Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2011-01-02 05:11:38 +0300
committerCampbell Barton <ideasman42@gmail.com>2011-01-02 05:11:38 +0300
commit129b6190ed7a5f3e817f0bcf69c7a5ab60645c3a (patch)
treeb2bd1b07256f1a5da2f8e4cf2e5ca4401c23e08e /source/blender/python
parent577e3b435ed3a63ea1b97f620d53b77fa4c099e4 (diff)
geometry module
- rename functions from camel case. - added docs for undocumented methods. - minor functional changes with exceptions and accepting 3d/4d vectors where it makes no difference. Renamed: - geometry.Intersect -> intersect_ray_tri - geometry.ClosestPointOnLine -> intersect_point_line - geometry.PointInTriangle2D -> intersect_point_tri_2d - geometry.PointInQuad2D -> intersect_point_quad_2d - geometry.LineIntersect -> intersect_line_line - geometry.LineIntersect2D -> intersect_line_line_2d - geometry.BezierInterp -> interpolate_bezier - geometry.TriangleArea -> area_tri - geometry.QuadNormal, TriangleNormal -> normal - geometry.PolyFill -> tesselate_polygon - geometry.BoxPack2D -> box_pack_2d - geometry.BarycentricTransform -> barycentric_transform
Diffstat (limited to 'source/blender/python')
-rw-r--r--source/blender/python/generic/mathutils.c12
-rw-r--r--source/blender/python/generic/mathutils_geometry.c779
2 files changed, 387 insertions, 404 deletions
diff --git a/source/blender/python/generic/mathutils.c b/source/blender/python/generic/mathutils.c
index 73f16cb0cf1..d307d1008a7 100644
--- a/source/blender/python/generic/mathutils.c
+++ b/source/blender/python/generic/mathutils.c
@@ -55,6 +55,18 @@
* - Mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
*
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
+ * - geometry.Intersect -> intersect_ray_tri
+ * - geometry.ClosestPointOnLine -> intersect_point_line
+ * - geometry.PointInTriangle2D -> intersect_point_tri_2d
+ * - geometry.PointInQuad2D -> intersect_point_quad_2d
+ * - geometry.LineIntersect -> intersect_line_line
+ * - geometry.LineIntersect2D -> intersect_line_line_2d
+ * - geometry.BezierInterp -> interpolate_bezier
+ * - geometry.TriangleArea -> area_tri
+ * - geometry.QuadNormal, TriangleNormal -> normal
+ * - geometry.PolyFill -> tesselate_polygon
+ * - geometry.BoxPack2D -> box_pack_2d
+ * - geometry.BarycentricTransform -> barycentric_transform
*/
#include "mathutils.h"
diff --git a/source/blender/python/generic/mathutils_geometry.c b/source/blender/python/generic/mathutils_geometry.c
index 8b25a7b805f..1010a08c9ed 100644
--- a/source/blender/python/generic/mathutils_geometry.c
+++ b/source/blender/python/generic/mathutils_geometry.c
@@ -44,13 +44,15 @@
/*-------------------------DOC STRINGS ---------------------------*/
-static char M_Geometry_doc[] = "The Blender geometry module\n\n";
-static char M_Geometry_Intersect_doc[] =
-".. function:: Intersect(v1, v2, v3, ray, orig, clip=True)\n"
+static char M_Geometry_doc[]= "The Blender geometry module\n\n";
+
+//---------------------------------INTERSECTION FUNCTIONS--------------------
+
+static char M_Geometry_intersect_ray_tri_doc[] =
+".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
"\n"
" Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n"
"\n"
-" :rtype: boolean\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
@@ -62,147 +64,18 @@ static char M_Geometry_Intersect_doc[] =
" :arg orig: Origin\n"
" :type orig: :class:`mathutils.Vector`\n"
" :arg clip: Clip by the ray length\n"
-" :type clip: boolean\n";
-
-static char M_Geometry_TriangleArea_doc[] =
-".. function:: TriangleArea(v1, v2, v3)\n"
-"\n"
-" Returns the area size of the 2D or 3D triangle defined.\n"
-"\n"
-" :rtype: float\n"
-" :arg v1: Point1\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Point2\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: Point3\n"
-" :type v3: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_TriangleNormal_doc[] =
-".. function:: TriangleNormal(v1, v2, v3)\n"
-"\n"
-" Returns the normal of the 3D triangle defined.\n"
-"\n"
-" :rtype: :class:`mathutils.Vector`\n"
-" :arg v1: Point1\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Point2\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: Point3\n"
-" :type v3: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_QuadNormal_doc[] =
-".. function:: QuadNormal(v1, v2, v3, v4)\n"
-"\n"
-" Returns the normal of the 3D quad defined.\n"
-"\n"
-" :rtype: :class:`mathutils.Vector`\n"
-" :arg v1: Point1\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Point2\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: Point3\n"
-" :type v3: :class:`mathutils.Vector`\n"
-" :arg v4: Point4\n"
-" :type v4: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_LineIntersect_doc[] =
-".. function:: LineIntersect(v1, v2, v3, v4)\n"
-"\n"
-" Returns a tuple with the points on each line respectively closest to the other.\n"
-"\n"
-" :rtype: tuple with elements being of type :class:`mathutils.Vector`\n"
-" :arg v1: First point of the first line\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg v2: Second point of the first line\n"
-" :type v2: :class:`mathutils.Vector`\n"
-" :arg v3: First point of the second line\n"
-" :type v3: :class:`mathutils.Vector`\n"
-" :arg v4: Second point of the second line\n"
-" :type v4: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_PolyFill_doc[] =
-".. function:: PolyFill(veclist_list)\n"
-"\n"
-" Takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles.\n"
-"\n"
-" :rtype: list\n"
-" :arg veclist_list: list of polylines\n";
-
-static char M_Geometry_LineIntersect2D_doc[] =
-".. function:: LineIntersect2D(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
-"\n"
-" Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n"
-"\n"
-" :rtype: :class:`mathutils.Vector`\n"
-" :arg lineA_p1: First point of the first line\n"
-" :type lineA_p1: :class:`mathutils.Vector`\n"
-" :arg lineA_p2: Second point of the first line\n"
-" :type lineA_p2: :class:`mathutils.Vector`\n"
-" :arg lineB_p1: First point of the second line\n"
-" :type lineB_p1: :class:`mathutils.Vector`\n"
-" :arg lineB_p2: Second point of the second line\n"
-" :type lineB_p2: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_ClosestPointOnLine_doc[] =
-".. function:: ClosestPointOnLine(pt, line_p1, line_p2)\n"
-"\n"
-" Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
-"\n"
-" :rtype: (:class:`mathutils.Vector`, float)\n"
-" :arg pt: Point\n"
-" :type pt: :class:`mathutils.Vector`\n"
-" :arg line_p1: First point of the line\n"
-" :type line_p1: :class:`mathutils.Vector`\n"
-" :arg line_p1: Second point of the line\n"
-" :type line_p1: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_PointInTriangle2D_doc[] =
-".. function:: PointInTriangle2D(pt, tri_p1, tri_p2, tri_p3)\n"
-"\n"
-" Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
-"\n"
-" :rtype: int\n"
-" :arg pt: Point\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg tri_p1: First point of the triangle\n"
-" :type tri_p1: :class:`mathutils.Vector`\n"
-" :arg tri_p2: Second point of the triangle\n"
-" :type tri_p2: :class:`mathutils.Vector`\n"
-" :arg tri_p3: Third point of the triangle\n"
-" :type tri_p3: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_PointInQuad2D_doc[] =
-".. function:: PointInQuad2D(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
-"\n"
-" Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
-"\n"
-" :rtype: int\n"
-" :arg pt: Point\n"
-" :type v1: :class:`mathutils.Vector`\n"
-" :arg quad_p1: First point of the quad\n"
-" :type quad_p1: :class:`mathutils.Vector`\n"
-" :arg quad_p2: Second point of the quad\n"
-" :type quad_p2: :class:`mathutils.Vector`\n"
-" :arg quad_p3: Third point of the quad\n"
-" :type quad_p3: :class:`mathutils.Vector`\n"
-" :arg quad_p4: Forth point of the quad\n"
-" :type quad_p4: :class:`mathutils.Vector`\n";
-
-static char M_Geometry_BoxPack2D_doc[] = "";
-static char M_Geometry_BezierInterp_doc[] = "";
-static char M_Geometry_BarycentricTransform_doc[] = "";
-
-//---------------------------------INTERSECTION FUNCTIONS--------------------
-//----------------------------------geometry.Intersect() -------------------
-static PyObject *M_Geometry_Intersect(PyObject *UNUSED(self), PyObject* args)
+" :type clip: boolean\n"
+" :return: The point of intersection or None if no intersection is found\n"
+" :rtype: :class:`mathutils.Vector` or None\n"
+;
+static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject* args)
{
VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
float det, inv_det, u, v, t;
- int clip = 1;
+ int clip= 1;
- if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
- PyErr_SetString(PyExc_TypeError, "expected 5 vector types" );
+ if(!PyArg_ParseTuple(args, "intersect_ray_tri:O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
return NULL;
}
if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
@@ -230,19 +103,19 @@ static PyObject *M_Geometry_Intersect(PyObject *UNUSED(self), PyObject* args)
cross_v3_v3v3(pvec, dir, e2);
/* if determinant is near zero, ray lies in plane of triangle */
- det = dot_v3v3(e1, pvec);
+ det= dot_v3v3(e1, pvec);
if (det > -0.000001 && det < 0.000001) {
Py_RETURN_NONE;
}
- inv_det = 1.0f / det;
+ inv_det= 1.0f / det;
/* calculate distance from v1 to ray origin */
sub_v3_v3v3(tvec, orig, v1);
/* calculate U parameter and test bounds */
- u = dot_v3v3(tvec, pvec) * inv_det;
+ u= dot_v3v3(tvec, pvec) * inv_det;
if (clip && (u < 0.0f || u > 1.0f)) {
Py_RETURN_NONE;
}
@@ -251,41 +124,56 @@ static PyObject *M_Geometry_Intersect(PyObject *UNUSED(self), PyObject* args)
cross_v3_v3v3(qvec, tvec, e1);
/* calculate V parameter and test bounds */
- v = dot_v3v3(dir, qvec) * inv_det;
+ v= dot_v3v3(dir, qvec) * inv_det;
if (clip && (v < 0.0f || u + v > 1.0f)) {
Py_RETURN_NONE;
}
/* calculate t, ray intersects triangle */
- t = dot_v3v3(e2, qvec) * inv_det;
+ t= dot_v3v3(e2, qvec) * inv_det;
mul_v3_fl(dir, t);
add_v3_v3v3(pvec, orig, dir);
return newVectorObject(pvec, 3, Py_NEW, NULL);
}
-//----------------------------------geometry.LineIntersect() -------------------
+
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
-static PyObject *M_Geometry_LineIntersect(PyObject *UNUSED(self), PyObject* args)
+
+static char M_Geometry_intersect_line_line_doc[] =
+".. function:: intersect_line_line(v1, v2, v3, v4)\n"
+"\n"
+" Returns a tuple with the points on each line respectively closest to the other.\n"
+"\n"
+" :arg v1: First point of the first line\n"
+" :type v1: :class:`mathutils.Vector`\n"
+" :arg v2: Second point of the first line\n"
+" :type v2: :class:`mathutils.Vector`\n"
+" :arg v3: First point of the second line\n"
+" :type v3: :class:`mathutils.Vector`\n"
+" :arg v4: Second point of the second line\n"
+" :type v4: :class:`mathutils.Vector`\n"
+" :rtype: tuple of :class:`mathutils.Vector`'s\n"
+;
+static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
{
PyObject * tuple;
VectorObject *vec1, *vec2, *vec3, *vec4;
float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
- if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
- PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
+ if(!PyArg_ParseTuple(args, "intersect_line_line:O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4)) {
return NULL;
}
- if( vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
- PyErr_SetString(PyExc_TypeError,"vectors must be of the same size" );
+ if(vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
+ PyErr_SetString(PyExc_TypeError,"vectors must be of the same size");
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
return NULL;
- if( vec1->size == 3 || vec1->size == 2) {
+ if(vec1->size == 3 || vec1->size == 2) {
int result;
if (vec1->size == 3) {
@@ -295,147 +183,131 @@ static PyObject *M_Geometry_LineIntersect(PyObject *UNUSED(self), PyObject* args
VECCOPY(v4, vec4->vec);
}
else {
- v1[0] = vec1->vec[0];
- v1[1] = vec1->vec[1];
- v1[2] = 0.0f;
+ v1[0]= vec1->vec[0];
+ v1[1]= vec1->vec[1];
+ v1[2]= 0.0f;
- v2[0] = vec2->vec[0];
- v2[1] = vec2->vec[1];
- v2[2] = 0.0f;
+ v2[0]= vec2->vec[0];
+ v2[1]= vec2->vec[1];
+ v2[2]= 0.0f;
- v3[0] = vec3->vec[0];
- v3[1] = vec3->vec[1];
- v3[2] = 0.0f;
+ v3[0]= vec3->vec[0];
+ v3[1]= vec3->vec[1];
+ v3[2]= 0.0f;
- v4[0] = vec4->vec[0];
- v4[1] = vec4->vec[1];
- v4[2] = 0.0f;
+ v4[0]= vec4->vec[0];
+ v4[1]= vec4->vec[1];
+ v4[2]= 0.0f;
}
- result = isect_line_line_v3(v1, v2, v3, v4, i1, i2);
+ result= isect_line_line_v3(v1, v2, v3, v4, i1, i2);
if (result == 0) {
/* colinear */
Py_RETURN_NONE;
}
else {
- tuple = PyTuple_New( 2 );
- PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL) );
- PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL) );
+ tuple= PyTuple_New(2);
+ PyTuple_SET_ITEM(tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL));
+ PyTuple_SET_ITEM(tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL));
return tuple;
}
}
else {
- PyErr_SetString(PyExc_TypeError, "2D/3D vectors only" );
+ PyErr_SetString(PyExc_TypeError, "2D/3D vectors only");
return NULL;
}
}
-//---------------------------------NORMALS FUNCTIONS--------------------
-//----------------------------------geometry.QuadNormal() -------------------
-static PyObject *M_Geometry_QuadNormal(PyObject *UNUSED(self), PyObject* args)
-{
- VectorObject *vec1;
- VectorObject *vec2;
- VectorObject *vec3;
- VectorObject *vec4;
- float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
-
- if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
- PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
- return NULL;
- }
- if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
- PyErr_SetString(PyExc_TypeError,"vectors must be of the same size" );
- return NULL;
- }
- if( vec1->size != 3 ) {
- PyErr_SetString(PyExc_TypeError, "only 3D vectors" );
- return NULL;
- }
- if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
- return NULL;
-
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
- VECCOPY(v4, vec4->vec);
-
- /* find vectors for two edges sharing v2 */
- sub_v3_v3v3(e1, v1, v2);
- sub_v3_v3v3(e2, v3, v2);
-
- cross_v3_v3v3(n1, e2, e1);
- normalize_v3(n1);
-
- /* find vectors for two edges sharing v4 */
- sub_v3_v3v3(e1, v3, v4);
- sub_v3_v3v3(e2, v1, v4);
-
- cross_v3_v3v3(n2, e2, e1);
- normalize_v3(n2);
-
- /* adding and averaging the normals of both triangles */
- add_v3_v3v3(n1, n2, n1);
- normalize_v3(n1);
-
- return newVectorObject(n1, 3, Py_NEW, NULL);
-}
-
-//----------------------------geometry.TriangleNormal() -------------------
-static PyObject *M_Geometry_TriangleNormal(PyObject *UNUSED(self), PyObject* args)
+//----------------------------geometry.normal() -------------------
+static char M_Geometry_normal_doc[] =
+".. function:: normal(v1, v2, v3, v4=None)\n"
+"\n"
+" Returns the normal of the 3D tri or quad.\n"
+"\n"
+" :arg v1: Point1\n"
+" :type v1: :class:`mathutils.Vector`\n"
+" :arg v2: Point2\n"
+" :type v2: :class:`mathutils.Vector`\n"
+" :arg v3: Point3\n"
+" :type v3: :class:`mathutils.Vector`\n"
+" :arg v4: Point4 (optional)\n"
+" :type v4: :class:`mathutils.Vector`\n"
+" :rtype: :class:`mathutils.Vector`\n"
+;
+static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject* args)
{
- VectorObject *vec1, *vec2, *vec3;
- float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
+ VectorObject *vec1, *vec2, *vec3, *vec4;
+ float n[3];
- if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) {
- PyErr_SetString(PyExc_TypeError, "expected 3 vector types" );
- return NULL;
- }
- if( vec1->size != vec2->size || vec1->size != vec3->size ) {
- PyErr_SetString(PyExc_TypeError, "vectors must be of the same size" );
- return NULL;
- }
- if( vec1->size != 3 ) {
- PyErr_SetString(PyExc_TypeError, "only 3D vectors" );
- return NULL;
- }
+ if(PyTuple_GET_SIZE(args) == 3) {
+ if(!PyArg_ParseTuple(args, "normal:O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3)) {
+ return NULL;
+ }
+ if(vec1->size != vec2->size || vec1->size != vec3->size) {
+ PyErr_SetString(PyExc_TypeError, "vectors must be of the same size");
+ return NULL;
+ }
+ if(vec1->size < 3) {
+ PyErr_SetString(PyExc_TypeError, "2D vectors unsupported");
+ return NULL;
+ }
- if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
- return NULL;
+ if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
+ return NULL;
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
+ normal_tri_v3(n, vec1->vec, vec2->vec, vec3->vec);
+ }
+ else {
+ if(!PyArg_ParseTuple(args, "normal:O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4)) {
+ return NULL;
+ }
+ if(vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
+ PyErr_SetString(PyExc_TypeError,"vectors must be of the same size");
+ return NULL;
+ }
+ if(vec1->size < 3) {
+ PyErr_SetString(PyExc_TypeError, "2D vectors unsupported");
+ return NULL;
+ }
- /* find vectors for two edges sharing v2 */
- sub_v3_v3v3(e1, v1, v2);
- sub_v3_v3v3(e2, v3, v2);
+ if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
+ return NULL;
- cross_v3_v3v3(n, e2, e1);
- normalize_v3(n);
+ normal_quad_v3(n, vec1->vec, vec2->vec, vec3->vec, vec4->vec);
+ }
return newVectorObject(n, 3, Py_NEW, NULL);
}
//--------------------------------- AREA FUNCTIONS--------------------
-//----------------------------------geometry.TriangleArea() -------------------
-static PyObject *M_Geometry_TriangleArea(PyObject *UNUSED(self), PyObject* args)
+
+static char M_Geometry_area_tri_doc[] =
+".. function:: area_tri(v1, v2, v3)\n"
+"\n"
+" Returns the area size of the 2D or 3D triangle defined.\n"
+"\n"
+" :arg v1: Point1\n"
+" :type v1: :class:`mathutils.Vector`\n"
+" :arg v2: Point2\n"
+" :type v2: :class:`mathutils.Vector`\n"
+" :arg v3: Point3\n"
+" :type v3: :class:`mathutils.Vector`\n"
+" :rtype: float\n"
+;
+static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject* args)
{
VectorObject *vec1, *vec2, *vec3;
- float v1[3], v2[3], v3[3];
- if( !PyArg_ParseTuple
- ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
- , &vector_Type, &vec3 ) ) {
- PyErr_SetString(PyExc_TypeError, "expected 3 vector types");
+ if(!PyArg_ParseTuple(args, "area_tri:O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3)) {
return NULL;
}
- if( vec1->size != vec2->size || vec1->size != vec3->size ) {
- PyErr_SetString(PyExc_TypeError, "vectors must be of the same size" );
+
+ if(vec1->size != vec2->size || vec1->size != vec3->size) {
+ PyErr_SetString(PyExc_TypeError, "vectors must be of the same size");
return NULL;
}
@@ -443,71 +315,62 @@ static PyObject *M_Geometry_TriangleArea(PyObject *UNUSED(self), PyObject* args)
return NULL;
if (vec1->size == 3) {
- VECCOPY(v1, vec1->vec);
- VECCOPY(v2, vec2->vec);
- VECCOPY(v3, vec3->vec);
-
- return PyFloat_FromDouble( area_tri_v3(v1, v2, v3) );
+ return PyFloat_FromDouble(area_tri_v3(vec1->vec, vec2->vec, vec3->vec));
}
else if (vec1->size == 2) {
- v1[0] = vec1->vec[0];
- v1[1] = vec1->vec[1];
-
- v2[0] = vec2->vec[0];
- v2[1] = vec2->vec[1];
-
- v3[0] = vec3->vec[0];
- v3[1] = vec3->vec[1];
-
- return PyFloat_FromDouble( area_tri_v2(v1, v2, v3) );
+ return PyFloat_FromDouble(area_tri_v2(vec1->vec, vec2->vec, vec3->vec));
}
else {
- PyErr_SetString(PyExc_TypeError, "only 2D,3D vectors are supported" );
+ PyErr_SetString(PyExc_TypeError, "only 2D,3D vectors are supported");
return NULL;
}
}
/*----------------------------------geometry.PolyFill() -------------------*/
+static char M_Geometry_tesselate_polygon_doc[] =
+".. function:: tesselate_polygon(veclist_list)\n"
+"\n"
+" Takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles.\n"
+"\n"
+" :arg veclist_list: list of polylines\n"
+" :rtype: list\n"
+;
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
-static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLineSeq )
+static PyObject *M_Geometry_tesselate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
{
PyObject *tri_list; /*return this list of tri's */
PyObject *polyLine, *polyVec;
- int i, len_polylines, len_polypoints, ls_error = 0;
-
+ int i, len_polylines, len_polypoints, ls_error= 0;
+
/* display listbase */
ListBase dispbase={NULL, NULL};
DispList *dl;
float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
int index, *dl_face, totpoints=0;
-
-
- dispbase.first= dispbase.last= NULL;
-
-
+
if(!PySequence_Check(polyLineSeq)) {
- PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines" );
+ PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines");
return NULL;
}
- len_polylines = PySequence_Size( polyLineSeq );
+ len_polylines= PySequence_Size(polyLineSeq);
- for( i = 0; i < len_polylines; ++i ) {
- polyLine= PySequence_GetItem( polyLineSeq, i );
+ for(i= 0; i < len_polylines; ++i) {
+ polyLine= PySequence_GetItem(polyLineSeq, i);
if (!PySequence_Check(polyLine)) {
freedisplist(&dispbase);
Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
- PyErr_SetString(PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's" );
+ PyErr_SetString(PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's");
return NULL;
}
- len_polypoints= PySequence_Size( polyLine );
+ len_polypoints= PySequence_Size(polyLine);
if (len_polypoints>0) { /* dont bother adding edges as polylines */
#if 0
- if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
+ if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) {
freedisplist(&dispbase);
Py_DECREF(polyLine);
- PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
+ PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type");
return NULL;
}
#endif
@@ -518,20 +381,20 @@ static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLine
dl->type= DL_POLY;
dl->parts= 1; /* no faces, 1 edge loop */
dl->col= 0; /* no material */
- dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts");
+ dl->verts= fp= MEM_callocN(sizeof(float)*3*len_polypoints, "dl verts");
dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
- for( index = 0; index<len_polypoints; ++index, fp+=3) {
- polyVec= PySequence_GetItem( polyLine, index );
+ for(index= 0; index<len_polypoints; ++index, fp+=3) {
+ polyVec= PySequence_GetItem(polyLine, index);
if(VectorObject_Check(polyVec)) {
if(!BaseMath_ReadCallback((VectorObject *)polyVec))
ls_error= 1;
- fp[0] = ((VectorObject *)polyVec)->vec[0];
- fp[1] = ((VectorObject *)polyVec)->vec[1];
- if( ((VectorObject *)polyVec)->size > 2 )
- fp[2] = ((VectorObject *)polyVec)->vec[2];
+ fp[0]= ((VectorObject *)polyVec)->vec[0];
+ fp[1]= ((VectorObject *)polyVec)->vec[1];
+ if(((VectorObject *)polyVec)->size > 2)
+ fp[2]= ((VectorObject *)polyVec)->vec[2];
else
fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
}
@@ -548,7 +411,7 @@ static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLine
if(ls_error) {
freedisplist(&dispbase); /* possible some dl was allocated */
- PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
+ PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type");
return NULL;
}
else if (totpoints) {
@@ -560,16 +423,16 @@ static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLine
dl= dispbase.first;
tri_list= PyList_New(dl->parts);
- if( !tri_list ) {
+ if(!tri_list) {
freedisplist(&dispbase);
- PyErr_SetString(PyExc_RuntimeError, "geometry.PolyFill failed to make a new list" );
+ PyErr_SetString(PyExc_RuntimeError, "geometry.PolyFill failed to make a new list");
return NULL;
}
index= 0;
dl_face= dl->index;
while(index < dl->parts) {
- PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) );
+ PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]));
dl_face+= 3;
index++;
}
@@ -583,18 +446,32 @@ static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLine
return tri_list;
}
-
-static PyObject *M_Geometry_LineIntersect2D(PyObject *UNUSED(self), PyObject* args)
+static char M_Geometry_intersect_line_line_2d_doc[] =
+".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
+"\n"
+" Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n"
+"\n"
+" :arg lineA_p1: First point of the first line\n"
+" :type lineA_p1: :class:`mathutils.Vector`\n"
+" :arg lineA_p2: Second point of the first line\n"
+" :type lineA_p2: :class:`mathutils.Vector`\n"
+" :arg lineB_p1: First point of the second line\n"
+" :type lineB_p1: :class:`mathutils.Vector`\n"
+" :arg lineB_p2: Second point of the second line\n"
+" :type lineB_p2: :class:`mathutils.Vector`\n"
+" :return: The point of intersection or None when not found\n"
+" :rtype: :class:`mathutils.Vector` or None\n"
+;
+static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject* args)
{
VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
float vi[2];
- if( !PyArg_ParseTuple ( args, "O!O!O!O!",
+ if(!PyArg_ParseTuple (args, "intersect_line_line_2d:O!O!O!O!",
&vector_Type, &line_a1,
&vector_Type, &line_a2,
&vector_Type, &line_b1,
&vector_Type, &line_b2)
) {
- PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
return NULL;
}
@@ -608,19 +485,32 @@ static PyObject *M_Geometry_LineIntersect2D(PyObject *UNUSED(self), PyObject* ar
}
}
-static PyObject *M_Geometry_ClosestPointOnLine(PyObject *UNUSED(self), PyObject* args)
+
+static char M_Geometry_intersect_point_line_doc[] =
+".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
+"\n"
+" Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
+"\n"
+" :arg pt: Point\n"
+" :type pt: :class:`mathutils.Vector`\n"
+" :arg line_p1: First point of the line\n"
+" :type line_p1: :class:`mathutils.Vector`\n"
+" :arg line_p1: Second point of the line\n"
+" :type line_p1: :class:`mathutils.Vector`\n"
+" :rtype: (:class:`mathutils.Vector`, float)\n"
+;
+static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject* args)
{
VectorObject *pt, *line_1, *line_2;
float pt_in[3], pt_out[3], l1[3], l2[3];
float lambda;
PyObject *ret;
- if( !PyArg_ParseTuple ( args, "O!O!O!",
- &vector_Type, &pt,
- &vector_Type, &line_1,
- &vector_Type, &line_2)
- ) {
- PyErr_SetString(PyExc_TypeError, "expected 3 vector types" );
+ if(!PyArg_ParseTuple (args, "intersect_point_line:O!O!O!",
+ &vector_Type, &pt,
+ &vector_Type, &line_1,
+ &vector_Type, &line_2)
+ ) {
return NULL;
}
@@ -638,25 +528,39 @@ static PyObject *M_Geometry_ClosestPointOnLine(PyObject *UNUSED(self), PyObject*
else { l2[2]=0.0; VECCOPY2D(l2, line_2->vec) }
/* do the calculation */
- lambda = closest_to_line_v3( pt_out,pt_in, l1, l2);
+ lambda= closest_to_line_v3(pt_out,pt_in, l1, l2);
- ret = PyTuple_New(2);
- PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL) );
- PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) );
+ ret= PyTuple_New(2);
+ PyTuple_SET_ITEM(ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL));
+ PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(lambda));
return ret;
}
-static PyObject *M_Geometry_PointInTriangle2D(PyObject *UNUSED(self), PyObject* args)
+static char M_Geometry_intersect_point_tri_2d_doc[] =
+".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
+"\n"
+" Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
+"\n"
+" :arg pt: Point\n"
+" :type v1: :class:`mathutils.Vector`\n"
+" :arg tri_p1: First point of the triangle\n"
+" :type tri_p1: :class:`mathutils.Vector`\n"
+" :arg tri_p2: Second point of the triangle\n"
+" :type tri_p2: :class:`mathutils.Vector`\n"
+" :arg tri_p3: Third point of the triangle\n"
+" :type tri_p3: :class:`mathutils.Vector`\n"
+" :rtype: int\n"
+;
+static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject* args)
{
VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
- if( !PyArg_ParseTuple ( args, "O!O!O!O!",
- &vector_Type, &pt_vec,
- &vector_Type, &tri_p1,
- &vector_Type, &tri_p2,
- &vector_Type, &tri_p3)
+ if(!PyArg_ParseTuple (args, "intersect_point_tri_2d:O!O!O!O!",
+ &vector_Type, &pt_vec,
+ &vector_Type, &tri_p1,
+ &vector_Type, &tri_p2,
+ &vector_Type, &tri_p3)
) {
- PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
return NULL;
}
@@ -666,18 +570,34 @@ static PyObject *M_Geometry_PointInTriangle2D(PyObject *UNUSED(self), PyObject*
return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
}
-static PyObject *M_Geometry_PointInQuad2D(PyObject *UNUSED(self), PyObject* args)
+static char M_Geometry_intersect_point_quad_2d_doc[] =
+".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
+"\n"
+" Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
+"\n"
+" :arg pt: Point\n"
+" :type v1: :class:`mathutils.Vector`\n"
+" :arg quad_p1: First point of the quad\n"
+" :type quad_p1: :class:`mathutils.Vector`\n"
+" :arg quad_p2: Second point of the quad\n"
+" :type quad_p2: :class:`mathutils.Vector`\n"
+" :arg quad_p3: Third point of the quad\n"
+" :type quad_p3: :class:`mathutils.Vector`\n"
+" :arg quad_p4: Forth point of the quad\n"
+" :type quad_p4: :class:`mathutils.Vector`\n"
+" :rtype: int\n"
+;
+static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject* args)
{
VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
- if( !PyArg_ParseTuple ( args, "O!O!O!O!O!",
- &vector_Type, &pt_vec,
- &vector_Type, &quad_p1,
- &vector_Type, &quad_p2,
- &vector_Type, &quad_p3,
- &vector_Type, &quad_p4)
+ if(!PyArg_ParseTuple (args, "intersect_point_quad_2d:O!O!O!O!O!",
+ &vector_Type, &pt_vec,
+ &vector_Type, &quad_p1,
+ &vector_Type, &quad_p2,
+ &vector_Type, &quad_p3,
+ &vector_Type, &quad_p4)
) {
- PyErr_SetString(PyExc_TypeError, "expected 5 vector types" );
return NULL;
}
@@ -687,7 +607,7 @@ static PyObject *M_Geometry_PointInQuad2D(PyObject *UNUSED(self), PyObject* args
return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
}
-static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
+static int boxPack_FromPyObject(PyObject *value, boxPack **boxarray)
{
int len, i;
PyObject *list_item, *item_1, *item_2;
@@ -695,38 +615,38 @@ static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
/* Error checking must already be done */
- if( !PyList_Check( value ) ) {
- PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]" );
+ if(!PyList_Check(value)) {
+ PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]");
return -1;
}
- len = PyList_Size( value );
+ len= PyList_Size(value);
- (*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
+ (*boxarray)= MEM_mallocN(len*sizeof(boxPack), "boxPack box");
- for( i = 0; i < len; i++ ) {
- list_item = PyList_GET_ITEM( value, i );
- if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
+ for(i= 0; i < len; i++) {
+ list_item= PyList_GET_ITEM(value, i);
+ if(!PyList_Check(list_item) || PyList_Size(list_item) < 4) {
MEM_freeN(*boxarray);
- PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]" );
+ PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]");
return -1;
}
- box = (*boxarray)+i;
+ box= (*boxarray)+i;
- item_1 = PyList_GET_ITEM(list_item, 2);
- item_2 = PyList_GET_ITEM(list_item, 3);
+ item_1= PyList_GET_ITEM(list_item, 2);
+ item_2= PyList_GET_ITEM(list_item, 3);
if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
MEM_freeN(*boxarray);
- PyErr_SetString(PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" );
+ PyErr_SetString(PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]");
return -1;
}
- box->w = (float)PyFloat_AsDouble( item_1 );
- box->h = (float)PyFloat_AsDouble( item_2 );
- box->index = i;
+ box->w= (float)PyFloat_AsDouble(item_1);
+ box->h= (float)PyFloat_AsDouble(item_2);
+ box->index= i;
/* verts will be added later */
}
return 0;
@@ -738,47 +658,77 @@ static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
PyObject *list_item;
boxPack *box;
- len = PyList_Size( value );
+ len= PyList_Size(value);
- for( i = 0; i < len; i++ ) {
- box = (*boxarray)+i;
- list_item = PyList_GET_ITEM( value, box->index );
- PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
- PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
+ for(i= 0; i < len; i++) {
+ box= (*boxarray)+i;
+ list_item= PyList_GET_ITEM(value, box->index);
+ PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
+ PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
}
MEM_freeN(*boxarray);
}
-
-static PyObject *M_Geometry_BoxPack2D(PyObject *UNUSED(self), PyObject * boxlist )
+static char M_Geometry_box_pack_2d_doc[] =
+".. function:: box_pack_2d(boxes)\n"
+"\n"
+" Returns the normal of the 3D tri or quad.\n"
+"\n"
+" :arg boxes: list of boxes, each box is a list where the first 4 items are [x,y, width, height, ...] other items are ignored.\n"
+" :type boxes: list\n"
+" :return: the width and height of the packed bounding box\n"
+" :rtype: tuple, pair of floats\n"
+;
+static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
{
- boxPack *boxarray = NULL;
- float tot_width, tot_height;
+ float tot_width= 0.0f, tot_height= 0.0f;
int len;
- int error;
+
+ PyObject *ret;
if(!PyList_Check(boxlist)) {
- PyErr_SetString(PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" );
+ PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x,y,w,h], ... ]");
return NULL;
}
-
- len = PyList_Size( boxlist );
-
- if (!len)
- return Py_BuildValue( "ff", 0.0, 0.0);
-
- error = boxPack_FromPyObject(boxlist, &boxarray);
- if (error!=0) return NULL;
-
- /* Non Python function */
- boxPack2D(boxarray, len, &tot_width, &tot_height);
-
- boxPack_ToPyObject(boxlist, &boxarray);
-
- return Py_BuildValue( "ff", tot_width, tot_height);
+
+ len= PyList_GET_SIZE(boxlist);
+ if (len) {
+ boxPack *boxarray= NULL;
+ if(boxPack_FromPyObject(boxlist, &boxarray) == -1) {
+ return NULL; /* exception set */
+ }
+
+ /* Non Python function */
+ boxPack2D(boxarray, len, &tot_width, &tot_height);
+
+ boxPack_ToPyObject(boxlist, &boxarray);
+ }
+
+ ret= PyTuple_New(2);
+ PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(tot_width));
+ PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(tot_width));
+ return ret;
}
-static PyObject *M_Geometry_BezierInterp(PyObject *UNUSED(self), PyObject* args)
+static char M_Geometry_interpolate_bezier_doc[] =
+".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
+"\n"
+" Interpolate a bezier spline segment.\n"
+"\n"
+" :arg knot1: First bezier spline point.\n"
+" :type knot1: :class:`mathutils.Vector`\n"
+" :arg handle1: First bezier spline handle.\n"
+" :type handle1: :class:`mathutils.Vector`\n"
+" :arg handle2: Second bezier spline handle.\n"
+" :type handle2: :class:`mathutils.Vector`\n"
+" :arg knot2: Second bezier spline point.\n"
+" :type knot2: :class:`mathutils.Vector`\n"
+" :arg resolution: Number of points to return.\n"
+" :type resolution: int\n"
+" :return: The interpolated points\n"
+" :rtype: list of :class:`mathutils.Vector`'s\n"
+;
+static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject* args)
{
VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
int resolu;
@@ -787,19 +737,19 @@ static PyObject *M_Geometry_BezierInterp(PyObject *UNUSED(self), PyObject* args)
float *coord_array, *fp;
PyObject *list;
- float k1[4] = {0.0, 0.0, 0.0, 0.0};
- float h1[4] = {0.0, 0.0, 0.0, 0.0};
- float k2[4] = {0.0, 0.0, 0.0, 0.0};
- float h2[4] = {0.0, 0.0, 0.0, 0.0};
+ float k1[4]= {0.0, 0.0, 0.0, 0.0};
+ float h1[4]= {0.0, 0.0, 0.0, 0.0};
+ float k2[4]= {0.0, 0.0, 0.0, 0.0};
+ float h2[4]= {0.0, 0.0, 0.0, 0.0};
- if( !PyArg_ParseTuple ( args, "O!O!O!O!i",
+ if(!PyArg_ParseTuple (args, "O!O!O!O!i",
&vector_Type, &vec_k1,
&vector_Type, &vec_h1,
&vector_Type, &vec_h2,
&vector_Type, &vec_k2, &resolu) || (resolu<=1)
) {
- PyErr_SetString(PyExc_TypeError, "expected 4 vector types and an int greater then 1" );
+ PyErr_SetString(PyExc_TypeError, "expected 4 vector types and an int greater then 1");
return NULL;
}
@@ -813,7 +763,7 @@ static PyObject *M_Geometry_BezierInterp(PyObject *UNUSED(self), PyObject* args)
for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i];
for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i];
- coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "BezierInterp");
+ coord_array= MEM_callocN(dims * (resolu) * sizeof(float), "interpolate_bezier");
for(i=0; i<dims; i++) {
forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array+i, resolu-1, sizeof(float)*dims);
}
@@ -827,21 +777,43 @@ static PyObject *M_Geometry_BezierInterp(PyObject *UNUSED(self), PyObject* args)
return list;
}
-static PyObject *M_Geometry_BarycentricTransform(PyObject *UNUSED(self), PyObject *args)
+static char M_Geometry_barycentric_transform_doc[] =
+".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
+"\n"
+" Return a transformed point, the transformation is defined by 2 triangles.\n"
+"\n"
+" :arg point: The point to transform.\n"
+" :type point: :class:`mathutils.Vector`\n"
+" :arg tri_a1: source triangle vertex.\n"
+" :type tri_a1: :class:`mathutils.Vector`\n"
+" :arg tri_a2: source triangle vertex.\n"
+" :type tri_a2: :class:`mathutils.Vector`\n"
+" :arg tri_a3: source triangle vertex.\n"
+" :type tri_a3: :class:`mathutils.Vector`\n"
+" :arg tri_a1: target triangle vertex.\n"
+" :type tri_a1: :class:`mathutils.Vector`\n"
+" :arg tri_a2: target triangle vertex.\n"
+" :type tri_a2: :class:`mathutils.Vector`\n"
+" :arg tri_a3: target triangle vertex.\n"
+" :type tri_a3: :class:`mathutils.Vector`\n"
+" :return: The transformed point\n"
+" :rtype: :class:`mathutils.Vector`'s\n"
+;
+static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *vec_pt;
VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar;
VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src;
float vec[3];
- if( !PyArg_ParseTuple ( args, "O!O!O!O!O!O!O!",
- &vector_Type, &vec_pt,
- &vector_Type, &vec_t1_src,
- &vector_Type, &vec_t2_src,
- &vector_Type, &vec_t3_src,
- &vector_Type, &vec_t1_tar,
- &vector_Type, &vec_t2_tar,
- &vector_Type, &vec_t3_tar) || ( vec_pt->size != 3 ||
+ if(!PyArg_ParseTuple (args, "O!O!O!O!O!O!O!",
+ &vector_Type, &vec_pt,
+ &vector_Type, &vec_t1_src,
+ &vector_Type, &vec_t2_src,
+ &vector_Type, &vec_t3_src,
+ &vector_Type, &vec_t1_tar,
+ &vector_Type, &vec_t2_tar,
+ &vector_Type, &vec_t3_tar) ||(vec_pt->size != 3 ||
vec_t1_src->size != 3 ||
vec_t2_src->size != 3 ||
vec_t3_src->size != 3 ||
@@ -849,7 +821,7 @@ static PyObject *M_Geometry_BarycentricTransform(PyObject *UNUSED(self), PyObjec
vec_t2_tar->size != 3 ||
vec_t3_tar->size != 3)
) {
- PyErr_SetString(PyExc_TypeError, "expected 7, 3D vector types" );
+ PyErr_SetString(PyExc_TypeError, "expected 7, 3D vector types");
return NULL;
}
@@ -860,24 +832,23 @@ static PyObject *M_Geometry_BarycentricTransform(PyObject *UNUSED(self), PyObjec
return newVectorObject(vec, 3, Py_NEW, NULL);
}
-struct PyMethodDef M_Geometry_methods[] = {
- {"Intersect", ( PyCFunction ) M_Geometry_Intersect, METH_VARARGS, M_Geometry_Intersect_doc},
- {"TriangleArea", ( PyCFunction ) M_Geometry_TriangleArea, METH_VARARGS, M_Geometry_TriangleArea_doc},
- {"TriangleNormal", ( PyCFunction ) M_Geometry_TriangleNormal, METH_VARARGS, M_Geometry_TriangleNormal_doc},
- {"QuadNormal", ( PyCFunction ) M_Geometry_QuadNormal, METH_VARARGS, M_Geometry_QuadNormal_doc},
- {"LineIntersect", ( PyCFunction ) M_Geometry_LineIntersect, METH_VARARGS, M_Geometry_LineIntersect_doc},
- {"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
- {"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
- {"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
- {"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
- {"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
- {"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
- {"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
- {"BarycentricTransform", ( PyCFunction ) M_Geometry_BarycentricTransform, METH_VARARGS, M_Geometry_BarycentricTransform_doc},
+struct PyMethodDef M_Geometry_methods[]= {
+ {"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc},
+ {"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc},
+ {"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc},
+ {"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc},
+ {"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc},
+ {"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc},
+ {"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
+ {"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
+ {"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
+ {"tesselate_polygon", (PyCFunction) M_Geometry_tesselate_polygon, METH_O, M_Geometry_tesselate_polygon_doc},
+ {"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
+ {"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc},
{NULL, NULL, 0, NULL}
};
-static struct PyModuleDef M_Geometry_module_def = {
+static struct PyModuleDef M_Geometry_module_def= {
PyModuleDef_HEAD_INIT,
"mathutils.geometry", /* m_name */
M_Geometry_doc, /* m_doc */