback(mat1))
- return NULL;
- }
- if(MatrixObject_Check(m2)) {
- mat2 = (MatrixObject*)m2;
- if(!BaseMath_ReadCallback(mat2))
- return NULL;
- }
-
- if(mat1 && mat2) { /*MATRIX * MATRIX*/
- if(mat1->rowSize != mat2->colSize){
- PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize");
- return NULL;
- }
- for(x = 0; x < mat2->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- for(z = 0; z < mat1->rowSize; z++) {
- dot += (mat1->matrix[z][y] * mat2->matrix[x][z]);
- }
- mat[((x * mat1->colSize) + y)] = (float)dot;
- dot = 0.0f;
- }
- }
-
- return newMatrixObject(mat, mat2->rowSize, mat1->colSize, Py_NEW, NULL);
- }
-
- if(mat1==NULL){
- scalar=PyFloat_AsDouble(m1); // may not be a float...
- if ((scalar == -1.0 && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX, this line annoys theeth, lets see if he finds it */
- for(x = 0; x < mat2->rowSize; x++) {
- for(y = 0; y < mat2->colSize; y++) {
- mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
- }
- }
- return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, NULL);
- }
-
- PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
- return NULL;
- }
- else /* if(mat1) { */ {
-
- if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
- return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
- }
- else {
- scalar= PyFloat_AsDouble(m2);
- if ((scalar == -1.0 && PyErr_Occurred())==0) { /* MATRIX*FLOAT/INT */
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
- }
- }
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
- }
- }
- PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
- return NULL;
- }
-
- PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n");
- return NULL;
-}
-static PyObject* Matrix_inv(MatrixObject *self)
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- return Matrix_Invert(self);
-}
-
-/*-----------------PROTOCOL DECLARATIONS--------------------------*/
-static PySequenceMethods Matrix_SeqMethods = {
- (lenfunc) Matrix_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (ssizeargfunc) 0, /* sq_repeat */
- (ssizeargfunc) Matrix_item, /* sq_item */
- (ssizessizeargfunc) Matrix_slice, /* sq_slice */
- (ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
- (ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice */
-};
-
-
-static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
-{
- if (PyIndex_Check(item)) {
- Py_ssize_t i;
- i = PyNumber_AsSsize_t(item, PyExc_IndexError);
- if (i == -1 && PyErr_Occurred())
- return NULL;
- if (i < 0)
- i += self->rowSize;
- return Matrix_item(self, i);
- } else if (PySlice_Check(item)) {
- Py_ssize_t start, stop, step, slicelength;
-
- if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
- return NULL;
-
- if (slicelength <= 0) {
- return PyList_New(0);
- }
- else if (step == 1) {
- return Matrix_slice(self, start, stop);
- }
- else {
- PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
- return NULL;
- }
- }
- else {
- PyErr_Format(PyExc_TypeError,
- "vector indices must be integers, not %.200s",
- item->ob_type->tp_name);
- return NULL;
- }
-}
-
-static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
-{
- if (PyIndex_Check(item)) {
- Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
- if (i == -1 && PyErr_Occurred())
- return -1;
- if (i < 0)
- i += self->rowSize;
- return Matrix_ass_item(self, i, value);
- }
- else if (PySlice_Check(item)) {
- Py_ssize_t start, stop, step, slicelength;
-
- if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
- return -1;
-
- if (step == 1)
- return Matrix_ass_slice(self, start, stop, value);
- else {
- PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
- return -1;
- }
- }
- else {
- PyErr_Format(PyExc_TypeError,
- "matrix indices must be integers, not %.200s",
- item->ob_type->tp_name);
- return -1;
- }
-}
-
-static PyMappingMethods Matrix_AsMapping = {
- (lenfunc)Matrix_len,
- (binaryfunc)Matrix_subscript,
- (objobjargproc)Matrix_ass_subscript
-};
-
-
-static PyNumberMethods Matrix_NumMethods = {
- (binaryfunc) Matrix_add, /*nb_add*/
- (binaryfunc) Matrix_sub, /*nb_subtract*/
- (binaryfunc) Matrix_mul, /*nb_multiply*/
- 0, /*nb_remainder*/
- 0, /*nb_divmod*/
- 0, /*nb_power*/
- (unaryfunc) 0, /*nb_negative*/
- (unaryfunc) 0, /*tp_positive*/
- (unaryfunc) 0, /*tp_absolute*/
- (inquiry) 0, /*tp_bool*/
- (unaryfunc) Matrix_inv, /*nb_invert*/
- 0, /*nb_lshift*/
- (binaryfunc)0, /*nb_rshift*/
- 0, /*nb_and*/
- 0, /*nb_xor*/
- 0, /*nb_or*/
- 0, /*nb_int*/
- 0, /*nb_reserved*/
- 0, /*nb_float*/
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- 0, /* nb_floor_divide */
- 0, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
- 0, /* nb_index */
-};
-
-static PyObject *Matrix_getRowSize( MatrixObject * self, void *type )
-{
- return PyLong_FromLong((long) self->rowSize);
-}
-
-static PyObject *Matrix_getColSize( MatrixObject * self, void *type )
-{
- return PyLong_FromLong((long) self->colSize);
-}
-
-static PyObject *Matrix_getMedianScale( MatrixObject * self, void *type )
-{
- float mat[3][3];
-
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize == 4 && self->rowSize == 4)
- copy_m3_m4(mat, (float (*)[4])self->contigPtr);
- else if(self->colSize == 3 && self->rowSize == 3)
- copy_m3_m3(mat, (float (*)[3])self->contigPtr);
- else {
- PyErr_SetString(PyExc_AttributeError, "Matrix.median_scale: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
- return NULL;
- }
-
- return PyFloat_FromDouble(mat3_to_scale(mat));
-}
-
-static PyObject *Matrix_getIsNegative( MatrixObject * self, void *type )
-{
- if(!BaseMath_ReadCallback(self))
- return NULL;
-
- /*must be 3-4 cols, 3-4 rows, square matrix*/
- if(self->colSize == 4 && self->rowSize == 4)
- return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr));
- else if(self->colSize == 3 && self->rowSize == 3)
- return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr));
- else {
- PyErr_SetString(PyExc_AttributeError, "Matrix.is_negative: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
- return NULL;
- }
-}
-
-
-/*****************************************************************************/
-/* Python attributes get/set structure: */
-/*****************************************************************************/
-static PyGetSetDef Matrix_getseters[] = {
- {"row_size", (getter)Matrix_getRowSize, (setter)NULL, "The row size of the matrix (readonly). **type** int", NULL},
- {"col_size", (getter)Matrix_getColSize, (setter)NULL, "The column size of the matrix (readonly). **type** int", NULL},
- {"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, "The average scale applied to each axis (readonly). **type** float", NULL},
- {"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, "True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly). **type** bool", NULL},
- {"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
- {"_owner",(getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
- {NULL,NULL,NULL,NULL,NULL} /* Sentinel */
-};
-
-/*-----------------------METHOD DEFINITIONS ----------------------*/
-static struct PyMethodDef Matrix_methods[] = {
- {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
- {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
- {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
- {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
- {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
- {"translation_part", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
- {"rotation_part", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
- {"scale_part", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc},
- {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
- {"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc},
- {"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc},
- {"to_euler", (PyCFunction) Matrix_toEuler, METH_VARARGS, Matrix_toEuler_doc},
- {"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
- {"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
- {"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
- {NULL, NULL, 0, NULL}
-};
-
-/*------------------PY_OBECT DEFINITION--------------------------*/
-static char matrix_doc[] =
-"This object gives access to Matrices in Blender.";
-
-PyTypeObject matrix_Type = {
- PyVarObject_HEAD_INIT(NULL, 0)
- "matrix", /*tp_name*/
- sizeof(MatrixObject), /*tp_basicsize*/
- 0, /*tp_itemsize*/
- (destructor)BaseMathObject_dealloc, /*tp_dealloc*/
- 0, /*tp_print*/
- 0, /*tp_getattr*/
- 0, /*tp_setattr*/
- 0, /*tp_compare*/
- (reprfunc) Matrix_repr, /*tp_repr*/
- &Matrix_NumMethods, /*tp_as_number*/
- &Matrix_SeqMethods, /*tp_as_sequence*/
- &Matrix_AsMapping, /*tp_as_mapping*/
- 0, /*tp_hash*/
- 0, /*tp_call*/
- 0, /*tp_str*/
- 0, /*tp_getattro*/
- 0, /*tp_setattro*/
- 0, /*tp_as_buffer*/
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
- matrix_doc, /*tp_doc*/
- 0, /*tp_traverse*/
- 0, /*tp_clear*/
- (richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
- 0, /*tp_weaklistoffset*/
- 0, /*tp_iter*/
- 0, /*tp_iternext*/
- Matrix_methods, /*tp_methods*/
- 0, /*tp_members*/
- Matrix_getseters, /*tp_getset*/
- 0, /*tp_base*/
- 0, /*tp_dict*/
- 0, /*tp_descr_get*/
- 0, /*tp_descr_set*/
- 0, /*tp_dictoffset*/
- 0, /*tp_init*/
- 0, /*tp_alloc*/
- Matrix_new, /*tp_new*/
- 0, /*tp_free*/
- 0, /*tp_is_gc*/
- 0, /*tp_bases*/
- 0, /*tp_mro*/
- 0, /*tp_cache*/
- 0, /*tp_subclasses*/
- 0, /*tp_weaklist*/
- 0 /*tp_del*/
-};
-
-/*------------------------newMatrixObject (internal)-------------
-creates a new matrix object
-self->matrix self->contiguous_ptr (reference to data.xxx)
- [0]------------->[0]
- [1]
- [2]
- [1]------------->[3]
- [4]
- [5]
- ....
-self->matrix[1][1] = self->contigPtr[4] */
-
-/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
- (i.e. it was allocated elsewhere by MEM_mallocN())
- pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
- (i.e. it must be created here with PyMEM_malloc())*/
-PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type)
-{
- MatrixObject *self;
- int x, row, col;
-
- /*matrix objects can be any 2-4row x 2-4col matrix*/
- if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
- PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4");
- return NULL;
- }
-
- if(base_type) self = (MatrixObject *)base_type->tp_alloc(base_type, 0);
- else self = PyObject_NEW(MatrixObject, &matrix_Type);
-
- self->rowSize = rowSize;
- self->colSize = colSize;
-
- /* init callbacks as NULL */
- self->cb_user= NULL;
- self->cb_type= self->cb_subtype= 0;
-
- if(type == Py_WRAP){
- self->contigPtr = mat;
- /*create pointer array*/
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { /*allocation failure*/
- PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
- return NULL;
- }
- /*pointer array points to contigous memory*/
- for(x = 0; x < rowSize; x++) {
- self->matrix[x] = self->contigPtr + (x * colSize);
- }
- self->wrapped = Py_WRAP;
- }else if (type == Py_NEW){
- self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float));
- if(self->contigPtr == NULL) { /*allocation failure*/
- PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
- return NULL;
- }
- /*create pointer array*/
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { /*allocation failure*/
- PyMem_Free(self->contigPtr);
- PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
- return NULL;
- }
- /*pointer array points to contigous memory*/
- for(x = 0; x < rowSize; x++) {
- self->matrix[x] = self->contigPtr + (x * colSize);
- }
- /*parse*/
- if(mat) { /*if a float array passed*/
- for(row = 0; row < rowSize; row++) {
- for(col = 0; col < colSize; col++) {
- self->matrix[row][col] = mat[(row * colSize) + col];
- }
- }
- } else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
- Matrix_Identity(self);
- Py_DECREF(self);
- }
- self->wrapped = Py_NEW;
- }else{ /*bad type*/
- return NULL;
- }
- return (PyObject *) self;
-}
-
-PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
-{
- MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL);
- if(self) {
- Py_INCREF(cb_user);
- self->cb_user= cb_user;
- self->cb_type= (unsigned char)cb_type;
- self->cb_subtype= (unsigned char)cb_subtype;
- }
- return (PyObject *) self;
-}
-
-//----------------column_vector_multiplication (internal)---------
-//COLUMN VECTOR Multiplication (Matrix X Vector)
-// [1][4][7] [a]
-// [2][5][8] * [b]
-// [3][6][9] [c]
-//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
-static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
-{
- float vecNew[4], vecCopy[4];
- double dot = 0.0f;
- int x, y, z = 0;
-
- if(!BaseMath_ReadCallback(mat) || !BaseMath_ReadCallback(vec))
- return NULL;
-
- if(mat->rowSize != vec->size){
- if(mat->rowSize == 4 && vec->size != 3){
- PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
- return NULL;
- }else{
- vecCopy[3] = 1.0f;
- }
- }
-
- for(x = 0; x < vec->size; x++){
- vecCopy[x] = vec->vec[x];
- }
- vecNew[3] = 1.0f;
-
- for(x = 0; x < mat->colSize; x++) {
- for(y = 0; y < mat->rowSize; y++) {
- dot += mat->matrix[y][x] * vecCopy[y];
- }
- vecNew[z++] = (float)dot;
- dot = 0.0f;
- }
- return newVectorObject(vecNew, vec->size, Py_NEW, NULL);
-}