Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorStephen Swaney <sswaney@centurytel.net>2005-05-22 21:40:00 +0400
committerStephen Swaney <sswaney@centurytel.net>2005-05-22 21:40:00 +0400
commitece00ff04a90aa0aaa37f27185c25b0f7b19e77d (patch)
tree7c1143535c4828b4ca87ddda22df9fd4950e4607 /source/blender/python
parent910b0f2cda7b8ca45bf16d429bb8df986e69ce1f (diff)
Roll back changes from Big Mathutils Commit on 2005/05/20.
Diffstat (limited to 'source/blender/python')
-rw-r--r--source/blender/python/BPY_interface.c2
-rw-r--r--source/blender/python/api2_2x/Bone.c148
-rw-r--r--source/blender/python/api2_2x/Mathutils.c2155
-rw-r--r--source/blender/python/api2_2x/Mathutils.h38
-rw-r--r--source/blender/python/api2_2x/NMesh.c10
-rw-r--r--source/blender/python/api2_2x/Object.c75
-rw-r--r--source/blender/python/api2_2x/Object.h6
-rw-r--r--source/blender/python/api2_2x/Types.c1
-rw-r--r--source/blender/python/api2_2x/Window.c4
-rw-r--r--source/blender/python/api2_2x/euler.c546
-rw-r--r--source/blender/python/api2_2x/euler.h32
-rw-r--r--source/blender/python/api2_2x/gen_utils.c25
-rw-r--r--source/blender/python/api2_2x/gen_utils.h6
-rw-r--r--source/blender/python/api2_2x/matrix.c1470
-rw-r--r--source/blender/python/api2_2x/matrix.h43
-rw-r--r--source/blender/python/api2_2x/quat.c874
-rw-r--r--source/blender/python/api2_2x/quat.h36
-rw-r--r--source/blender/python/api2_2x/vector.c1147
-rw-r--r--source/blender/python/api2_2x/vector.h38
19 files changed, 3596 insertions, 3060 deletions
diff --git a/source/blender/python/BPY_interface.c b/source/blender/python/BPY_interface.c
index 0af732936e8..3306f68ccf8 100644
--- a/source/blender/python/BPY_interface.c
+++ b/source/blender/python/BPY_interface.c
@@ -1523,7 +1523,7 @@ PyObject *CreateGlobalDictionary( void )
PyDict_SetItemString( dict, "__name__",
PyString_FromString( "__main__" ) );
- return EXPP_incr_ret(dict);
+ return dict;
}
/*****************************************************************************
diff --git a/source/blender/python/api2_2x/Bone.c b/source/blender/python/api2_2x/Bone.c
index c5175cb2d87..686b791a846 100644
--- a/source/blender/python/api2_2x/Bone.c
+++ b/source/blender/python/api2_2x/Bone.c
@@ -46,14 +46,12 @@
#include <BSE_editaction.h>
#include <BKE_constraint.h>
#include <MEM_guardedalloc.h>
-#include <BKE_utildefines.h>
#include "constant.h"
#include "gen_utils.h"
#include "NLA.h"
#include "quat.h"
#include "matrix.h"
#include "vector.h"
-#include "Types.h"
//--------------------Python API function prototypes for the Bone module----
static PyObject *M_Bone_New( PyObject * self, PyObject * args );
@@ -539,19 +537,45 @@ PyObject *Bone_CreatePyObject( struct Bone * bone )
//allocate space for python vars
blen_bone->name = PyMem_Malloc( 32 + 1 );
blen_bone->parent = PyMem_Malloc( 32 + 1 );
- blen_bone->head = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- blen_bone->tail = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- blen_bone->loc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- blen_bone->dloc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- blen_bone->size = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- blen_bone->dsize = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- blen_bone->quat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
- blen_bone->dquat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
- blen_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- blen_bone->parmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- blen_bone->defmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- blen_bone->irestmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- blen_bone->posemat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ blen_bone->head =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ blen_bone->tail =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ blen_bone->loc =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ blen_bone->dloc =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ blen_bone->size =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ blen_bone->dsize =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ blen_bone->quat =
+ ( QuaternionObject * )
+ newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
+ blen_bone->dquat =
+ ( QuaternionObject * )
+ newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
+ blen_bone->obmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ blen_bone->parmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ blen_bone->defmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ blen_bone->irestmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ blen_bone->posemat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
if( !updatePyBone( blen_bone ) )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
@@ -600,19 +624,45 @@ static PyObject *M_Bone_New( PyObject * self, PyObject * args )
//allocate space for python vars
py_bone->name = PyMem_Malloc( 32 + 1 );
py_bone->parent = PyMem_Malloc( 32 + 1 );
- py_bone->head = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- py_bone->tail = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- py_bone->loc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- py_bone->dloc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- py_bone->size = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- py_bone->dsize = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW );
- py_bone->quat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
- py_bone->dquat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW );
- py_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- py_bone->parmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- py_bone->defmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- py_bone->irestmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
- py_bone->posemat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW);
+ py_bone->head =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ py_bone->tail =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ py_bone->loc =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ py_bone->dloc =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ py_bone->size =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ py_bone->dsize =
+ ( VectorObject * )
+ newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
+ py_bone->quat =
+ ( QuaternionObject * )
+ newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
+ py_bone->dquat =
+ ( QuaternionObject * )
+ newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
+ py_bone->obmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ py_bone->parmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ py_bone->defmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ py_bone->irestmat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
+ py_bone->posemat =
+ ( MatrixObject * )
+ newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
//default py values
BLI_strncpy( py_bone->name, name_str, strlen( name_str ) + 1 );
@@ -709,17 +759,19 @@ static PyObject *Bone_getWeight( BPy_Bone * self )
static PyObject *Bone_getHead( BPy_Bone * self )
{
PyObject *attr = NULL;
- float vec[3];
+ float *vec;
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
+ vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->head->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
+ attr = ( PyObject * ) newVectorObject( vec, 3 );
} else {
//use bone datastruct
- attr = newVectorObject( NULL, 3, Py_NEW );
+ attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
+ 3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->head[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->head[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->head[2];
@@ -735,17 +787,19 @@ static PyObject *Bone_getHead( BPy_Bone * self )
static PyObject *Bone_getTail( BPy_Bone * self )
{
PyObject *attr = NULL;
- float vec[3];
+ float *vec;
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
+ vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->tail->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
+ attr = ( PyObject * ) newVectorObject( vec, 3 );
} else {
//use bone datastruct
- attr = newVectorObject( NULL, 3, Py_NEW );
+ attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
+ 3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->tail[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->tail[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->tail[2];
@@ -761,17 +815,19 @@ static PyObject *Bone_getTail( BPy_Bone * self )
static PyObject *Bone_getLoc( BPy_Bone * self )
{
PyObject *attr = NULL;
- float vec[3];
+ float *vec;
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
+ vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->loc->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
+ attr = ( PyObject * ) newVectorObject( vec, 3 );
} else {
//use bone datastruct
- attr = newVectorObject( vec, 3, Py_NEW );
+ attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
+ 3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->loc[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->loc[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->loc[2];
@@ -787,17 +843,19 @@ static PyObject *Bone_getLoc( BPy_Bone * self )
static PyObject *Bone_getSize( BPy_Bone * self )
{
PyObject *attr = NULL;
- float vec[3];
+ float *vec;
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars
+ vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ )
vec[x] = self->size->vec[x];
- attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW );
+ attr = ( PyObject * ) newVectorObject( vec, 3 );
} else {
//use bone datastruct
- attr = newVectorObject( vec, 3, Py_NEW );
+ attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
+ 3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->size[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->size[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->size[2];
@@ -813,18 +871,20 @@ static PyObject *Bone_getSize( BPy_Bone * self )
static PyObject *Bone_getQuat( BPy_Bone * self )
{
PyObject *attr = NULL;
- float quat[4];
+ float *quat;
int x;
if( !self->bone ) { //test to see if linked to armature
//use python vars - p.s. - you must return a copy or else
//python will trash the internal var
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
for( x = 0; x < 4; x++ )
quat[x] = self->quat->quat[x];
- attr = ( PyObject * ) newQuaternionObject( quat, Py_NEW );
+ attr = ( PyObject * ) newQuaternionObject( quat );
} else {
//use bone datastruct
- attr = newQuaternionObject( NULL, Py_NEW );
+ attr = newQuaternionObject( PyMem_Malloc
+ ( 4 * sizeof( float ) ) );
( ( QuaternionObject * ) attr )->quat[0] = self->bone->quat[0];
( ( QuaternionObject * ) attr )->quat[1] = self->bone->quat[1];
( ( QuaternionObject * ) attr )->quat[2] = self->bone->quat[2];
@@ -1625,7 +1685,7 @@ static PyObject *Bone_getRestMatrix( BPy_Bone * self, PyObject * args )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected 'bonespace' or 'worldspace'" ) );
- matrix = newMatrixObject( NULL, 4, 4 , Py_NEW);
+ matrix = newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
if( !self->bone ) { //test to see if linked to armature
//use python vars
diff --git a/source/blender/python/api2_2x/Mathutils.c b/source/blender/python/api2_2x/Mathutils.c
index 1ddc572bbd1..910b1587974 100644
--- a/source/blender/python/api2_2x/Mathutils.c
+++ b/source/blender/python/api2_2x/Mathutils.c
@@ -30,6 +30,7 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
+#include <Python.h>
#include <BKE_main.h>
#include <BKE_global.h>
#include <BKE_library.h>
@@ -39,562 +40,765 @@
#include <PIL_time.h>
#include <BLI_rand.h>
#include <math.h>
+#include "vector.h"
+#include "euler.h"
+#include "quat.h"
+#include "matrix.h"
#include "blendef.h"
#include "mydevice.h"
#include "constant.h"
#include "gen_utils.h"
#include "Mathutils.h"
-//-------------------------DOC STRINGS ---------------------------
+
+
+/*****************************************************************************/
+// Python API function prototypes for the Mathutils module.
+/*****************************************************************************/
+static PyObject *M_Mathutils_Rand( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_Vector( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_CrossVecs( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_DotVecs( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_AngleBetweenVecs( PyObject * self,
+ PyObject * args );
+static PyObject *M_Mathutils_MidpointVecs( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_VecMultMat( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_ProjectVecs( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_CopyVec( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_RotationMatrix( PyObject * self,
+ PyObject * args );
+static PyObject *M_Mathutils_ScaleMatrix( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_OrthoProjectionMatrix( PyObject * self,
+ PyObject * args );
+static PyObject *M_Mathutils_ShearMatrix( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_TranslationMatrix( PyObject * self,
+ PyObject * args );
+static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_CopyMat( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_Quaternion( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_CrossQuats( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_DotQuats( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_CopyQuat( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_DifferenceQuats( PyObject * self,
+ PyObject * args );
+static PyObject *M_Mathutils_Slerp( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_Euler( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_CopyEuler( PyObject * self, PyObject * args );
+static PyObject *M_Mathutils_RotateEuler( PyObject * self, PyObject * args );
+
+/*****************************************************************************/
+// The following string definitions are used for documentation strings.
+// In Python these will be written to the console when doing a
+// Blender.Mathutils.__doc__
+/* Mathutils Module strings */
+/****************************************************************************/
static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n";
-static char M_Mathutils_Vector_doc[] = "() - create a new vector object from a list of floats";
-static char M_Mathutils_Matrix_doc[] = "() - create a new matrix object from a list of floats";
-static char M_Mathutils_Quaternion_doc[] = "() - create a quaternion from a list or an axis of rotation and an angle";
-static char M_Mathutils_Euler_doc[] = "() - create and return a new euler object";
+static char M_Mathutils_Vector_doc[] =
+ "() - create a new vector object from a list of floats";
+static char M_Mathutils_Matrix_doc[] =
+ "() - create a new matrix object from a list of floats";
+static char M_Mathutils_Quaternion_doc[] =
+ "() - create a quaternion from a list or an axis of rotation and an angle";
+static char M_Mathutils_Euler_doc[] =
+ "() - create and return a new euler object";
static char M_Mathutils_Rand_doc[] = "() - return a random number";
-static char M_Mathutils_CrossVecs_doc[] = "() - returns a vector perpedicular to the 2 vectors crossed";
+static char M_Mathutils_CrossVecs_doc[] =
+ "() - returns a vector perpedicular to the 2 vectors crossed";
static char M_Mathutils_CopyVec_doc[] = "() - create a copy of vector";
-static char M_Mathutils_DotVecs_doc[] = "() - return the dot product of two vectors";
-static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees";
-static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors";
-static char M_Mathutils_MatMultVec_doc[] = "() - multiplies a matrix by a column vector";
-static char M_Mathutils_VecMultMat_doc[] = "() - multiplies a row vector by a matrix";
-static char M_Mathutils_ProjectVecs_doc[] = "() - returns the projection vector from the projection of vecA onto vecB";
-static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation";
-static char M_Mathutils_ScaleMatrix_doc[] = "() - construct a scaling matrix from a scaling factor";
-static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane";
-static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor";
+static char M_Mathutils_DotVecs_doc[] =
+ "() - return the dot product of two vectors";
+static char M_Mathutils_AngleBetweenVecs_doc[] =
+ "() - returns the angle between two vectors in degrees";
+static char M_Mathutils_MidpointVecs_doc[] =
+ "() - return the vector to the midpoint between two vectors";
+static char M_Mathutils_MatMultVec_doc[] =
+ "() - multiplies a matrix by a column vector";
+static char M_Mathutils_VecMultMat_doc[] =
+ "() - multiplies a row vector by a matrix";
+static char M_Mathutils_ProjectVecs_doc[] =
+ "() - returns the projection vector from the projection of vecA onto vecB";
+static char M_Mathutils_RotationMatrix_doc[] =
+ "() - construct a rotation matrix from an angle and axis of rotation";
+static char M_Mathutils_ScaleMatrix_doc[] =
+ "() - construct a scaling matrix from a scaling factor";
+static char M_Mathutils_OrthoProjectionMatrix_doc[] =
+ "() - construct a orthographic projection matrix from a selected plane";
+static char M_Mathutils_ShearMatrix_doc[] =
+ "() - construct a shearing matrix from a plane of shear and a shear factor";
static char M_Mathutils_CopyMat_doc[] = "() - create a copy of a matrix";
-static char M_Mathutils_TranslationMatrix_doc[] = "() - create a translation matrix from a vector";
+static char M_Mathutils_TranslationMatrix_doc[] =
+ "() - create a translation matrix from a vector";
static char M_Mathutils_CopyQuat_doc[] = "() - copy quatB to quatA";
static char M_Mathutils_CopyEuler_doc[] = "() - copy eulB to eultA";
-static char M_Mathutils_CrossQuats_doc[] = "() - return the mutliplication of two quaternions";
-static char M_Mathutils_DotQuats_doc[] = "() - return the dot product of two quaternions";
-static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions";
-static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats";
-static char M_Mathutils_RotateEuler_doc[] = "() - rotate euler by an axis and angle";
-//-----------------------METHOD DEFINITIONS ----------------------
+static char M_Mathutils_CrossQuats_doc[] =
+ "() - return the mutliplication of two quaternions";
+static char M_Mathutils_DotQuats_doc[] =
+ "() - return the dot product of two quaternions";
+static char M_Mathutils_Slerp_doc[] =
+ "() - returns the interpolation between two quaternions";
+static char M_Mathutils_DifferenceQuats_doc[] =
+ "() - return the angular displacment difference between two quats";
+static char M_Mathutils_RotateEuler_doc[] =
+ "() - rotate euler by an axis and angle";
+
+
+/****************************************************************************/
+// Python method structure definition for Blender.Mathutils module:
+/****************************************************************************/
struct PyMethodDef M_Mathutils_methods[] = {
- {"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc},
- {"Vector", (PyCFunction) M_Mathutils_Vector, METH_VARARGS, M_Mathutils_Vector_doc},
- {"CrossVecs", (PyCFunction) M_Mathutils_CrossVecs, METH_VARARGS, M_Mathutils_CrossVecs_doc},
- {"DotVecs", (PyCFunction) M_Mathutils_DotVecs, METH_VARARGS, M_Mathutils_DotVecs_doc},
- {"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc},
- {"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc},
- {"VecMultMat", (PyCFunction) M_Mathutils_VecMultMat, METH_VARARGS, M_Mathutils_VecMultMat_doc},
- {"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc},
- {"CopyVec", (PyCFunction) M_Mathutils_CopyVec, METH_VARARGS, M_Mathutils_CopyVec_doc},
- {"Matrix", (PyCFunction) M_Mathutils_Matrix, METH_VARARGS, M_Mathutils_Matrix_doc},
- {"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
- {"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
- {"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
- {"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_VARARGS, M_Mathutils_TranslationMatrix_doc},
- {"CopyMat", (PyCFunction) M_Mathutils_CopyMat, METH_VARARGS, M_Mathutils_CopyMat_doc},
- {"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
- {"MatMultVec", (PyCFunction) M_Mathutils_MatMultVec, METH_VARARGS, M_Mathutils_MatMultVec_doc},
- {"Quaternion", (PyCFunction) M_Mathutils_Quaternion, METH_VARARGS, M_Mathutils_Quaternion_doc},
- {"CopyQuat", (PyCFunction) M_Mathutils_CopyQuat, METH_VARARGS, M_Mathutils_CopyQuat_doc},
- {"CrossQuats", (PyCFunction) M_Mathutils_CrossQuats, METH_VARARGS, M_Mathutils_CrossQuats_doc},
- {"DotQuats", (PyCFunction) M_Mathutils_DotQuats, METH_VARARGS, M_Mathutils_DotQuats_doc},
- {"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc},
- {"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc},
- {"Euler", (PyCFunction) M_Mathutils_Euler, METH_VARARGS, M_Mathutils_Euler_doc},
- {"CopyEuler", (PyCFunction) M_Mathutils_CopyEuler, METH_VARARGS, M_Mathutils_CopyEuler_doc},
- {"RotateEuler", (PyCFunction) M_Mathutils_RotateEuler, METH_VARARGS, M_Mathutils_RotateEuler_doc},
+ {"Rand", ( PyCFunction ) M_Mathutils_Rand, METH_VARARGS,
+ M_Mathutils_Rand_doc},
+ {"Vector", ( PyCFunction ) M_Mathutils_Vector, METH_VARARGS,
+ M_Mathutils_Vector_doc},
+ {"CrossVecs", ( PyCFunction ) M_Mathutils_CrossVecs, METH_VARARGS,
+ M_Mathutils_CrossVecs_doc},
+ {"DotVecs", ( PyCFunction ) M_Mathutils_DotVecs, METH_VARARGS,
+ M_Mathutils_DotVecs_doc},
+ {"AngleBetweenVecs", ( PyCFunction ) M_Mathutils_AngleBetweenVecs,
+ METH_VARARGS,
+ M_Mathutils_AngleBetweenVecs_doc},
+ {"MidpointVecs", ( PyCFunction ) M_Mathutils_MidpointVecs,
+ METH_VARARGS,
+ M_Mathutils_MidpointVecs_doc},
+ {"VecMultMat", ( PyCFunction ) M_Mathutils_VecMultMat, METH_VARARGS,
+ M_Mathutils_VecMultMat_doc},
+ {"ProjectVecs", ( PyCFunction ) M_Mathutils_ProjectVecs, METH_VARARGS,
+ M_Mathutils_ProjectVecs_doc},
+ {"CopyVec", ( PyCFunction ) M_Mathutils_CopyVec, METH_VARARGS,
+ M_Mathutils_CopyVec_doc},
+ {"Matrix", ( PyCFunction ) M_Mathutils_Matrix, METH_VARARGS,
+ M_Mathutils_Matrix_doc},
+ {"RotationMatrix", ( PyCFunction ) M_Mathutils_RotationMatrix,
+ METH_VARARGS,
+ M_Mathutils_RotationMatrix_doc},
+ {"ScaleMatrix", ( PyCFunction ) M_Mathutils_ScaleMatrix, METH_VARARGS,
+ M_Mathutils_ScaleMatrix_doc},
+ {"ShearMatrix", ( PyCFunction ) M_Mathutils_ShearMatrix, METH_VARARGS,
+ M_Mathutils_ShearMatrix_doc},
+ {"TranslationMatrix", ( PyCFunction ) M_Mathutils_TranslationMatrix,
+ METH_VARARGS,
+ M_Mathutils_TranslationMatrix_doc},
+ {"CopyMat", ( PyCFunction ) M_Mathutils_CopyMat, METH_VARARGS,
+ M_Mathutils_CopyMat_doc},
+ {"OrthoProjectionMatrix",
+ ( PyCFunction ) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS,
+ M_Mathutils_OrthoProjectionMatrix_doc},
+ {"MatMultVec", ( PyCFunction ) M_Mathutils_MatMultVec, METH_VARARGS,
+ M_Mathutils_MatMultVec_doc},
+ {"Quaternion", ( PyCFunction ) M_Mathutils_Quaternion, METH_VARARGS,
+ M_Mathutils_Quaternion_doc},
+ {"CopyQuat", ( PyCFunction ) M_Mathutils_CopyQuat, METH_VARARGS,
+ M_Mathutils_CopyQuat_doc},
+ {"CrossQuats", ( PyCFunction ) M_Mathutils_CrossQuats, METH_VARARGS,
+ M_Mathutils_CrossQuats_doc},
+ {"DotQuats", ( PyCFunction ) M_Mathutils_DotQuats, METH_VARARGS,
+ M_Mathutils_DotQuats_doc},
+ {"DifferenceQuats", ( PyCFunction ) M_Mathutils_DifferenceQuats,
+ METH_VARARGS,
+ M_Mathutils_DifferenceQuats_doc},
+ {"Slerp", ( PyCFunction ) M_Mathutils_Slerp, METH_VARARGS,
+ M_Mathutils_Slerp_doc},
+ {"Euler", ( PyCFunction ) M_Mathutils_Euler, METH_VARARGS,
+ M_Mathutils_Euler_doc},
+ {"CopyEuler", ( PyCFunction ) M_Mathutils_CopyEuler, METH_VARARGS,
+ M_Mathutils_CopyEuler_doc},
+ {"RotateEuler", ( PyCFunction ) M_Mathutils_RotateEuler, METH_VARARGS,
+ M_Mathutils_RotateEuler_doc},
{NULL, NULL, 0, NULL}
};
-//----------------------------MODULE INIT-------------------------
-PyObject *Mathutils_Init(void)
-{
- PyObject *submodule;
- //seed the generator for the rand function
- BLI_srand((unsigned int) (PIL_check_seconds_timer() *
- 0x7FFFFFFF));
- submodule = Py_InitModule3("Blender.Mathutils",
- M_Mathutils_methods, M_Mathutils_doc);
- return (submodule);
-}
-//-----------------------------METHODS----------------------------
-//----------------column_vector_multiplication (internal)---------
-//COLUMN VECTOR Multiplication (Matrix X Vector)
-// [1][2][3] [a]
-// [4][5][6] * [b]
-// [7][8][9] [c]
-//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
-PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
+//***************************************************************************
+// Function: M_Mathutils_Rand
+//***************************************************************************
+static PyObject *M_Mathutils_Rand( PyObject * self, PyObject * args )
{
- float vecNew[4], vecCopy[4];
- double dot = 0.0f;
- int x, y, z = 0;
-
- if(mat->rowSize != vec->size){
- if(mat->rowSize == 4 && vec->size != 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "matrix * vector: matrix row size and vector size must be the same\n");
- }else{
- vecCopy[3] = 0.0f;
- }
- }
-
- for(x = 0; x < vec->size; x++){
- vecCopy[x] = vec->vec[x];
- }
- for(x = 0; x < mat->rowSize; x++) {
- for(y = 0; y < mat->colSize; y++) {
- dot += mat->matrix[x][y] * vecCopy[y];
- }
- vecNew[z++] = dot;
- dot = 0.0f;
- }
- return (PyObject *) newVectorObject(vecNew, vec->size, Py_NEW);
-}
-//-----------------row_vector_multiplication (internal)-----------
-//ROW VECTOR Multiplication - Vector X Matrix
-//[x][y][z] * [1][2][3]
-// [4][5][6]
-// [7][8][9]
-//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
-PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
-{
- float vecNew[4], vecCopy[4];
- double dot = 0.0f;
- int x, y, z = 0, size;
-
- if(mat->colSize != vec->size){
- if(mat->rowSize == 4 && vec->size != 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "vector * matrix: matrix column size and the vector size must be the same\n");
- }else{
- vecCopy[3] = 0.0f;
- }
- }
- size = vec->size;
- for(x = 0; x < vec->size; x++){
- vecCopy[x] = vec->vec[x];
- }
-
- //muliplication
- for(x = 0; x < mat->colSize; x++) {
- for(y = 0; y < mat->rowSize; y++) {
- dot += mat->matrix[y][x] * vecCopy[y];
- }
- vecNew[z++] = dot;
- dot = 0.0f;
- }
- return (PyObject *) newVectorObject(vecNew, size, Py_NEW);
-}
-//----------------------------------Mathutils.Rand() --------------------
-//returns a random number between a high and low value
-PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)
-{
float high, low, range;
double rand;
- //initializers
high = 1.0;
low = 0.0;
- if(!PyArg_ParseTuple(args, "|ff", &low, &high))
- return (EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Rand(): expected nothing or optional (float, float)\n"));
+ if( !PyArg_ParseTuple( args, "|ff", &low, &high ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected optional float & float\n" ) );
- if((high < low) || (high < 0 && low > 0))
- return (EXPP_ReturnPyObjError(PyExc_ValueError,
- "Mathutils.Rand(): high value should be larger than low value\n"));
+ if( ( high < low ) || ( high < 0 && low > 0 ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "high value should be larger than low value\n" ) );
+
+ //seed the generator
+ BLI_srand( ( unsigned int ) ( PIL_check_seconds_timer( ) *
+ 0x7FFFFFFF ) );
//get the random number 0 - 1
- rand = BLI_drand();
+ rand = BLI_drand( );
//set it to range
range = high - low;
rand = rand * range;
rand = rand + low;
- return PyFloat_FromDouble(rand);
+ return PyFloat_FromDouble( ( double ) rand );
}
-//----------------------------------VECTOR FUNCTIONS---------------------
-//----------------------------------Mathutils.Vector() ------------------
+
+//***************************************************************************
+// Function: M_Mathutils_Vector
+// Python equivalent: Blender.Mathutils.Vector
// Supports 2D, 3D, and 4D vector objects both int and float values
-// accepted. Mixed float and int values accepted. Ints are parsed to float
-PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args)
+// accepted. Mixed float and int values accepted. Ints are parsed to float
+//***************************************************************************
+static PyObject *M_Mathutils_Vector( PyObject * self, PyObject * args )
{
PyObject *listObject = NULL;
int size, i;
float vec[4];
size = PySequence_Length(args);
- if (size == 1) {
+ if ( size == 1 ) {
listObject = PySequence_GetItem(args, 0);
- if (PySequence_Check(listObject)) {
+ if ( PySequence_Check(listObject) ) {
size = PySequence_Length(listObject);
- } else { // Single argument was not a sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
+ } else {
+ goto bad_args; // Single argument was not a sequence
}
- } else if (size == 0) {
- //returns a new empty 3d vector
- return (PyObject *) newVectorObject(NULL, 3, Py_NEW);
+ } else if ( size == 0 ) {
+ return ( PyObject * ) newVectorObject( NULL, 3 );
} else {
- listObject = EXPP_incr_ret(args);
+ Py_INCREF(args);
+ listObject = args;
}
- if (size<2 || size>4) { // Invalid vector size
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
+ if (size<2 || size>4) {
+ goto bad_args; // Invalid vector size
}
for (i=0; i<size; i++) {
PyObject *v, *f;
v=PySequence_GetItem(listObject, i);
- if (v==NULL) { // Failed to read sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
+ if (v==NULL) {
+ Py_DECREF(listObject);
+ return NULL; // Failed to read sequence
}
f=PyNumber_Float(v);
- if(f==NULL) { // parsed item not a number
+ if(f==NULL) {
Py_DECREF(v);
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
+ goto bad_args;
}
vec[i]=PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,v);
+ Py_DECREF(f);
+ Py_DECREF(v);
}
Py_DECREF(listObject);
- return (PyObject *) newVectorObject(vec, size, Py_NEW);
+ return ( PyObject * ) newVectorObject( vec, size );
+
+bad_args:
+ Py_XDECREF(listObject);
+ PyErr_SetString( PyExc_TypeError, "2-4 floats expected (optionally in a sequence)");
+ return NULL;
}
-//----------------------------------Mathutils.CrossVecs() ---------------
+
+//***************************************************************************
+//Begin Vector Utils
+
+static PyObject *M_Mathutils_CopyVec( PyObject * self, PyObject * args )
+{
+ VectorObject *vector;
+ float *vec;
+ int x;
+ PyObject *retval;
+
+ if( !PyArg_ParseTuple( args, "O!", &vector_Type, &vector ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected vector type\n" ) );
+
+ vec = PyMem_Malloc( vector->size * sizeof( float ) );
+ for( x = 0; x < vector->size; x++ ) {
+ vec[x] = vector->vec[x];
+ }
+
+ retval = ( PyObject * ) newVectorObject( vec, vector->size );
+
+ PyMem_Free( vec );
+ return retval;
+}
+
//finds perpendicular vector - only 3D is supported
-PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args)
+static PyObject *M_Mathutils_CrossVecs( PyObject * self, PyObject * args )
{
- PyObject *vecCross = NULL;
- VectorObject *vec1 = NULL, *vec2 = NULL;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
- if(vec1->size != 3 || vec2->size != 3)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
-
- vecCross = newVectorObject(NULL, 3, Py_NEW);
- Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec);
+ PyObject *vecCross;
+ VectorObject *vec1;
+ VectorObject *vec2;
+
+ if( !PyArg_ParseTuple
+ ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError, "expected 2 vector types\n" ) );
+ if( vec1->size != 3 || vec2->size != 3 )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "only 3D vectors are supported\n" ) );
+
+ vecCross = newVectorObject( NULL, 3 );
+ Crossf( ( ( VectorObject * ) vecCross )->vec, vec1->vec, vec2->vec );
+
return vecCross;
}
-//----------------------------------Mathutils.DotVec() -------------------
-//calculates the dot product of two vectors
-PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_DotVecs( PyObject * self, PyObject * args )
{
- VectorObject *vec1 = NULL, *vec2 = NULL;
- double dot = 0.0f;
+ VectorObject *vec1;
+ VectorObject *vec2;
+ float dot;
int x;
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.DotVec(): expects (2) vector objects of the same size\n");
- if(vec1->size != vec2->size)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.DotVec(): expects (2) vector objects of the same size\n");
+ dot = 0;
+ if( !PyArg_ParseTuple
+ ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError, "expected vector types\n" ) );
+ if( vec1->size != vec2->size )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "vectors must be of the same size\n" ) );
- for(x = 0; x < vec1->size; x++) {
+ for( x = 0; x < vec1->size; x++ ) {
dot += vec1->vec[x] * vec2->vec[x];
}
- return PyFloat_FromDouble(dot);
+
+ return PyFloat_FromDouble( ( double ) dot );
}
-//----------------------------------Mathutils.AngleBetweenVecs() ---------
-//calculates the angle between 2 vectors
-PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_AngleBetweenVecs( PyObject * self,
+ PyObject * args )
{
- VectorObject *vec1 = NULL, *vec2 = NULL;
- double dot = 0.0f, angleRads;
- double norm_a = 0.0f, norm_b = 0.0f;
- double vec_a[4], vec_b[4];
- int x, size;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.AngleBetweenVecs(): expects (2) vector objects of the same size\n");
- if(vec1->size != vec2->size)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.AngleBetweenVecs(): expects (2) vector objects of the same size\n");
-
- //since size is the same....
- size = vec1->size;
-
- //copy vector info
- for (x = 0; x < vec1->size; x++){
- vec_a[x] = vec1->vec[x];
- vec_b[x] = vec2->vec[x];
+ VectorObject *vec1;
+ VectorObject *vec2;
+ float norm;
+ double dot, angleRads;
+ int x;
+
+ dot = 0.0f;
+ if( !PyArg_ParseTuple
+ ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError, "expected 2 vector types\n" ) );
+ if( vec1->size != vec2->size )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "vectors must be of the same size\n" ) );
+ if( vec1->size > 3 || vec2->size > 3 )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "only 2D,3D vectors are supported\n" ) );
+
+ //normalize vec1
+ norm = 0.0f;
+ for( x = 0; x < vec1->size; x++ ) {
+ norm += vec1->vec[x] * vec1->vec[x];
+ }
+ norm = ( float ) sqrt( norm );
+ for( x = 0; x < vec1->size; x++ ) {
+ vec1->vec[x] /= norm;
}
- //normalize vectors
- for(x = 0; x < size; x++) {
- norm_a += vec_a[x] * vec_a[x];
- norm_b += vec_b[x] * vec_b[x];
+ //normalize vec2
+ norm = 0.0f;
+ for( x = 0; x < vec2->size; x++ ) {
+ norm += vec2->vec[x] * vec2->vec[x];
}
- norm_a = (double)sqrt(norm_a);
- norm_b = (double)sqrt(norm_b);
- for(x = 0; x < size; x++) {
- vec_a[x] /= norm_a;
- vec_b[x] /= norm_b;
+ norm = ( float ) sqrt( norm );
+ for( x = 0; x < vec2->size; x++ ) {
+ vec2->vec[x] /= norm;
}
+
//dot product
- for(x = 0; x < size; x++) {
- dot += vec_a[x] * vec_b[x];
+ for( x = 0; x < vec1->size; x++ ) {
+ dot += vec1->vec[x] * vec2->vec[x];
}
+
//I believe saacos checks to see if the vectors are normalized
- angleRads = (double)acos(dot);
+ angleRads = (double)acos( dot );
- return PyFloat_FromDouble(angleRads * (180 / Py_PI));
+ return PyFloat_FromDouble( angleRads * ( 180 / Py_PI ) );
}
-//----------------------------------Mathutils.MidpointVecs() -------------
-//calculates the midpoint between 2 vectors
-PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_MidpointVecs( PyObject * self, PyObject * args )
{
- VectorObject *vec1 = NULL, *vec2 = NULL;
- float vec[4];
+
+ VectorObject *vec1;
+ VectorObject *vec2;
+ float *vec;
int x;
+ PyObject *retval;
+
+ if( !PyArg_ParseTuple
+ ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError, "expected vector types\n" ) );
+ if( vec1->size != vec2->size )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "vectors must be of the same size\n" ) );
+
+ vec = PyMem_Malloc( vec1->size * sizeof( float ) );
+
+ for( x = 0; x < vec1->size; x++ ) {
+ vec[x] = 0.5f * ( vec1->vec[x] + vec2->vec[x] );
+ }
+ retval = ( PyObject * ) newVectorObject( vec, vec1->size );
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
- if(vec1->size != vec2->size)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
-
- for(x = 0; x < vec1->size; x++) {
- vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
+ PyMem_Free( vec );
+ return retval;
+}
+
+//row vector multiplication
+static PyObject *M_Mathutils_VecMultMat( PyObject * self, PyObject * args )
+{
+ PyObject *ob1 = NULL;
+ PyObject *ob2 = NULL;
+ MatrixObject *mat;
+ VectorObject *vec;
+ PyObject *retval;
+ float *vecNew;
+ int x, y;
+ int z = 0;
+ float dot = 0.0f;
+
+ //get pyObjects
+ if( !PyArg_ParseTuple
+ ( args, "O!O!", &vector_Type, &ob1, &matrix_Type, &ob2 ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "vector and matrix object expected - in that order\n" ) );
+
+ mat = ( MatrixObject * ) ob2;
+ vec = ( VectorObject * ) ob1;
+ if( mat->colSize != vec->size )
+ return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "matrix col size and vector size must be the same\n" ) );
+
+ vecNew = PyMem_Malloc( vec->size * sizeof( float ) );
+
+ for( x = 0; x < mat->colSize; x++ ) {
+ for( y = 0; y < mat->rowSize; y++ ) {
+ dot += mat->matrix[y][x] * vec->vec[y];
+ }
+ vecNew[z] = dot;
+ z++;
+ dot = 0;
}
- return (PyObject *) newVectorObject(vec, vec1->size, Py_NEW);
+
+ retval = ( PyObject * ) newVectorObject( vecNew, vec->size );
+
+ PyMem_Free( vecNew );
+ return retval;
}
-//----------------------------------Mathutils.ProjectVecs() -------------
-//projects vector 1 onto vector 2
-PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_ProjectVecs( PyObject * self, PyObject * args )
{
- VectorObject *vec1 = NULL, *vec2 = NULL;
+ VectorObject *vec1;
+ VectorObject *vec2;
PyObject *retval;
- float vec[4];
- double dot = 0.0f, dot2 = 0.0f;
- int x, size;
-
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
- if(vec1->size != vec2->size)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
-
- //since they are the same size...
- size = vec1->size;
-
- //get dot products
- for(x = 0; x < size; x++) {
+ float *vec;
+ float dot = 0.0f;
+ float dot2 = 0.0f;
+ int x;
+
+ if( !PyArg_ParseTuple
+ ( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError, "expected vector types\n" ) );
+ if( vec1->size != vec2->size )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "vectors must be of the same size\n" ) );
+
+ vec = PyMem_Malloc( vec1->size * sizeof( float ) );
+
+ //dot of vec1 & vec2
+ for( x = 0; x < vec1->size; x++ ) {
dot += vec1->vec[x] * vec2->vec[x];
+ }
+ //dot of vec2 & vec2
+ for( x = 0; x < vec2->size; x++ ) {
dot2 += vec2->vec[x] * vec2->vec[x];
}
- //projection
dot /= dot2;
- for(x = 0; x < size; x++) {
- vec[x] = (float)(dot * vec2->vec[x]);
+ for( x = 0; x < vec1->size; x++ ) {
+ vec[x] = dot * vec2->vec[x];
}
- return (PyObject *) newVectorObject(vec, size, Py_NEW);
+
+ retval = ( PyObject * ) newVectorObject( vec, vec1->size );
+ PyMem_Free( vec );
+ return retval;
}
-//----------------------------------MATRIX FUNCTIONS--------------------
-//----------------------------------Mathutils.Matrix() -----------------
+
+//End Vector Utils
+
+//***************************************************************************
+// Function: M_Mathutils_Matrix // Python equivalent: Blender.Mathutils.Matrix
+//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//create a new matrix type
-PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args)
+static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args )
{
- PyObject *listObject = NULL;
- int argSize, seqSize = 0, i, j;
- float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- argSize = PySequence_Length(args);
- if(argSize > 4){ //bad arg nums
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- } else if (argSize == 0) { //return empty 4D matrix
- return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW);
- }else if (argSize == 1){
- //copy constructor for matrix objects
- PyObject *argObject;
- argObject = PySequence_GetItem(args, 0);
- Py_INCREF(argObject);
- if(MatrixObject_Check(argObject)){
- MatrixObject *mat;
- mat = (MatrixObject*)argObject;
- argSize = mat->rowSize; //rows
- seqSize = mat->colSize; //cols
- for(i = 0; i < (seqSize * argSize); i++){
- matrix[i] = mat->contigPtr[i];
- }
+
+ PyObject *rowA = NULL;
+ PyObject *rowB = NULL;
+ PyObject *rowC = NULL;
+ PyObject *rowD = NULL;
+ PyObject *checkOb = NULL;
+ PyObject *retval = NULL;
+ int x, rowSize, colSize;
+ float *mat;
+ int OK;
+
+ if( !PyArg_ParseTuple( args, "|O!O!O!O!", &PyList_Type, &rowA,
+ &PyList_Type, &rowB,
+ &PyList_Type, &rowC, &PyList_Type, &rowD ) ) {
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected 0, 2,3 or 4 lists\n" ) );
+ }
+
+ if( !rowA )
+ return newMatrixObject( NULL, 4, 4 );
+
+ if( !rowB )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected 0, 2,3 or 4 lists\n" ) );
+
+ //get rowSize
+ if( rowC ) {
+ if( rowD ) {
+ rowSize = 4;
+ } else {
+ rowSize = 3;
}
- Py_DECREF(argObject);
- }else{ //2-4 arguments (all seqs? all same size?)
- for(i =0; i < argSize; i++){
- PyObject *argObject;
- argObject = PySequence_GetItem(args, i);
- if (PySequence_Check(argObject)) { //seq?
- if(seqSize){ //0 at first
- if(PySequence_Length(argObject) != seqSize){ //seq size not same
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ } else {
+ rowSize = 2;
+ }
+
+ //check size and get colSize
+ OK = 0;
+ if( ( PyList_Size( rowA ) == PyList_Size( rowB ) ) ) {
+ if( rowC ) {
+ if( ( PyList_Size( rowA ) == PyList_Size( rowC ) ) ) {
+ if( rowD ) {
+ if( ( PyList_Size( rowA ) ==
+ PyList_Size( rowD ) ) ) {
+ OK = 1;
}
}
- seqSize = PySequence_Length(argObject);
- }else{ //arg not a sequence
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ OK = 1;
}
- Py_XDECREF(argObject);
+ } else
+ OK = 1;
+ }
+
+ if( !OK )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "each row of vector must contain the same number of parameters\n" );
+ colSize = PyList_Size( rowA );
+
+ //check for numeric types
+ /* PyList_GetItem() returns borrowed ref */
+ for( x = 0; x < colSize; x++ ) {
+ checkOb = PyList_GetItem( rowA, x );
+ if( !PyInt_Check( checkOb ) && !PyFloat_Check( checkOb ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "1st list - expected list of numbers\n" ) );
+ checkOb = PyList_GetItem( rowB, x );
+ if( !PyInt_Check( checkOb ) && !PyFloat_Check( checkOb ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "2nd list - expected list of numbers\n" ) );
+ if( rowC ) {
+ checkOb = PyList_GetItem( rowC, x );
+ if( !PyInt_Check( checkOb )
+ && !PyFloat_Check( checkOb ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "3rd list - expected list of numbers\n" ) );
}
- //all is well... let's continue parsing
- listObject = EXPP_incr_ret(args);
- for (i = 0; i < argSize; i++){
- PyObject *m;
-
- m = PySequence_GetItem(listObject, i);
- if (m == NULL) { // Failed to read sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Matrix(): failed to parse arguments...\n");
- }
- for (j = 0; j < seqSize; j++) {
- PyObject *s, *f;
-
- s = PySequence_GetItem(m, j);
- if (s == NULL) { // Failed to read sequence
- Py_DECREF(m);
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Matrix(): failed to parse arguments...\n");
- }
- f = PyNumber_Float(s);
- if(f == NULL) { // parsed item is not a number
- EXPP_decr2(m,s);
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
- }
- matrix[(seqSize*i)+j]=PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,s);
- }
- Py_DECREF(m);
+ if( rowD ) {
+ checkOb = PyList_GetItem( rowD, x );
+ if( !PyInt_Check( checkOb )
+ && !PyFloat_Check( checkOb ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "4th list - expected list of numbers\n" ) );
}
- Py_DECREF(listObject);
}
- return (PyObject *)newMatrixObject(matrix, argSize, seqSize, Py_NEW);
+
+ //allocate space for 1D array
+ mat = PyMem_Malloc( rowSize * colSize * sizeof( float ) );
+
+ //parse rows
+ for( x = 0; x < colSize; x++ ) {
+ if( !PyArg_Parse( PyList_GetItem( rowA, x ), "f", &mat[x] ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "rowA - python list not parseable\n" );
+ }
+ for( x = 0; x < colSize; x++ ) {
+ if( !PyArg_Parse
+ ( PyList_GetItem( rowB, x ), "f", &mat[( colSize + x )] ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "rowB - python list not parseable\n" );
+ }
+ if( rowC ) {
+ for( x = 0; x < colSize; x++ ) {
+ if( !PyArg_Parse
+ ( PyList_GetItem( rowC, x ), "f",
+ &mat[( ( 2 * colSize ) + x )] ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "rowC - python list not parseable\n" );
+ }
+ }
+ if( rowD ) {
+ for( x = 0; x < colSize; x++ ) {
+ if( !PyArg_Parse
+ ( PyList_GetItem( rowD, x ), "f",
+ &mat[( ( 3 * colSize ) + x )] ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "rowD - python list not parseable\n" );
+ }
+ }
+ //pass to matrix creation
+ retval = newMatrixObject( mat, rowSize, colSize );
+
+ PyMem_Free( mat);
+ return retval;
}
-//----------------------------------Mathutils.RotationMatrix() ----------
+
+//***************************************************************************
+// Function: M_Mathutils_RotationMatrix
+// Python equivalent: Blender.Mathutils.RotationMatrix
+//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//creates a rotation matrix
-PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
+static PyObject *M_Mathutils_RotationMatrix( PyObject * self, PyObject * args )
{
- VectorObject *vec = NULL;
+ PyObject *retval;
+ float *mat;
+ float angle = 0.0f;
char *axis = NULL;
+ VectorObject *vec = NULL;
int matSize;
- float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple
- (args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) {
- return EXPP_ReturnPyObjError (PyExc_TypeError,
- "Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
+ float norm = 0.0f;
+ float cosAngle = 0.0f;
+ float sinAngle = 0.0f;
+
+ if( !PyArg_ParseTuple
+ ( args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec ) ) {
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "expected float int and optional string and vector\n" ) );
}
- if(angle < -360.0f || angle > 360.0f)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): angle size not appropriate\n");
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if(matSize == 2 && (axis != NULL || vec != NULL))
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
- if((matSize == 3 || matSize == 4) && axis == NULL)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
- if(axis) {
- if(((strcmp(axis, "r") == 0) ||
- (strcmp(axis, "R") == 0)) && vec == NULL)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n");
+ if( angle < -360.0f || angle > 360.0f )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "angle size not appropriate\n" );
+ if( matSize != 2 && matSize != 3 && matSize != 4 )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "can only return a 2x2 3x3 or 4x4 matrix\n" );
+ if( matSize == 2 && ( axis != NULL || vec != NULL ) )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "cannot create a 2x2 rotation matrix around arbitrary axis\n" );
+ if( ( matSize == 3 || matSize == 4 ) && axis == NULL )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "please choose an axis of rotation\n" );
+ if( axis ) {
+ if( ( ( strcmp( axis, "r" ) == 0 ) ||
+ ( strcmp( axis, "R" ) == 0 ) ) && vec == NULL )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "please define the arbitrary axis of rotation\n" );
}
- if(vec) {
- if(vec->size != 3)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
+ if( vec ) {
+ if( vec->size != 3 )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "the arbitrary axis must be a 3D vector\n" );
}
+
+ mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
+
//convert to radians
- angle = angle * (float) (Py_PI / 180);
- if(axis == NULL && matSize == 2) {
+ angle = angle * ( float ) ( Py_PI / 180 );
+
+ if( axis == NULL && matSize == 2 ) {
//2D rotation matrix
- mat[0] = (float) cosf (angle);
- mat[1] = (float) sin (angle);
- mat[2] = -((float) sin(angle));
- mat[3] = (float) cos(angle);
- } else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) {
+ mat[0] = ( ( float ) cos( ( double ) ( angle ) ) );
+ mat[1] = ( ( float ) sin( ( double ) ( angle ) ) );
+ mat[2] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
+ mat[3] = ( ( float ) cos( ( double ) ( angle ) ) );
+ } else if( ( strcmp( axis, "x" ) == 0 ) ||
+ ( strcmp( axis, "X" ) == 0 ) ) {
//rotation around X
mat[0] = 1.0f;
- mat[4] = (float) cos(angle);
- mat[5] = (float) sin(angle);
- mat[7] = -((float) sin(angle));
- mat[8] = (float) cos(angle);
- } else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) {
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
+ mat[3] = 0.0f;
+ mat[4] = ( ( float ) cos( ( double ) ( angle ) ) );
+ mat[5] = ( ( float ) sin( ( double ) ( angle ) ) );
+ mat[6] = 0.0f;
+ mat[7] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
+ mat[8] = ( ( float ) cos( ( double ) ( angle ) ) );
+ } else if( ( strcmp( axis, "y" ) == 0 ) ||
+ ( strcmp( axis, "Y" ) == 0 ) ) {
//rotation around Y
- mat[0] = (float) cos(angle);
- mat[2] = -((float) sin(angle));
+ mat[0] = ( ( float ) cos( ( double ) ( angle ) ) );
+ mat[1] = 0.0f;
+ mat[2] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
+ mat[3] = 0.0f;
mat[4] = 1.0f;
- mat[6] = (float) sin(angle);
- mat[8] = (float) cos(angle);
- } else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) {
+ mat[5] = 0.0f;
+ mat[6] = ( ( float ) sin( ( double ) ( angle ) ) );
+ mat[7] = 0.0f;
+ mat[8] = ( ( float ) cos( ( double ) ( angle ) ) );
+ } else if( ( strcmp( axis, "z" ) == 0 ) ||
+ ( strcmp( axis, "Z" ) == 0 ) ) {
//rotation around Z
- mat[0] = (float) cos(angle);
- mat[1] = (float) sin(angle);
- mat[3] = -((float) sin(angle));
- mat[4] = (float) cos(angle);
+ mat[0] = ( ( float ) cos( ( double ) ( angle ) ) );
+ mat[1] = ( ( float ) sin( ( double ) ( angle ) ) );
+ mat[2] = 0.0f;
+ mat[3] = ( -( ( float ) sin( ( double ) ( angle ) ) ) );
+ mat[4] = ( ( float ) cos( ( double ) ( angle ) ) );
+ mat[5] = 0.0f;
+ mat[6] = 0.0f;
+ mat[7] = 0.0f;
mat[8] = 1.0f;
- } else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) {
+ } else if( ( strcmp( axis, "r" ) == 0 ) ||
+ ( strcmp( axis, "R" ) == 0 ) ) {
//arbitrary rotation
//normalize arbitrary axis
- norm = (float) sqrt(vec->vec[0] * vec->vec[0] +
+ norm = ( float ) sqrt( vec->vec[0] * vec->vec[0] +
vec->vec[1] * vec->vec[1] +
- vec->vec[2] * vec->vec[2]);
+ vec->vec[2] * vec->vec[2] );
vec->vec[0] /= norm;
vec->vec[1] /= norm;
vec->vec[2] /= norm;
//create matrix
- cosAngle = (float) cos(angle);
- sinAngle = (float) sin(angle);
- mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
+ cosAngle = ( ( float ) cos( ( double ) ( angle ) ) );
+ sinAngle = ( ( float ) sin( ( double ) ( angle ) ) );
+ mat[0] = ( ( vec->vec[0] * vec->vec[0] ) * ( 1 - cosAngle ) ) +
cosAngle;
- mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
- (vec->vec[2] * sinAngle);
- mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
- (vec->vec[1] * sinAngle);
- mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
- (vec->vec[2] * sinAngle);
- mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
+ mat[1] = ( ( vec->vec[0] * vec->vec[1] ) * ( 1 - cosAngle ) ) +
+ ( vec->vec[2] * sinAngle );
+ mat[2] = ( ( vec->vec[0] * vec->vec[2] ) * ( 1 - cosAngle ) ) -
+ ( vec->vec[1] * sinAngle );
+ mat[3] = ( ( vec->vec[0] * vec->vec[1] ) * ( 1 - cosAngle ) ) -
+ ( vec->vec[2] * sinAngle );
+ mat[4] = ( ( vec->vec[1] * vec->vec[1] ) * ( 1 - cosAngle ) ) +
cosAngle;
- mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
- (vec->vec[0] * sinAngle);
- mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
- (vec->vec[1] * sinAngle);
- mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
- (vec->vec[0] * sinAngle);
- mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
+ mat[5] = ( ( vec->vec[1] * vec->vec[2] ) * ( 1 - cosAngle ) ) +
+ ( vec->vec[0] * sinAngle );
+ mat[6] = ( ( vec->vec[0] * vec->vec[2] ) * ( 1 - cosAngle ) ) +
+ ( vec->vec[1] * sinAngle );
+ mat[7] = ( ( vec->vec[1] * vec->vec[2] ) * ( 1 - cosAngle ) ) -
+ ( vec->vec[0] * sinAngle );
+ mat[8] = ( ( vec->vec[2] * vec->vec[2] ) * ( 1 - cosAngle ) ) +
cosAngle;
} else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n");
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "unrecognizable axis of rotation type - expected x,y,z or r\n" );
}
- if(matSize == 4) {
+ if( matSize == 4 ) {
//resize matrix
+ mat[15] = 1.0f;
+ mat[14] = 0.0f;
+ mat[13] = 0.0f;
+ mat[12] = 0.0f;
+ mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -605,93 +809,146 @@ PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
mat[3] = 0.0f;
}
//pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
+ retval = newMatrixObject( mat, matSize, matSize );
+
+ PyMem_Free( mat );
+ return retval;
}
-//----------------------------------Mathutils.TranslationMatrix() -------
-//creates a translation matrix
-PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args)
+
+//***************************************************************************
+// Function: M_Mathutils_TranslationMatrix
+// Python equivalent: Blender.Mathutils.TranslationMatrix
+//***************************************************************************
+static PyObject *M_Mathutils_TranslationMatrix( PyObject * self,
+ PyObject * args )
{
- VectorObject *vec = NULL;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ VectorObject *vec;
+ PyObject *retval;
+ float *mat;
- if(!PyArg_ParseTuple(args, "O!", &vector_Type, &vec)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.TranslationMatrix(): expected vector\n");
+ if( !PyArg_ParseTuple( args, "O!", &vector_Type, &vec ) ) {
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected vector\n" ) );
}
- if(vec->size != 3 && vec->size != 4) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
+ if( vec->size != 3 && vec->size != 4 ) {
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "vector must be 3D or 4D\n" );
}
- //create a identity matrix and add translation
- Mat4One((float(*)[4]) mat);
+
+ mat = PyMem_Malloc( 4 * 4 * sizeof( float ) );
+ Mat4One( ( float ( * )[4] ) mat );
+
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
- return newMatrixObject(mat, 4, 4, Py_NEW);
+ retval = newMatrixObject( mat, 4, 4 );
+
+ PyMem_Free( mat );
+ return retval;
}
-//----------------------------------Mathutils.ScaleMatrix() -------------
+
+
+//***************************************************************************
+// Function: M_Mathutils_ScaleMatrix
+// Python equivalent: Blender.Mathutils.ScaleMatrix
+//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//creates a scaling matrix
-PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
+static PyObject *M_Mathutils_ScaleMatrix( PyObject * self, PyObject * args )
{
+ float factor;
+ int matSize;
VectorObject *vec = NULL;
- float norm = 0.0f, factor;
- int matSize, x;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple
- (args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
+ float *mat;
+ float norm = 0.0f;
+ int x;
+ PyObject *retval;
+
+ if( !PyArg_ParseTuple
+ ( args, "fi|O!", &factor, &matSize, &vector_Type, &vec ) ) {
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "expected float int and optional vector\n" ) );
}
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if(vec) {
- if(vec->size > 2 && matSize == 2)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
+ if( matSize != 2 && matSize != 3 && matSize != 4 )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "can only return a 2x2 3x3 or 4x4 matrix\n" );
+ if( vec ) {
+ if( vec->size > 2 && matSize == 2 )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "please use 2D vectors when scaling in 2D\n" );
}
- if(vec == NULL) { //scaling along axis
- if(matSize == 2) {
+ mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
+
+ if( vec == NULL ) { //scaling along axis
+ if( matSize == 2 ) {
mat[0] = factor;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
mat[3] = factor;
} else {
mat[0] = factor;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
+ mat[3] = 0.0f;
mat[4] = factor;
+ mat[5] = 0.0f;
+ mat[6] = 0.0f;
+ mat[7] = 0.0f;
mat[8] = factor;
}
- } else { //scaling in arbitrary direction
+ } else { //scaling in arbitrary direction
+
//normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
+ for( x = 0; x < vec->size; x++ ) {
norm += vec->vec[x] * vec->vec[x];
}
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
+ norm = ( float ) sqrt( norm );
+ for( x = 0; x < vec->size; x++ ) {
vec->vec[x] /= norm;
}
- if(matSize == 2) {
- mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
+ if( matSize == 2 ) {
+ mat[0] = 1 +
+ ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[0] ) );
+ mat[1] = ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[1] ) );
+ mat[2] = ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[1] ) );
+ mat[3] = 1 +
+ ( ( factor -
+ 1 ) * ( vec->vec[1] * vec->vec[1] ) );
} else {
- mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
- mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
+ mat[0] = 1 +
+ ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[0] ) );
+ mat[1] = ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[1] ) );
+ mat[2] = ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[2] ) );
+ mat[3] = ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[1] ) );
+ mat[4] = 1 +
+ ( ( factor -
+ 1 ) * ( vec->vec[1] * vec->vec[1] ) );
+ mat[5] = ( ( factor -
+ 1 ) * ( vec->vec[1] * vec->vec[2] ) );
+ mat[6] = ( ( factor -
+ 1 ) * ( vec->vec[0] * vec->vec[2] ) );
+ mat[7] = ( ( factor -
+ 1 ) * ( vec->vec[1] * vec->vec[2] ) );
+ mat[8] = 1 +
+ ( ( factor -
+ 1 ) * ( vec->vec[2] * vec->vec[2] ) );
}
}
- if(matSize == 4) {
+ if( matSize == 4 ) {
//resize matrix
+ mat[15] = 1.0f;
+ mat[14] = 0.0f;
+ mat[13] = 0.0f;
+ mat[12] = 0.0f;
+ mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -702,94 +959,152 @@ PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
mat[3] = 0.0f;
}
//pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
+ retval = newMatrixObject( mat, matSize, matSize );
+
+ PyMem_Free( mat );
+ return retval;
}
-//----------------------------------Mathutils.OrthoProjectionMatrix() ---
+
+//***************************************************************************
+// Function: M_Mathutils_OrthoProjectionMatrix
+// Python equivalent: Blender.Mathutils.OrthoProjectionMatrix
+//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-//creates an ortho projection matrix
-PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
+static PyObject *M_Mathutils_OrthoProjectionMatrix( PyObject * self,
+ PyObject * args )
{
- VectorObject *vec = NULL;
char *plane;
- int matSize, x;
+ int matSize;
+ float *mat;
+ VectorObject *vec = NULL;
float norm = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple
- (args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
+ int x;
+ PyObject *retval;
+
+ if( !PyArg_ParseTuple
+ ( args, "si|O!", &plane, &matSize, &vector_Type, &vec ) ) {
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "expected string and int and optional vector\n" ) );
}
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if(vec) {
- if(vec->size > 2 && matSize == 2)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
+ if( matSize != 2 && matSize != 3 && matSize != 4 )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "can only return a 2x2 3x3 or 4x4 matrix\n" );
+ if( vec ) {
+ if( vec->size > 2 && matSize == 2 )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "please use 2D vectors when scaling in 2D\n" );
}
- if(vec == NULL) { //ortho projection onto cardinal plane
- if(((strcmp(plane, "x") == 0)
- || (strcmp(plane, "X") == 0)) && matSize == 2) {
+ if( vec == NULL ) { //ortho projection onto cardinal plane
+ if( ( ( strcmp( plane, "x" ) == 0 )
+ || ( strcmp( plane, "X" ) == 0 ) ) && matSize == 2 ) {
+ mat = PyMem_Malloc( matSize * matSize *
+ sizeof( float ) );
mat[0] = 1.0f;
- } else if(((strcmp(plane, "y") == 0)
- || (strcmp(plane, "Y") == 0))
- && matSize == 2) {
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
+ mat[3] = 0.0f;
+ } else if( ( ( strcmp( plane, "y" ) == 0 )
+ || ( strcmp( plane, "Y" ) == 0 ) )
+ && matSize == 2 ) {
+ mat = PyMem_Malloc( matSize * matSize *
+ sizeof( float ) );
+ mat[0] = 0.0f;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
mat[3] = 1.0f;
- } else if(((strcmp(plane, "xy") == 0)
- || (strcmp(plane, "XY") == 0))
- && matSize > 2) {
+ } else if( ( ( strcmp( plane, "xy" ) == 0 )
+ || ( strcmp( plane, "XY" ) == 0 ) )
+ && matSize > 2 ) {
+ mat = PyMem_Malloc( matSize * matSize *
+ sizeof( float ) );
mat[0] = 1.0f;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
+ mat[3] = 0.0f;
mat[4] = 1.0f;
- } else if(((strcmp(plane, "xz") == 0)
- || (strcmp(plane, "XZ") == 0))
- && matSize > 2) {
+ mat[5] = 0.0f;
+ mat[6] = 0.0f;
+ mat[7] = 0.0f;
+ mat[8] = 0.0f;
+ } else if( ( ( strcmp( plane, "xz" ) == 0 )
+ || ( strcmp( plane, "XZ" ) == 0 ) )
+ && matSize > 2 ) {
+ mat = PyMem_Malloc( matSize * matSize *
+ sizeof( float ) );
mat[0] = 1.0f;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
+ mat[3] = 0.0f;
+ mat[4] = 0.0f;
+ mat[5] = 0.0f;
+ mat[6] = 0.0f;
+ mat[7] = 0.0f;
mat[8] = 1.0f;
- } else if(((strcmp(plane, "yz") == 0)
- || (strcmp(plane, "YZ") == 0))
- && matSize > 2) {
+ } else if( ( ( strcmp( plane, "yz" ) == 0 )
+ || ( strcmp( plane, "YZ" ) == 0 ) )
+ && matSize > 2 ) {
+ mat = PyMem_Malloc( matSize * matSize *
+ sizeof( float ) );
+ mat[0] = 0.0f;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
+ mat[3] = 0.0f;
mat[4] = 1.0f;
+ mat[5] = 0.0f;
+ mat[6] = 0.0f;
+ mat[7] = 0.0f;
mat[8] = 1.0f;
} else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n");
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "unknown plane - expected: x, y, xy, xz, yz\n" );
}
- } else { //arbitrary plane
+ } else { //arbitrary plane
//normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
+ for( x = 0; x < vec->size; x++ ) {
norm += vec->vec[x] * vec->vec[x];
}
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
+ norm = ( float ) sqrt( norm );
+
+ for( x = 0; x < vec->size; x++ ) {
vec->vec[x] /= norm;
}
- if(((strcmp(plane, "r") == 0)
- || (strcmp(plane, "R") == 0)) && matSize == 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[1]);
- mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
- } else if(((strcmp(plane, "r") == 0)
- || (strcmp(plane, "R") == 0))
- && matSize > 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[2]);
- mat[3] = -(vec->vec[0] * vec->vec[1]);
- mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
- mat[5] = -(vec->vec[1] * vec->vec[2]);
- mat[6] = -(vec->vec[0] * vec->vec[2]);
- mat[7] = -(vec->vec[1] * vec->vec[2]);
- mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
+
+ if( ( ( strcmp( plane, "r" ) == 0 )
+ || ( strcmp( plane, "R" ) == 0 ) ) && matSize == 2 ) {
+ mat = PyMem_Malloc( matSize * matSize *
+ sizeof( float ) );
+ mat[0] = 1 - ( vec->vec[0] * vec->vec[0] );
+ mat[1] = -( vec->vec[0] * vec->vec[1] );
+ mat[2] = -( vec->vec[0] * vec->vec[1] );
+ mat[3] = 1 - ( vec->vec[1] * vec->vec[1] );
+ } else if( ( ( strcmp( plane, "r" ) == 0 )
+ || ( strcmp( plane, "R" ) == 0 ) )
+ && matSize > 2 ) {
+ mat = PyMem_Malloc( matSize * matSize *
+ sizeof( float ) );
+ mat[0] = 1 - ( vec->vec[0] * vec->vec[0] );
+ mat[1] = -( vec->vec[0] * vec->vec[1] );
+ mat[2] = -( vec->vec[0] * vec->vec[2] );
+ mat[3] = -( vec->vec[0] * vec->vec[1] );
+ mat[4] = 1 - ( vec->vec[1] * vec->vec[1] );
+ mat[5] = -( vec->vec[1] * vec->vec[2] );
+ mat[6] = -( vec->vec[0] * vec->vec[2] );
+ mat[7] = -( vec->vec[1] * vec->vec[2] );
+ mat[8] = 1 - ( vec->vec[2] * vec->vec[2] );
} else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "unknown plane - expected: 'r' expected for axis designation\n" );
}
}
- if(matSize == 4) {
+
+ if( matSize == 4 ) {
//resize matrix
+ mat[15] = 1.0f;
+ mat[14] = 0.0f;
+ mat[13] = 0.0f;
+ mat[12] = 0.0f;
+ mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -800,62 +1115,95 @@ PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
mat[3] = 0.0f;
}
//pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
+ retval = newMatrixObject( mat, matSize, matSize );
+
+ PyMem_Free( mat );
+ return retval;
}
-//----------------------------------Mathutils.ShearMatrix() -------------
-//creates a shear matrix
-PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
+
+//***************************************************************************
+// Function: M_Mathutils_ShearMatrix
+// Python equivalent: Blender.Mathutils.ShearMatrix
+//***************************************************************************
+static PyObject *M_Mathutils_ShearMatrix( PyObject * self, PyObject * args )
{
+ float factor;
int matSize;
char *plane;
- float factor;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ float *mat;
+ PyObject *retval;
- if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.ShearMatrix(): expected string float and int\n");
+ if( !PyArg_ParseTuple( args, "sfi", &plane, &factor, &matSize ) ) {
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected string float and int\n" ) );
}
- if(matSize != 2 && matSize != 3 && matSize != 4)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0))
- && matSize == 2) {
+ if( matSize != 2 && matSize != 3 && matSize != 4 )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "can only return a 2x2 3x3 or 4x4 matrix\n" );
+
+ if( ( ( strcmp( plane, "x" ) == 0 ) || ( strcmp( plane, "X" ) == 0 ) )
+ && matSize == 2 ) {
+ mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
mat[0] = 1.0f;
+ mat[1] = 0.0f;
mat[2] = factor;
mat[3] = 1.0f;
- } else if(((strcmp(plane, "y") == 0)
- || (strcmp(plane, "Y") == 0)) && matSize == 2) {
+ } else if( ( ( strcmp( plane, "y" ) == 0 )
+ || ( strcmp( plane, "Y" ) == 0 ) ) && matSize == 2 ) {
+ mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
mat[0] = 1.0f;
mat[1] = factor;
+ mat[2] = 0.0f;
mat[3] = 1.0f;
- } else if(((strcmp(plane, "xy") == 0)
- || (strcmp(plane, "XY") == 0)) && matSize > 2) {
+ } else if( ( ( strcmp( plane, "xy" ) == 0 )
+ || ( strcmp( plane, "XY" ) == 0 ) ) && matSize > 2 ) {
+ mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
mat[0] = 1.0f;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
+ mat[3] = 0.0f;
mat[4] = 1.0f;
+ mat[5] = 0.0f;
mat[6] = factor;
mat[7] = factor;
- } else if(((strcmp(plane, "xz") == 0)
- || (strcmp(plane, "XZ") == 0)) && matSize > 2) {
+ mat[8] = 0.0f;
+ } else if( ( ( strcmp( plane, "xz" ) == 0 )
+ || ( strcmp( plane, "XZ" ) == 0 ) ) && matSize > 2 ) {
+ mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
mat[0] = 1.0f;
+ mat[1] = 0.0f;
+ mat[2] = 0.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
+ mat[6] = 0.0f;
+ mat[7] = 0.0f;
mat[8] = 1.0f;
- } else if(((strcmp(plane, "yz") == 0)
- || (strcmp(plane, "YZ") == 0)) && matSize > 2) {
+ } else if( ( ( strcmp( plane, "yz" ) == 0 )
+ || ( strcmp( plane, "YZ" ) == 0 ) ) && matSize > 2 ) {
+ mat = PyMem_Malloc( matSize * matSize * sizeof( float ) );
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
+ mat[3] = 0.0f;
mat[4] = 1.0f;
+ mat[5] = 0.0f;
+ mat[6] = 0.0f;
+ mat[7] = 0.0f;
mat[8] = 1.0f;
} else {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n" );
}
- if(matSize == 4) {
+
+ if( matSize == 4 ) {
//resize matrix
+ mat[15] = 1.0f;
+ mat[14] = 0.0f;
+ mat[13] = 0.0f;
+ mat[12] = 0.0f;
+ mat[11] = 0.0f;
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
@@ -866,405 +1214,388 @@ PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
mat[3] = 0.0f;
}
//pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW);
+ retval = newMatrixObject( mat, matSize, matSize );
+
+ PyMem_Free( mat );
+ return retval;
}
-//----------------------------------QUATERNION FUNCTIONS-----------------
-//----------------------------------Mathutils.Quaternion() --------------
-PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args)
+
+//***************************************************************************
+//Begin Matrix Utils
+
+static PyObject *M_Mathutils_CopyMat( PyObject * self, PyObject * args )
{
- PyObject *listObject = NULL, *n, *q, *f;
- int size, i;
- float quat[4];
- double norm = 0.0f, angle = 0.0f;
+ MatrixObject *matrix;
+ float *mat;
+ int x, y, z;
+ PyObject *retval;
- size = PySequence_Length(args);
- if (size == 1 || size == 2) { //seq?
- listObject = PySequence_GetItem(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- if ((size == 4 && PySequence_Length(args) !=1) ||
- (size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
- // invalid args/size
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- if(size == 3){ //get angle in axis/angle
- n = PyNumber_Float(PySequence_GetItem(args, 1));
- if(n == NULL) { // parsed item not a number or getItem fail
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- angle = PyFloat_AS_DOUBLE(n);
- Py_DECREF(n);
- }
- }else{
- listObject = PySequence_GetItem(args, 1);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- if (size != 3) {
- // invalid args/size
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- n = PyNumber_Float(PySequence_GetItem(args, 0));
- if(n == NULL) { // parsed item not a number or getItem fail
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- angle = PyFloat_AS_DOUBLE(n);
- Py_DECREF(n);
- } else { // argument was not a sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- }
- } else if (size == 0) { //returns a new empty quat
- return (PyObject *) newQuaternionObject(NULL, Py_NEW);
- } else {
- listObject = EXPP_incr_ret(args);
- }
+ if( !PyArg_ParseTuple( args, "O!", &matrix_Type, &matrix ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected matrix\n" ) );
- if (size == 3) { // invalid quat size
- if(PySequence_Length(args) != 2){
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- }else{
- if(size != 4){
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ mat = PyMem_Malloc( matrix->rowSize * matrix->colSize *
+ sizeof( float ) );
+
+ z = 0;
+ for( x = 0; x < matrix->rowSize; x++ ) {
+ for( y = 0; y < matrix->colSize; y++ ) {
+ mat[z] = matrix->matrix[x][y];
+ z++;
}
}
- for (i=0; i<size; i++) { //parse
- q = PySequence_GetItem(listObject, i);
- if (q == NULL) { // Failed to read sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- }
- f = PyNumber_Float(q);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(q);
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+
+ retval = ( PyObject * ) newMatrixObject( mat, matrix->rowSize,
+ matrix->colSize );
+ PyMem_Free( mat );
+ return retval;
+}
+
+static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args )
+{
+
+ PyObject *ob1 = NULL;
+ PyObject *ob2 = NULL;
+ MatrixObject *mat;
+ VectorObject *vec;
+ PyObject *retval;
+ float *vecNew;
+ int x, y;
+ int z = 0;
+ float dot = 0.0f;
+
+ //get pyObjects
+ if( !PyArg_ParseTuple
+ ( args, "O!O!", &matrix_Type, &ob1, &vector_Type, &ob2 ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "matrix and vector object expected - in that order\n" ) );
+
+ mat = ( MatrixObject * ) ob1;
+ vec = ( VectorObject * ) ob2;
+
+ if( mat->rowSize != vec->size )
+ return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "matrix row size and vector size must be the same\n" ) );
+
+ vecNew = PyMem_Malloc( vec->size * sizeof( float ) );
+
+ for( x = 0; x < mat->rowSize; x++ ) {
+ for( y = 0; y < mat->colSize; y++ ) {
+ dot += mat->matrix[x][y] * vec->vec[y];
}
- quat[i] = PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f, q);
+ vecNew[z] = dot;
+ z++;
+ dot = 0;
}
- if(size == 3){ //calculate the quat based on axis/angle
- norm = sqrt(quat[0] * quat[0] + quat[1] * quat[1] + quat[2] * quat[2]);
- quat[0] /= norm;
- quat[1] /= norm;
- quat[2] /= norm;
-
- angle = angle * (Py_PI / 180);
- quat[3] =(float) (sin(angle/ 2.0f)) * quat[2];
- quat[2] =(float) (sin(angle/ 2.0f)) * quat[1];
- quat[1] =(float) (sin(angle/ 2.0f)) * quat[0];
- quat[0] =(float) (cos(angle/ 2.0f));
+
+ retval = ( PyObject * ) newVectorObject( vecNew, vec->size );
+
+ PyMem_Free( vecNew );
+ return retval;
+}
+
+//***************************************************************************
+// Function: M_Mathutils_Quaternion
+// Python equivalent: Blender.Mathutils.Quaternion
+//***************************************************************************
+static PyObject *M_Mathutils_Quaternion( PyObject * self, PyObject * args )
+{
+ PyObject *listObject;
+ float *vec = NULL;
+ float *quat = NULL;
+ float angle = 0.0f;
+ int x;
+ float norm;
+ PyObject *retval;
+
+ if( !PyArg_ParseTuple
+ ( args, "O!|f", &PyList_Type, &listObject, &angle ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "expected list and optional float\n" ) );
+
+ if( PyList_Size( listObject ) != 4 && PyList_Size( listObject ) != 3 )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "3 or 4 expected floats for the quaternion\n" ) );
+
+ vec = PyMem_Malloc( PyList_Size( listObject ) * sizeof( float ) );
+ for( x = 0; x < PyList_Size( listObject ); x++ ) {
+ if( !PyArg_Parse
+ ( PyList_GetItem( listObject, x ), "f", &vec[x] ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "python list not parseable\n" );
}
- Py_DECREF(listObject);
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
+
+ if( PyList_Size( listObject ) == 3 ) { //an axis of rotation
+ norm = ( float ) sqrt( vec[0] * vec[0] + vec[1] * vec[1] +
+ vec[2] * vec[2] );
+
+ vec[0] /= norm;
+ vec[1] /= norm;
+ vec[2] /= norm;
+
+ angle = angle * ( float ) ( Py_PI / 180 );
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ quat[0] = ( float ) ( cos( ( double ) ( angle ) / 2 ) );
+ quat[1] =
+ ( float ) ( sin( ( double ) ( angle ) / 2 ) ) * vec[0];
+ quat[2] =
+ ( float ) ( sin( ( double ) ( angle ) / 2 ) ) * vec[1];
+ quat[3] =
+ ( float ) ( sin( ( double ) ( angle ) / 2 ) ) * vec[2];
+
+ retval = newQuaternionObject( quat );
+ } else
+ retval = newQuaternionObject( vec );
+
+ /* freeing a NULL ptr is ok */
+ PyMem_Free( vec );
+ PyMem_Free( quat );
+
+ return retval;
}
-//----------------------------------Mathutils.CrossQuats() ----------------
-//quaternion multiplication - associate not commutative
-PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args)
+
+//***************************************************************************
+//Begin Quaternion Utils
+
+static PyObject *M_Mathutils_CopyQuat( PyObject * self, PyObject * args )
{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- float quat[4];
+ QuaternionObject *quatU;
+ float *quat = NULL;
+ PyObject *retval;
- if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
- &quaternion_Type, &quatV))
- return EXPP_ReturnPyObjError(PyExc_TypeError,"Mathutils.CrossQuats(): expected Quaternion types");
- QuatMul(quat, quatU->quat, quatV->quat);
+ if( !PyArg_ParseTuple( args, "O!", &quaternion_Type, &quatU ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected Quaternion type" ) );
- return (PyObject*) newQuaternionObject(quat, Py_NEW);
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ quat[0] = quatU->quat[0];
+ quat[1] = quatU->quat[1];
+ quat[2] = quatU->quat[2];
+ quat[3] = quatU->quat[3];
+
+ retval = ( PyObject * ) newQuaternionObject( quat );
+ PyMem_Free( quat );
+ return retval;
}
-//----------------------------------Mathutils.DotQuats() ----------------
-//returns the dot product of 2 quaternions
-PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_CrossQuats( PyObject * self, PyObject * args )
{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- double dot = 0.0f;
+ QuaternionObject *quatU;
+ QuaternionObject *quatV;
+ float *quat = NULL;
+ PyObject *retval;
+
+ if( !PyArg_ParseTuple( args, "O!O!", &quaternion_Type, &quatU,
+ &quaternion_Type, &quatV ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected Quaternion types" ) );
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ QuatMul( quat, quatU->quat, quatV->quat );
+
+ retval = ( PyObject * ) newQuaternionObject( quat );
+ PyMem_Free( quat );
+ return retval;
+}
+
+static PyObject *M_Mathutils_DotQuats( PyObject * self, PyObject * args )
+{
+ QuaternionObject *quatU;
+ QuaternionObject *quatV;
int x;
+ float dot = 0.0f;
- if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
- &quaternion_Type, &quatV))
- return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DotQuats(): expected Quaternion types");
+ if( !PyArg_ParseTuple( args, "O!O!", &quaternion_Type, &quatU,
+ &quaternion_Type, &quatV ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected Quaternion types" ) );
- for(x = 0; x < 4; x++) {
+ for( x = 0; x < 4; x++ ) {
dot += quatU->quat[x] * quatV->quat[x];
}
- return PyFloat_FromDouble(dot);
+
+ return PyFloat_FromDouble( ( double ) ( dot ) );
}
-//----------------------------------Mathutils.DifferenceQuats() ---------
-//returns the difference between 2 quaternions
-PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_DifferenceQuats( PyObject * self,
+ PyObject * args )
{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- float quat[4], tempQuat[4];
- double dot = 0.0f;
+ QuaternionObject *quatU;
+ QuaternionObject *quatV;
+ float *quat = NULL;
+ float *tempQuat = NULL;
+ PyObject *retval;
int x;
+ float dot = 0.0f;
- if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type,
- &quatU, &quaternion_Type, &quatV))
- return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");
+ if( !PyArg_ParseTuple( args, "O!O!", &quaternion_Type,
+ &quatU, &quaternion_Type, &quatV ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected Quaternion types" ) );
+
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ tempQuat = PyMem_Malloc( 4 * sizeof( float ) );
tempQuat[0] = quatU->quat[0];
tempQuat[1] = -quatU->quat[1];
tempQuat[2] = -quatU->quat[2];
tempQuat[3] = -quatU->quat[3];
- dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] * tempQuat[1] +
- tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
+ dot = ( float ) sqrt( ( double ) tempQuat[0] * ( double ) tempQuat[0] +
+ ( double ) tempQuat[1] * ( double ) tempQuat[1] +
+ ( double ) tempQuat[2] * ( double ) tempQuat[2] +
+ ( double ) tempQuat[3] *
+ ( double ) tempQuat[3] );
- for(x = 0; x < 4; x++) {
- tempQuat[x] /= (dot * dot);
+ for( x = 0; x < 4; x++ ) {
+ tempQuat[x] /= ( dot * dot );
}
- QuatMul(quat, tempQuat, quatV->quat);
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ QuatMul( quat, tempQuat, quatV->quat );
+
+ retval = ( PyObject * ) newQuaternionObject( quat );
+
+ PyMem_Free( quat );
+ PyMem_Free( tempQuat );
+ return retval;
}
-//----------------------------------Mathutils.Slerp() ------------------
-//attemps to interpolate 2 quaternions and return the result
-PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_Slerp( PyObject * self, PyObject * args )
{
- QuaternionObject *quatU = NULL, *quatV = NULL;
- float quat[4], quat_u[4], quat_v[4], param;
- double x, y, dot, sinT, angle, IsinT, val;
- int flag = 0, z;
-
- if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type,
- &quatU, &quaternion_Type, &quatV, &param))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Slerp(): expected Quaternion types and float");
-
- if(param > 1.0f || param < 0.0f)
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
-
- //copy quats
- for(z = 0; z < 4; z++){
- quat_u[z] = quatU->quat[z];
- quat_v[z] = quatV->quat[z];
- }
+ QuaternionObject *quatU;
+ QuaternionObject *quatV;
+ float *quat = NULL;
+ PyObject *retval;
+ float param, x, y, cosD, sinD, deltaD, IsinD, val;
+ int flag, z;
- //dot product
- dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] +
- quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3];
-
- //if negative negate a quat (shortest arc)
- if(dot < 0.0f) {
- quat_v[0] = -quat_v[0];
- quat_v[1] = -quat_v[1];
- quat_v[2] = -quat_v[2];
- quat_v[3] = -quat_v[3];
- dot = -dot;
+ if( !PyArg_ParseTuple( args, "O!O!f", &quaternion_Type,
+ &quatU, &quaternion_Type, &quatV, &param ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected Quaternion types and float" ) );
+
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+
+ cosD = quatU->quat[0] * quatV->quat[0] +
+ quatU->quat[1] * quatV->quat[1] +
+ quatU->quat[2] * quatV->quat[2] +
+ quatU->quat[3] * quatV->quat[3];
+
+ flag = 0;
+ if( cosD < 0.0f ) {
+ flag = 1;
+ cosD = -cosD;
}
- if(dot > .99999f) { //very close
+ if( cosD > .99999f ) {
x = 1.0f - param;
y = param;
} else {
- //calculate sin of angle
- sinT = sqrt(1.0f - (dot * dot));
- //calculate angle
- angle = atan2(sinT, dot);
- //caluculate inverse of sin(theta)
- IsinT = 1.0f / sinT;
- x = sin((1.0f - param) * angle) * IsinT;
- y = sin(param * angle) * IsinT;
+ sinD = ( float ) sqrt( 1.0f - cosD * cosD );
+ deltaD = ( float ) atan2( sinD, cosD );
+ IsinD = 1.0f / sinD;
+ x = ( float ) sin( ( 1.0f - param ) * deltaD ) * IsinD;
+ y = ( float ) sin( param * deltaD ) * IsinD;
}
- //interpolate
- quat[0] = quat_u[0] * x + quat_v[0] * y;
- quat[1] = quat_u[1] * x + quat_v[1] * y;
- quat[2] = quat_u[2] * x + quat_v[2] * y;
- quat[3] = quat_u[3] * x + quat_v[3] * y;
-
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ for( z = 0; z < 4; z++ ) {
+ val = quatV->quat[z];
+ if( val )
+ val = -val;
+ quat[z] = ( quatU->quat[z] * x ) + ( val * y );
+ }
+ retval = ( PyObject * ) newQuaternionObject( quat );
+ PyMem_Free( quat );
+ return retval;
}
-//----------------------------------EULER FUNCTIONS----------------------
-//----------------------------------Mathutils.Euler() -------------------
-//makes a new euler for you to play with
-PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args)
+
+//***************************************************************************
+// Function: M_Mathutils_Euler
+// Python equivalent: Blender.Mathutils.Euler
+//***************************************************************************
+static PyObject *M_Mathutils_Euler( PyObject * self, PyObject * args )
{
+ PyObject *listObject;
+ float *vec = NULL;
+ PyObject *retval;
+ int x;
- PyObject *listObject = NULL;
- int size, i;
- float eul[3];
+ if( !PyArg_ParseTuple( args, "O!", &PyList_Type, &listObject ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected list\n" ) );
- size = PySequence_Length(args);
- if (size == 1) {
- listObject = PySequence_GetItem(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- } else { // Single argument was not a sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
- } else if (size == 0) {
- //returns a new empty 3d euler
- return (PyObject *) newEulerObject(NULL, Py_NEW);
- } else {
- listObject = EXPP_incr_ret(args);
- }
- if (size != 3) { // Invalid euler size
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
- for (i=0; i<size; i++) {
- PyObject *e, *f;
+ if( PyList_Size( listObject ) != 3 )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "only 3d eulers are supported\n" );
- e = PySequence_GetItem(listObject, i);
- if (e == NULL) { // Failed to read sequence
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
- f = PyNumber_Float(e);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(e);
- Py_XDECREF(listObject);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.Euler(): 3d numeric sequence expected\n");
- }
- eul[i]=PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,e);
+ vec = PyMem_Malloc( 3 * sizeof( float ) );
+ for( x = 0; x < 3; x++ ) {
+ if( !PyArg_Parse
+ ( PyList_GetItem( listObject, x ), "f", &vec[x] ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "python list not parseable\n" );
}
- Py_DECREF(listObject);
- return (PyObject *) newEulerObject(eul, Py_NEW);
-}
-//#############################DEPRECATED################################
-//#######################################################################
-//----------------------------------Mathutils.CopyMat() -----------------
-//copies a matrix into a new matrix
-PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args)
-{
- PyObject *matrix = NULL;
-
- printf("Mathutils.CopyMat(): Deprecated :use Mathutils.Matrix() to copy matrices\n");
- printf("Method will be removed in 2 releases\n");
- matrix = M_Mathutils_Matrix(self, args);
- if(matrix == NULL)
- return NULL; //error string already set if we get here
- else
- return matrix;
-}
-//----------------------------------Mathutils.CopyVec() -----------------
-//makes a new vector that is a copy of the input
-PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args)
-{
- PyObject *vec = NULL;
-
- printf("Mathutils.CopyVec(): Deprecated: use Mathutils.Vector() to copy vectors\n");
- printf("Method will be removed in 2 releases\n");
- vec = M_Mathutils_Vector(self, args);
- if(vec == NULL)
- return NULL; //error string already set if we get here
- else
- return vec;
-}
-//----------------------------------Mathutils.CopyQuat() --------------
-//Copies a quaternion to a new quat
-PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args)
-{
- PyObject *quat = NULL;
-
- printf("Mathutils.CopyQuat(): Deprecated:use Mathutils.Quaternion() to copy vectors\n");
- printf("Method will be removed in 2 releases\n");
- quat = M_Mathutils_Quaternion(self, args);
- if(quat == NULL)
- return NULL; //error string already set if we get here
- else
- return quat;
+
+ retval = ( PyObject * ) newEulerObject( vec );
+
+ PyMem_Free( vec );
+ return retval;
}
-//----------------------------------Mathutils.CopyEuler() ---------------
-//copies a euler to a new euler
-PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args)
+
+
+//***************************************************************************
+//Begin Euler Util
+
+static PyObject *M_Mathutils_CopyEuler( PyObject * self, PyObject * args )
{
- PyObject *eul = NULL;
-
- printf("Mathutils.CopyEuler(): Deprecated:use Mathutils.Euler() to copy vectors\n");
- printf("Method will be removed in 2 releases\n");
- eul = M_Mathutils_Euler(self, args);
- if(eul == NULL)
- return NULL; //error string already set if we get here
- else
- return eul;
+ EulerObject *eulU;
+ float *eul = NULL;
+ PyObject *retval;
+
+ if( !PyArg_ParseTuple( args, "O!", &euler_Type, &eulU ) )
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "expected Euler types" ) );
+
+ eul = PyMem_Malloc( 3 * sizeof( float ) );
+ eul[0] = eulU->eul[0];
+ eul[1] = eulU->eul[1];
+ eul[2] = eulU->eul[2];
+
+ retval = ( PyObject * ) newEulerObject( eul );
+ PyMem_Free( eul );
+ return retval;
}
-//----------------------------------Mathutils.RotateEuler() ------------
-//rotates a euler a certain amount and returns the result
-//should return a unique euler rotation (i.e. no 720 degree pitches :)
-PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args)
+
+static PyObject *M_Mathutils_RotateEuler( PyObject * self, PyObject * args )
{
- EulerObject *Eul = NULL;
+ EulerObject *Eul;
float angle;
char *axis;
+ int x;
- if(!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.RotateEuler(): expected euler type & float & string");
-
- printf("Mathutils.RotateEuler(): Deprecated:use Euler.rotate() to rotate a euler\n");
- printf("Method will be removed in 2 releases\n");
- Euler_Rotate(Eul, Py_BuildValue("fs", angle, axis));
- return EXPP_incr_ret(Py_None);
-}
-//----------------------------------Mathutils.MatMultVec() --------------
-//COLUMN VECTOR Multiplication (Matrix X Vector)
-PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args)
-{
- MatrixObject *mat = NULL;
- VectorObject *vec = NULL;
- PyObject *retObj = NULL;
+ if( !PyArg_ParseTuple
+ ( args, "O!fs", &euler_Type, &Eul, &angle, &axis ) )
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_TypeError,
+ "expected euler type & float & string" ) );
- //get pyObjects
- if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &mat, &vector_Type, &vec))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.MatMultVec(): MatMultVec() expects a matrix and a vector object - in that order\n");
-
- printf("Mathutils.MatMultVec(): Deprecated: use matrix * vec to perform column vector multiplication\n");
- printf("Method will be removed in 2 releases\n");
- EXPP_incr2((PyObject*)vec, (PyObject*)mat);
- retObj = column_vector_multiplication(mat, vec);
- if(!retObj){
- return NULL;
+ angle *= ( float ) ( Py_PI / 180 );
+ for( x = 0; x < 3; x++ ) {
+ Eul->eul[x] *= ( float ) ( Py_PI / 180 );
+ }
+ euler_rot( Eul->eul, angle, *axis );
+ for( x = 0; x < 3; x++ ) {
+ Eul->eul[x] *= ( float ) ( 180 / Py_PI );
}
- EXPP_decr2((PyObject*)vec, (PyObject*)mat);
- return retObj;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------------Mathutils.VecMultMat() ---------------
-//ROW VECTOR Multiplication - Vector X Matrix
-PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args)
-{
- MatrixObject *mat = NULL;
- VectorObject *vec = NULL;
- PyObject *retObj = NULL;
- //get pyObjects
- if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec, &matrix_Type, &mat))
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Mathutils.VecMultMat(): VecMultMat() expects a vector and matrix object - in that order\n");
-
- printf("Mathutils.VecMultMat(): Deprecated: use vec * matrix to perform row vector multiplication\n");
- printf("Method will be removed in 2 releases\n");
- EXPP_incr2((PyObject*)vec, (PyObject*)mat);
- retObj = row_vector_multiplication(vec, mat);
- if(!retObj){
- return NULL;
- }
-
- EXPP_decr2((PyObject*)vec, (PyObject*)mat);
- return retObj;
+//***************************************************************************
+// Function: Mathutils_Init
+//***************************************************************************
+PyObject *Mathutils_Init( void )
+{
+ PyObject *mod =
+ Py_InitModule3( "Blender.Mathutils", M_Mathutils_methods,
+ M_Mathutils_doc );
+ return ( mod );
}
-//#######################################################################
-//#############################DEPRECATED################################ \ No newline at end of file
diff --git a/source/blender/python/api2_2x/Mathutils.h b/source/blender/python/api2_2x/Mathutils.h
index 1365693e691..7d34187656e 100644
--- a/source/blender/python/api2_2x/Mathutils.h
+++ b/source/blender/python/api2_2x/Mathutils.h
@@ -29,48 +29,14 @@
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-//Include this file for access to vector, quat, matrix, euler, etc...
#ifndef EXPP_Mathutils_H
#define EXPP_Mathutils_H
-#include <Python.h>
-#include "vector.h"
-#include "matrix.h"
-#include "quat.h"
-#include "euler.h"
+
+
#include "Types.h"
PyObject *Mathutils_Init( void );
-PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat);
-PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec);
-
-PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args);
-//DEPRECATED
-PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args);
-PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args);
#endif /* EXPP_Mathutils_H */
diff --git a/source/blender/python/api2_2x/NMesh.c b/source/blender/python/api2_2x/NMesh.c
index b735204613e..61e4a6f513c 100644
--- a/source/blender/python/api2_2x/NMesh.c
+++ b/source/blender/python/api2_2x/NMesh.c
@@ -58,15 +58,14 @@
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "MEM_guardedalloc.h"
-#include "BKE_utildefines.h"
#include "blendef.h"
#include "mydevice.h"
#include "Object.h"
+#include "vector.h"
#include "constant.h"
#include "gen_utils.h"
-#include "Mathutils.h"
/* only used for ob.oopsloc at the moment */
#include "DNA_oops_types.h"
@@ -760,11 +759,12 @@ static PyObject *NMVert_getattr( PyObject * self, char *name )
BPy_NMVert *mv = ( BPy_NMVert * ) self;
if( !strcmp( name, "co" ) || !strcmp( name, "loc" ) )
- return newVectorObject(mv->co,3,Py_WRAP);
+ return newVectorProxy( mv->co, 3 );
+
else if( strcmp( name, "no" ) == 0 )
- return newVectorObject(mv->no,3,Py_WRAP);
+ return newVectorProxy( mv->no, 3 );
else if( strcmp( name, "uvco" ) == 0 )
- return newVectorObject(mv->uvco,3,Py_WRAP);
+ return newVectorProxy( mv->uvco, 3 );
else if( strcmp( name, "index" ) == 0 )
return PyInt_FromLong( mv->index );
else if( strcmp( name, "sel" ) == 0 )
diff --git a/source/blender/python/api2_2x/Object.c b/source/blender/python/api2_2x/Object.c
index 2f92aef0505..facd578521d 100644
--- a/source/blender/python/api2_2x/Object.c
+++ b/source/blender/python/api2_2x/Object.c
@@ -59,7 +59,6 @@
#include "Ipo.h"
#include "Lattice.h"
#include "modules.h"
-#include "Mathutils.h"
#include "constant.h"
/* only used for oops location get/set at the moment */
@@ -647,14 +646,14 @@ PyObject *M_Object_New( PyObject * self, PyObject * args )
object->dupend = 100;
/* Gameengine defaults */
- object->mass = 1.0f;
- object->inertia = 1.0f;
- object->formfactor = 0.4f;
- object->damping = 0.04f;
- object->rdamping = 0.1f;
- object->anisotropicFriction[0] = 1.0f;
- object->anisotropicFriction[1] = 1.0f;
- object->anisotropicFriction[2] = 1.0f;
+ object->mass = 1.0;
+ object->inertia = 1.0;
+ object->formfactor = 0.4;
+ object->damping = 0.04;
+ object->rdamping = 0.1;
+ object->anisotropicFriction[0] = 1.0;
+ object->anisotropicFriction[1] = 1.0;
+ object->anisotropicFriction[2] = 1.0;
object->gameflag = OB_PROP;
object->lay = 1; // Layer, by default visible
@@ -1115,20 +1114,21 @@ static PyObject *Object_getDrawType( BPy_Object * self )
static PyObject *Object_getEuler( BPy_Object * self )
{
- float eul[3];
+ EulerObject *eul;
- eul[0] = self->object->rot[0];
- eul[1] = self->object->rot[1];
- eul[2] = self->object->rot[2];
+ eul = ( EulerObject * ) newEulerObject( NULL );
+ eul->eul[0] = self->object->rot[0];
+ eul->eul[1] = self->object->rot[1];
+ eul->eul[2] = self->object->rot[2];
- return ( PyObject * ) newEulerObject( eul, Py_WRAP );
+ return ( PyObject * ) eul;
}
static PyObject *Object_getInverseMatrix( BPy_Object * self )
{
MatrixObject *inverse =
- ( MatrixObject * ) newMatrixObject( NULL, 4, 4, Py_NEW);
+ ( MatrixObject * ) newMatrixObject( NULL, 4, 4 );
Mat4Invert( (float ( * )[4])*inverse->matrix, self->object->obmat );
return ( ( PyObject * ) inverse );
@@ -1175,29 +1175,35 @@ static PyObject *Object_getMaterials( BPy_Object * self, PyObject * args )
static PyObject *Object_getMatrix( BPy_Object * self, PyObject * args )
{
- float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ PyObject *matrix;
char *space = "worldspace"; /* default to world */
if( !PyArg_ParseTuple( args, "|s", &space ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a string or nothing" ) );
}
+ //new matrix
+ matrix = newMatrixObject( NULL, 4, 4 );
+
if( BLI_streq( space, "worldspace" ) ) { /* Worldspace matrix */
disable_where_script( 1 );
where_is_object( self->object );
disable_where_script( 0 );
+ Mat4CpyMat4((float ( * )[4]) *( ( MatrixObject * ) matrix )->matrix,
+ self->object->obmat );
} else if( BLI_streq( space, "localspace" ) ) { /* Localspace matrix */
- object_to_mat4( self->object, (float (*)[4])matrix );
- return newMatrixObject(matrix,4,4,Py_NEW);
- } else if( BLI_streq( space, "old_worldspace" ) ) {
+ object_to_mat4( self->object,
+ ( float ( * )[4] ) *( ( MatrixObject * ) matrix )->matrix );
/* old behavior, prior to 2.34, check this method's doc string: */
+ } else if( BLI_streq( space, "old_worldspace" ) ) {
+ Mat4CpyMat4( (float ( * )[4]) *( ( MatrixObject * ) matrix )->matrix,
+ self->object->obmat );
} else {
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"wrong parameter, expected nothing or either 'worldspace' (default),\n\
'localspace' or 'old_worldspace'" ) );
}
- return newMatrixObject((float*)self->object->obmat,4,4,Py_WRAP);
+ return matrix;
}
static PyObject *Object_getName( BPy_Object * self )
@@ -1379,7 +1385,7 @@ static PyObject *Object_getBoundBox( BPy_Object * self )
does not have its own memory,
we must create vectors that allocate space */
- vector = newVectorObject( NULL, 3, Py_NEW);
+ vector = newVectorObject( NULL, 3 );
memcpy( ( ( VectorObject * ) vector )->vec,
tmpvec, 3 * sizeof( float ) );
PyList_SET_ITEM( bbox, i, vector );
@@ -1400,7 +1406,7 @@ static PyObject *Object_getBoundBox( BPy_Object * self )
/* create vectors referencing object bounding box coords */
for( i = 0; i < 8; i++ ) {
- vector = newVectorObject( vec, 3, Py_WRAP );
+ vector = newVectorObject( vec, 3 );
PyList_SET_ITEM( bbox, i, vector );
vec += 3;
}
@@ -3917,18 +3923,17 @@ int setupSB(Object* ob){
}
if(ob->soft){
- ob->soft->nodemass = 1.0f;
- ob->soft->grav = 0.0f;
- ob->soft->mediafrict = 0.5f;
- ob->soft->rklimit = 0.1f;
- ob->soft->goalspring = 0.5f;
- ob->soft->goalfrict = 0.0f;
- ob->soft->mingoal = 0.0f;
- ob->soft->maxgoal = 1.0f;
- ob->soft->inspring = 0.5f;
- ob->soft->infrict = 0.5f;
- ob->soft->defgoal = 0.7f;
-
+ ob->soft->nodemass = 1.0;
+ ob->soft->grav = 0.0;
+ ob->soft->mediafrict = 0.5;
+ ob->soft->rklimit = 0.1;
+ ob->soft->goalspring = 0.5;
+ ob->soft->goalfrict = 0.0;
+ ob->soft->mingoal = 0.0;
+ ob->soft->maxgoal = 1.0;
+ ob->soft->inspring = 0.5;
+ ob->soft->infrict = 0.5;
+ ob->soft->defgoal = 0.7;
return 1;
}
else {
diff --git a/source/blender/python/api2_2x/Object.h b/source/blender/python/api2_2x/Object.h
index 416d1ed3a3d..c1b3025a386 100644
--- a/source/blender/python/api2_2x/Object.h
+++ b/source/blender/python/api2_2x/Object.h
@@ -33,6 +33,7 @@
#ifndef EXPP_OBJECT_H
#define EXPP_OBJECT_H
+#include <Python.h>
#include <stdio.h>
#include <BDR_editobject.h>
#include <BKE_armature.h>
@@ -59,7 +60,10 @@
#include <DNA_action_types.h>
#include "gen_utils.h"
-
+#include "vector.h"
+#include "matrix.h"
+#include "euler.h"
+#include "quat.h"
/* The Object PyType Object defined in Object.c */
extern PyTypeObject Object_Type;
diff --git a/source/blender/python/api2_2x/Types.c b/source/blender/python/api2_2x/Types.c
index 0c10787d380..a4722c17c6e 100644
--- a/source/blender/python/api2_2x/Types.c
+++ b/source/blender/python/api2_2x/Types.c
@@ -57,7 +57,6 @@ void types_InitAll( void )
CurNurb_Type.ob_type = &PyType_Type;
Curve_Type.ob_type = &PyType_Type;
Effect_Type.ob_type = &PyType_Type;
- Font_Type.ob_type = &PyType_Type;
Image_Type.ob_type = &PyType_Type;
Ipo_Type.ob_type = &PyType_Type;
IpoCurve_Type.ob_type = &PyType_Type;
diff --git a/source/blender/python/api2_2x/Window.c b/source/blender/python/api2_2x/Window.c
index f9029730eef..41a7ad7c910 100644
--- a/source/blender/python/api2_2x/Window.c
+++ b/source/blender/python/api2_2x/Window.c
@@ -830,7 +830,7 @@ static PyObject *M_Window_GetViewMatrix( PyObject * self )
viewmat =
( PyObject * ) newMatrixObject( ( float * ) G.vd->viewmat, 4,
- 4, Py_WRAP );
+ 4 );
if( !viewmat )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
@@ -854,7 +854,7 @@ static PyObject *M_Window_GetPerspMatrix( PyObject * self )
perspmat =
( PyObject * ) newMatrixObject( ( float * ) G.vd->persmat, 4,
- 4, Py_WRAP);
+ 4 );
if( !perspmat )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
diff --git a/source/blender/python/api2_2x/euler.c b/source/blender/python/api2_2x/euler.c
index 20f3895442b..6b72460ccd4 100644
--- a/source/blender/python/api2_2x/euler.c
+++ b/source/blender/python/api2_2x/euler.c
@@ -29,385 +29,329 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include <BLI_arithb.h>
-#include <BKE_utildefines.h>
-#include "Mathutils.h"
-#include "gen_utils.h"
+#include "euler.h"
-//-------------------------DOC STRINGS ---------------------------
+//doc strings
char Euler_Zero_doc[] = "() - set all values in the euler to 0";
-char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
-char Euler_ToMatrix_doc[] = "() - returns a rotation matrix representing the euler rotation";
-char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation";
-char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation";
-//-----------------------METHOD DEFINITIONS ----------------------
+char Euler_Unique_doc[] =
+ "() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
+char Euler_ToMatrix_doc[] =
+ "() - returns a rotation matrix representing the euler rotation";
+char Euler_ToQuat_doc[] =
+ "() - returns a quaternion representing the euler rotation";
+
+//methods table
struct PyMethodDef Euler_methods[] = {
- {"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
- {"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
- {"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
- {"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
- {"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
+ {"zero", ( PyCFunction ) Euler_Zero, METH_NOARGS,
+ Euler_Zero_doc},
+ {"unique", ( PyCFunction ) Euler_Unique, METH_NOARGS,
+ Euler_Unique_doc},
+ {"toMatrix", ( PyCFunction ) Euler_ToMatrix, METH_NOARGS,
+ Euler_ToMatrix_doc},
+ {"toQuat", ( PyCFunction ) Euler_ToQuat, METH_NOARGS,
+ Euler_ToQuat_doc},
{NULL, NULL, 0, NULL}
};
-//-----------------------------METHODS----------------------------
-//----------------------------Euler.toQuat()----------------------
-//return a quaternion representation of the euler
-PyObject *Euler_ToQuat(EulerObject * self)
+
+/*****************************/
+// Euler Python Object
+/*****************************/
+
+//euler methods
+PyObject *Euler_ToQuat( EulerObject * self )
{
- float eul[3];
- float quat[4];
+ float *quat;
int x;
- for(x = 0; x < 3; x++) {
- eul[x] = self->eul[x] * ((float)Py_PI / 180);
+ for( x = 0; x < 3; x++ ) {
+ self->eul[x] *= ( float ) ( Py_PI / 180 );
+ }
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ EulToQuat( self->eul, quat );
+ for( x = 0; x < 3; x++ ) {
+ self->eul[x] *= ( float ) ( 180 / Py_PI );
}
- EulToQuat(eul, quat);
- if(self->data.blend_data)
- return (PyObject *) newQuaternionObject(quat, Py_WRAP);
- else
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ return ( PyObject * ) newQuaternionObject( quat );
}
-//----------------------------Euler.toMatrix()---------------------
-//return a matrix representation of the euler
-PyObject *Euler_ToMatrix(EulerObject * self)
+
+PyObject *Euler_ToMatrix( EulerObject * self )
{
- float eul[3];
- float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
+ float *mat;
int x;
- for(x = 0; x < 3; x++) {
- eul[x] = self->eul[x] * ((float)Py_PI / 180);
+ for( x = 0; x < 3; x++ ) {
+ self->eul[x] *= ( float ) ( Py_PI / 180 );
+ }
+ mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
+ EulToMat3( self->eul, ( float ( * )[3] ) mat );
+ for( x = 0; x < 3; x++ ) {
+ self->eul[x] *= ( float ) ( 180 / Py_PI );
}
- EulToMat3(eul, (float (*)[3]) mat);
- if(self->data.blend_data)
- return (PyObject *) newMatrixObject(mat, 3, 3 , Py_WRAP);
- else
- return (PyObject *) newMatrixObject(mat, 3, 3 , Py_NEW);
+ return ( PyObject * ) newMatrixObject( mat, 3, 3 );
}
-//----------------------------Euler.unique()-----------------------
-//sets the x,y,z values to a unique euler rotation
-PyObject *Euler_Unique(EulerObject * self)
+
+PyObject *Euler_Unique( EulerObject * self )
{
- double heading, pitch, bank;
- double pi2 = Py_PI * 2.0f;
- double piO2 = Py_PI / 2.0f;
- double Opi2 = 1.0f / pi2;
+ float heading, pitch, bank;
+ float pi2 = ( float ) Py_PI * 2.0f;
+ float piO2 = ( float ) Py_PI / 2.0f;
+ float Opi2 = 1.0f / pi2;
//radians
- heading = self->eul[0] * (float)Py_PI / 180;
- pitch = self->eul[1] * (float)Py_PI / 180;
- bank = self->eul[2] * (float)Py_PI / 180;
+ heading = self->eul[0] * ( float ) ( Py_PI / 180 );
+ pitch = self->eul[1] * ( float ) ( Py_PI / 180 );
+ bank = self->eul[2] * ( float ) ( Py_PI / 180 );
//wrap heading in +180 / -180
- pitch += Py_PI;
- pitch -= floor(pitch * Opi2) * pi2;
- pitch -= Py_PI;
-
-
- if(pitch < -piO2) {
- pitch = -Py_PI - pitch;
- heading += Py_PI;
- bank += Py_PI;
- } else if(pitch > piO2) {
- pitch = Py_PI - pitch;
- heading += Py_PI;
- bank += Py_PI;
+ pitch += ( float ) Py_PI;
+ pitch -= ( float ) floor( pitch * Opi2 ) * pi2;
+ pitch -= ( float ) Py_PI;
+
+
+ if( pitch < -piO2 ) {
+ pitch = ( float ) -Py_PI - pitch;
+ heading += ( float ) Py_PI;
+ bank += ( float ) Py_PI;
+ } else if( pitch > piO2 ) {
+ pitch = ( float ) Py_PI - pitch;
+ heading += ( float ) Py_PI;
+ bank += ( float ) Py_PI;
}
//gimbal lock test
- if(fabs(pitch) > piO2 - 1e-4) {
+ if( fabs( pitch ) > piO2 - 1e-4 ) {
heading += bank;
bank = 0.0f;
} else {
- bank += Py_PI;
- bank -= (floor(bank * Opi2)) * pi2;
- bank -= Py_PI;
+ bank += ( float ) Py_PI;
+ bank -= ( float ) ( floor( bank * Opi2 ) ) * pi2;
+ bank -= ( float ) Py_PI;
}
- heading += Py_PI;
- heading -= (floor(heading * Opi2)) * pi2;
- heading -= Py_PI;
+ heading += ( float ) Py_PI;
+ heading -= ( float ) ( floor( heading * Opi2 ) ) * pi2;
+ heading -= ( float ) Py_PI;
//back to degrees
- self->eul[0] = heading * 180 / (float)Py_PI;
- self->eul[1] = pitch * 180 / (float)Py_PI;
- self->eul[2] = bank * 180 / (float)Py_PI;
+ self->eul[0] = heading * ( float ) ( 180 / Py_PI );
+ self->eul[1] = pitch * ( float ) ( 180 / Py_PI );
+ self->eul[2] = bank * ( float ) ( 180 / Py_PI );
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Euler.zero()-------------------------
-//sets the euler to 0,0,0
-PyObject *Euler_Zero(EulerObject * self)
+
+PyObject *Euler_Zero( EulerObject * self )
{
self->eul[0] = 0.0;
self->eul[1] = 0.0;
self->eul[2] = 0.0;
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Euler.rotate()-----------------------
-//rotates a euler a certain amount and returns the result
-//should return a unique euler rotation (i.e. no 720 degree pitches :)
-PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
-{
- float angle = 0.0f;
- char *axis;
- int x;
- if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "euler.rotate():expected angle (float) and axis (x,y,z)");
- }
- if(!STREQ3(axis,"x","y","z")){
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "euler.rotate(): expected axis to be 'x', 'y' or 'z'");
- }
-
- //covert to radians
- angle *= ((float)Py_PI / 180);
- for(x = 0; x < 3; x++) {
- self->eul[x] *= ((float)Py_PI / 180);
- }
- euler_rot(self->eul, angle, *axis);
- //convert back from radians
- for(x = 0; x < 3; x++) {
- self->eul[x] *= (180 / (float)Py_PI);
- }
+static void Euler_dealloc( EulerObject * self )
+{
+ /* since we own this memory... */
+ PyMem_Free( self->eul );
- return (PyObject*)self;
+ PyObject_DEL( self );
}
-//----------------------------dealloc()(internal) ------------------
-//free the py_object
-static void Euler_dealloc(EulerObject * self)
+
+static PyObject *Euler_getattr( EulerObject * self, char *name )
{
- //only free py_data
- if(self->data.py_data){
- PyMem_Free(self->data.py_data);
+ if( ELEM3( name[0], 'x', 'y', 'z' ) && name[1] == 0 ) {
+ return PyFloat_FromDouble( self->eul[name[0] - 'x'] );
}
- PyObject_DEL(self);
+ return Py_FindMethod( Euler_methods, ( PyObject * ) self, name );
}
-//----------------------------getattr()(internal) ------------------
-//object.attribute access (get)
-static PyObject *Euler_getattr(EulerObject * self, char *name)
-{
- int x;
-
- if(STREQ(name,"x")){
- return PyFloat_FromDouble(self->eul[0]);
- }else if(STREQ(name, "y")){
- return PyFloat_FromDouble(self->eul[1]);
- }else if(STREQ(name, "z")){
- return PyFloat_FromDouble(self->eul[2]);
- }
- return Py_FindMethod(Euler_methods, (PyObject *) self, name);
-}
-//----------------------------setattr()(internal) ------------------
-//object.attribute access (set)
-static int Euler_setattr(EulerObject * self, char *name, PyObject * e)
+static int Euler_setattr( EulerObject * self, char *name, PyObject * e )
{
- PyObject *f = NULL;
+ float val;
- f = PyNumber_Float(e);
- if(f == NULL) { // parsed item not a number
- return EXPP_ReturnIntError(PyExc_TypeError,
- "euler.attribute = x: argument not a number\n");
- }
-
- if(STREQ(name,"x")){
- self->eul[0] = PyFloat_AS_DOUBLE(f);
- }else if(STREQ(name, "y")){
- self->eul[1] = PyFloat_AS_DOUBLE(f);
- }else if(STREQ(name, "z")){
- self->eul[2] = PyFloat_AS_DOUBLE(f);
- }else{
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_AttributeError,
- "euler.attribute = x: unknown attribute\n");
- }
+ if( !PyArg_Parse( e, "f", &val ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "unable to parse float argument\n" );
- Py_DECREF(f);
- return 0;
+ if( ELEM3( name[0], 'x', 'y', 'z' ) && name[1] == 0 ) {
+ self->eul[name[0] - 'x'] = val;
+ return 0;
+ } else
+ return -1;
}
-//----------------------------print object (internal)--------------
-//print the object to screen
-static PyObject *Euler_repr(EulerObject * self)
-{
- int i;
- char buffer[48], str[1024];
-
- BLI_strncpy(str,"[",1024);
- for(i = 0; i < 3; i++){
- if(i < (2)){
- sprintf(buffer, "%.6f, ", self->eul[i]);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f", self->eul[i]);
- strcat(str,buffer);
- }
- }
- strcat(str, "](euler)");
- return EXPP_incr_ret(PyString_FromString(str));
-}
-//---------------------SEQUENCE PROTOCOLS------------------------
-//----------------------------len(object)------------------------
-//sequence length
-static int Euler_len(EulerObject * self)
+/* Eulers Sequence methods */
+static PyObject *Euler_item( EulerObject * self, int i )
{
- return 3;
-}
-//----------------------------object[]---------------------------
-//sequence accessor (get)
-static PyObject *Euler_item(EulerObject * self, int i)
-{
- if(i < 0 || i >= 3)
- return EXPP_ReturnPyObjError(PyExc_IndexError,
- "euler[attribute]: array index out of range\n");
-
- return Py_BuildValue("f", self->eul[i]);
+ if( i < 0 || i >= 3 )
+ return EXPP_ReturnPyObjError( PyExc_IndexError,
+ "array index out of range\n" );
+ return Py_BuildValue( "f", self->eul[i] );
}
-//----------------------------object[]-------------------------
-//sequence accessor (set)
-static int Euler_ass_item(EulerObject * self, int i, PyObject * ob)
-{
- PyObject *f = NULL;
- f = PyNumber_Float(ob);
- if(f == NULL) { // parsed item not a number
- return EXPP_ReturnIntError(PyExc_TypeError,
- "euler[attribute] = x: argument not a number\n");
- }
-
- if(i < 0 || i >= 3){
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_IndexError,
- "euler[attribute] = x: array assignment index out of range\n");
- }
- self->eul[i] = PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
- return 0;
-}
-//----------------------------object[z:y]------------------------
-//sequence slice (get)
-static PyObject *Euler_slice(EulerObject * self, int begin, int end)
+static PyObject *Euler_slice( EulerObject * self, int begin, int end )
{
- PyObject *list = NULL;
+ PyObject *list;
int count;
- CLAMP(begin, 0, 3);
- CLAMP(end, 0, 3);
- begin = MIN2(begin,end);
+ if( begin < 0 )
+ begin = 0;
+ if( end > 3 )
+ end = 3;
+ if( begin > end )
+ begin = end;
- list = PyList_New(end - begin);
- for(count = begin; count < end; count++) {
- PyList_SetItem(list, count - begin,
- PyFloat_FromDouble(self->eul[count]));
- }
+ list = PyList_New( end - begin );
+ for( count = begin; count < end; count++ ) {
+ PyList_SetItem( list, count - begin,
+ PyFloat_FromDouble( self->eul[count] ) );
+ }
return list;
}
-//----------------------------object[z:y]------------------------
-//sequence slice (set)
-static int Euler_ass_slice(EulerObject * self, int begin, int end,
- PyObject * seq)
+
+static int Euler_ass_item( EulerObject * self, int i, PyObject * ob )
{
- int i, y, size = 0;
- float eul[3];
+ if( i < 0 || i >= 3 )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "array assignment index out of range\n" );
- CLAMP(begin, 0, 3);
- CLAMP(end, 0, 3);
- begin = MIN2(begin,end);
+ if( !PyNumber_Check( ob ) )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "Euler member must be a number\n" );
- size = PySequence_Length(seq);
- if(size != (end - begin)){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "euler[begin:end] = []: size mismatch in slice assignment\n");
+ if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "int or float expected\n" );
+ } else {
+ self->eul[i] = ( float ) PyFloat_AsDouble( ob );
}
+ return 0;
+}
- for (i = 0; i < size; i++) {
- PyObject *e, *f;
-
- e = PySequence_GetItem(seq, i);
- if (e == NULL) { // Failed to read sequence
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "euler[begin:end] = []: unable to read sequence\n");
- }
- f = PyNumber_Float(e);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(e);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "euler[begin:end] = []: sequence argument not a number\n");
+static int Euler_ass_slice( EulerObject * self, int begin, int end,
+ PyObject * seq )
+{
+ int count, z;
+
+ if( begin < 0 )
+ begin = 0;
+ if( end > 3 )
+ end = 3;
+ if( begin > end )
+ begin = end;
+
+ if( !PySequence_Check( seq ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "illegal argument type for built-in operation\n" );
+ if( PySequence_Length( seq ) != ( end - begin ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "size mismatch in slice assignment\n" );
+
+ z = 0;
+ for( count = begin; count < end; count++ ) {
+ PyObject *ob = PySequence_GetItem( seq, z );
+ z++;
+
+ if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
+ Py_DECREF( ob );
+ return -1;
+ } else {
+ if( !PyArg_Parse( ob, "f", &self->eul[count] ) ) {
+ Py_DECREF( ob );
+ return -1;
+ }
}
- eul[i] = PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,e);
- }
- //parsed well - now set in vector
- for(y = 0; y < 3; y++){
- self->eul[begin + y] = eul[y];
}
return 0;
}
-//-----------------PROTCOL DECLARATIONS--------------------------
+
+static PyObject *Euler_repr( EulerObject * self )
+{
+ int i, maxindex = 3 - 1;
+ char ftoa[24];
+ PyObject *str1, *str2;
+
+ str1 = PyString_FromString( "[" );
+
+ for( i = 0; i < maxindex; i++ ) {
+ sprintf( ftoa, "%.4f, ", self->eul[i] );
+ str2 = PyString_FromString( ftoa );
+ if( !str1 || !str2 )
+ goto error;
+ PyString_ConcatAndDel( &str1, str2 );
+ }
+
+ sprintf( ftoa, "%.4f]\n", self->eul[maxindex] );
+ str2 = PyString_FromString( ftoa );
+ if( !str1 || !str2 )
+ goto error;
+ PyString_ConcatAndDel( &str1, str2 );
+
+ if( str1 )
+ return str1;
+
+ error:
+ Py_XDECREF( str1 );
+ Py_XDECREF( str2 );
+ return EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "couldn't create PyString!\n" );
+}
+
static PySequenceMethods Euler_SeqMethods = {
- (inquiry) Euler_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (intargfunc) 0, /* sq_repeat */
- (intargfunc) Euler_item, /* sq_item */
- (intintargfunc) Euler_slice, /* sq_slice */
- (intobjargproc) Euler_ass_item, /* sq_ass_item */
- (intintobjargproc) Euler_ass_slice, /* sq_ass_slice */
+ ( inquiry ) 0, /* sq_length */
+ ( binaryfunc ) 0, /* sq_concat */
+ ( intargfunc ) 0, /* sq_repeat */
+ ( intargfunc ) Euler_item, /* sq_item */
+ ( intintargfunc ) Euler_slice, /* sq_slice */
+ ( intobjargproc ) Euler_ass_item, /* sq_ass_item */
+ ( intintobjargproc ) Euler_ass_slice, /* sq_ass_slice */
};
-//------------------PY_OBECT DEFINITION--------------------------
+
PyTypeObject euler_Type = {
- PyObject_HEAD_INIT(NULL)
- 0, /*ob_size */
- "euler", /*tp_name */
- sizeof(EulerObject), /*tp_basicsize */
- 0, /*tp_itemsize */
- (destructor) Euler_dealloc, /*tp_dealloc */
- (printfunc) 0, /*tp_print */
- (getattrfunc) Euler_getattr, /*tp_getattr */
- (setattrfunc) Euler_setattr, /*tp_setattr */
- 0, /*tp_compare */
- (reprfunc) Euler_repr, /*tp_repr */
- 0, /*tp_as_number */
- &Euler_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT( NULL )
+ 0, /*ob_size */
+ "euler", /*tp_name */
+ sizeof( EulerObject ), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ ( destructor ) Euler_dealloc, /*tp_dealloc */
+ ( printfunc ) 0, /*tp_print */
+ ( getattrfunc ) Euler_getattr, /*tp_getattr */
+ ( setattrfunc ) Euler_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ ( reprfunc ) Euler_repr, /*tp_repr */
+ 0, /*tp_as_number */
+ &Euler_SeqMethods, /*tp_as_sequence */
};
-//------------------------newEulerObject (internal)-------------
-//creates a new euler object
-/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
- (i.e. it was allocated elsewhere by MEM_mallocN())
- pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
- (i.e. it must be created here with PyMEM_malloc())*/
-PyObject *newEulerObject(float *eul, int type)
+
+PyObject *newEulerObject( float *eul )
{
EulerObject *self;
int x;
euler_Type.ob_type = &PyType_Type;
- self = PyObject_NEW(EulerObject, &euler_Type);
- self->data.blend_data = NULL;
- self->data.py_data = NULL;
-
- if(type == Py_WRAP){
- self->data.blend_data = eul;
- self->eul = self->data.blend_data;
- }else if (type == Py_NEW){
- self->data.py_data = PyMem_Malloc(3 * sizeof(float));
- self->eul = self->data.py_data;
- if(!eul) { //new empty
- for(x = 0; x < 3; x++) {
- self->eul[x] = 0.0f;
- }
- }else{
- for(x = 0; x < 3; x++){
- self->eul[x] = eul[x];
- }
+
+ self = PyObject_NEW( EulerObject, &euler_Type );
+
+ /*
+ we own the self->eul memory and will free it later.
+ if we received an input arg, copy to our internal array
+ */
+
+ self->eul = PyMem_Malloc( 3 * sizeof( float ) );
+ if( ! self->eul )
+ return EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "newEulerObject:PyMem_Malloc failed" );
+
+ if( !eul ) {
+ for( x = 0; x < 3; x++ ) {
+ self->eul[x] = 0.0f;
+ }
+ } else{
+ for( x = 0; x < 3; x++){
+ self->eul[x] = eul[x];
}
- }else{ //bad type
- return NULL;
}
- return (PyObject *) EXPP_incr_ret((PyObject *)self);
-}
+ return ( PyObject * ) self;
+}
diff --git a/source/blender/python/api2_2x/euler.h b/source/blender/python/api2_2x/euler.h
index 1b5dca26df7..1c3b21f7ffc 100644
--- a/source/blender/python/api2_2x/euler.h
+++ b/source/blender/python/api2_2x/euler.h
@@ -1,3 +1,4 @@
+
/*
* $Id$
*
@@ -34,28 +35,33 @@
#ifndef EXPP_euler_h
#define EXPP_euler_h
+#include "Python.h"
+#include "gen_utils.h"
+#include "Types.h"
+#include <BLI_arithb.h>
+#include "quat.h"
+#include "matrix.h"
+#include "BKE_utildefines.h"
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+/*****************************/
+// Euler Python Object
+/*****************************/
+
#define EulerObject_Check(v) ((v)->ob_type == &euler_Type)
typedef struct {
- PyObject_VAR_HEAD
- struct{
- float *py_data; //python managed
- float *blend_data; //blender managed
- }data;
- float *eul; //1D array of data (alias)
+ PyObject_VAR_HEAD float *eul;
} EulerObject;
-/*struct data contains a pointer to the actual data that the
-object uses. It can use either PyMem allocated data (which will
-be stored in py_data) or be a wrapper for data allocated through
-blender (stored in blend_data). This is an either/or struct not both*/
-
//prototypes
+PyObject *newEulerObject( float *eul );
PyObject *Euler_Zero( EulerObject * self );
PyObject *Euler_Unique( EulerObject * self );
PyObject *Euler_ToMatrix( EulerObject * self );
PyObject *Euler_ToQuat( EulerObject * self );
-PyObject *Euler_Rotate( EulerObject * self, PyObject *args );
-PyObject *newEulerObject( float *eul, int type );
#endif /* EXPP_euler_h */
diff --git a/source/blender/python/api2_2x/gen_utils.c b/source/blender/python/api2_2x/gen_utils.c
index 4144cac4d59..ba6878b0a5d 100644
--- a/source/blender/python/api2_2x/gen_utils.c
+++ b/source/blender/python/api2_2x/gen_utils.c
@@ -120,31 +120,6 @@ int EXPP_ReturnIntError( PyObject * type, char *error_msg )
/* Description: This function increments the reference count of the given */
/* Python object (usually Py_None) and returns it. */
/*****************************************************************************/
-void EXPP_incr2( PyObject * ob1, PyObject * ob2 )
-{
- Py_INCREF( ob1 );
- Py_INCREF( ob2 );
-}
-
-void EXPP_incr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 )
-{
- Py_INCREF( ob1 );
- Py_INCREF( ob2 );
- Py_INCREF( ob3 );
-}
-
-void EXPP_decr2( PyObject * ob1, PyObject * ob2 )
-{
- Py_DECREF( ob1 );
- Py_DECREF( ob2 );
-}
-
-void EXPP_decr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 )
-{
- Py_DECREF( ob1 );
- Py_DECREF( ob2 );
- Py_DECREF( ob3 );
-}
PyObject *EXPP_incr_ret( PyObject * object )
{
diff --git a/source/blender/python/api2_2x/gen_utils.h b/source/blender/python/api2_2x/gen_utils.h
index 0a890333f72..91021d970b9 100644
--- a/source/blender/python/api2_2x/gen_utils.h
+++ b/source/blender/python/api2_2x/gen_utils.h
@@ -50,8 +50,6 @@
#include <DNA_listBase.h>
#define Py_PI 3.14159265358979323846
-#define Py_WRAP 1024
-#define Py_NEW 2048
/*
Py_RETURN_NONE
@@ -74,10 +72,6 @@ char *event_to_name( short event );
float EXPP_ClampFloat( float value, float min, float max );
int EXPP_ClampInt( int value, int min, int max );
-void EXPP_incr2( PyObject * ob1, PyObject * ob2 );
-void EXPP_incr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 );
-void EXPP_decr2( PyObject * ob1, PyObject * ob2 );
-void EXPP_decr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 );
PyObject *EXPP_incr_ret( PyObject * object );
PyObject *EXPP_incr_ret_True(void);
PyObject *EXPP_incr_ret_False(void);
diff --git a/source/blender/python/api2_2x/matrix.c b/source/blender/python/api2_2x/matrix.c
index abea09b5f12..b50df287061 100644
--- a/source/blender/python/api2_2x/matrix.c
+++ b/source/blender/python/api2_2x/matrix.c
@@ -28,804 +28,1010 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include <BKE_utildefines.h>
-#include <BLI_arithb.h>
-#include "Mathutils.h"
-#include "gen_utils.h"
+#include "matrix.h"
-//-------------------------DOC STRINGS ---------------------------
+//doc strings
char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
-char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix";
+char Matrix_Identity_doc[] =
+ "() - set the square matrix to it's identity matrix";
char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
-char Matrix_Invert_doc[] = "() - set the matrix to it's inverse if an inverse is possible";
-char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix";
-char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix";
+char Matrix_Invert_doc[] =
+ "() - set the matrix to it's inverse if an inverse is possible";
+char Matrix_TranslationPart_doc[] =
+ "() - return a vector encompassing the translation of the matrix";
+char Matrix_RotationPart_doc[] =
+ "() - return a vector encompassing the rotation of the matrix";
char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation";
char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
-//-----------------------METHOD DEFINITIONS ----------------------
+
+//methods table
struct PyMethodDef Matrix_methods[] = {
- {"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
- {"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
- {"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
- {"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
- {"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
- {"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
- {"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
- {"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
- {"toEuler", (PyCFunction) Matrix_toEuler, METH_NOARGS, Matrix_toEuler_doc},
- {"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
+ {"zero", ( PyCFunction ) Matrix_Zero, METH_NOARGS,
+ Matrix_Zero_doc},
+ {"identity", ( PyCFunction ) Matrix_Identity, METH_NOARGS,
+ Matrix_Identity_doc},
+ {"transpose", ( PyCFunction ) Matrix_Transpose, METH_NOARGS,
+ Matrix_Transpose_doc},
+ {"determinant", ( PyCFunction ) Matrix_Determinant, METH_NOARGS,
+ Matrix_Determinant_doc},
+ {"invert", ( PyCFunction ) Matrix_Invert, METH_NOARGS,
+ Matrix_Invert_doc},
+ {"translationPart", ( PyCFunction ) Matrix_TranslationPart,
+ METH_NOARGS,
+ Matrix_TranslationPart_doc},
+ {"rotationPart", ( PyCFunction ) Matrix_RotationPart, METH_NOARGS,
+ Matrix_RotationPart_doc},
+ {"resize4x4", ( PyCFunction ) Matrix_Resize4x4, METH_NOARGS,
+ Matrix_Resize4x4_doc},
+ {"toEuler", ( PyCFunction ) Matrix_toEuler, METH_NOARGS,
+ Matrix_toEuler_doc},
+ {"toQuat", ( PyCFunction ) Matrix_toQuat, METH_NOARGS,
+ Matrix_toQuat_doc},
{NULL, NULL, 0, NULL}
};
-//-----------------------------METHODS----------------------------
-//---------------------------Matrix.toQuat() ---------------------
-PyObject *Matrix_toQuat(MatrixObject * self)
+
+/*****************************/
+// Matrix Python Object
+/*****************************/
+
+PyObject *Matrix_toQuat( MatrixObject * self )
{
- float quat[4];
-
- //must be 3-4 cols, 3-4 rows, square matrix
- if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
- }
- if(self->colSize == 3){
- Mat3ToQuat((float (*)[3])*self->matrix, quat);
- }else{
- Mat4ToQuat((float (*)[4])*self->matrix, quat);
+ float *quat, *mat;
+
+ if( self->colSize < 3 ) {
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
+ } else if( self->colSize > 2 ) { //3 or 4 col
+ if( self->rowSize < 3 ) //3 or 4 row
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
+
+ mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating matrix\n\n" ) );
+ }
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[2] = self->matrix[0][2];
+ mat[3] = self->matrix[1][0];
+ mat[4] = self->matrix[1][1];
+ mat[5] = self->matrix[1][2];
+ mat[6] = self->matrix[2][0];
+ mat[7] = self->matrix[2][1];
+ mat[8] = self->matrix[2][2];
}
-
- if(self->data.blend_data)
- return (PyObject *) newQuaternionObject(quat, Py_WRAP);
- else
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ if( quat == NULL ) {
+ PyMem_Free( mat );
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating quat\n\n" ) );
+ }
+ Mat3ToQuat( ( float ( * )[3] ) mat, quat );
+
+ return ( PyObject * ) newQuaternionObject( quat );
}
-//---------------------------Matrix.toEuler() --------------------
-PyObject *Matrix_toEuler(MatrixObject * self)
+
+
+PyObject *Matrix_toEuler( MatrixObject * self )
{
- float eul[3];
+ float *eul, *mat;
int x;
- //must be 3-4 cols, 3-4 rows, square matrix
- if(self->colSize !=3 || self->rowSize != 3) {
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.toQuat(): inappropriate matrix size - expects 3x3 matrix\n");
- }
- Mat3ToEul((float (*)[3])*self->matrix, eul);
- //have to convert to degrees
- for(x = 0; x < 3; x++) {
- eul[x] *= (float) (180 / Py_PI);
- }
- if(self->data.blend_data)
- return (PyObject *) newEulerObject(eul, Py_WRAP);
- else
- return (PyObject *) newEulerObject(eul, Py_NEW);
+ if( self->colSize < 3 ) {
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
+ } else if( self->colSize > 2 ) { //3 or 4 col
+ if( self->rowSize < 3 ) //3 or 4 row
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
+
+ mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[2] = self->matrix[0][2];
+ mat[3] = self->matrix[1][0];
+ mat[4] = self->matrix[1][1];
+ mat[5] = self->matrix[1][2];
+ mat[6] = self->matrix[2][0];
+ mat[7] = self->matrix[2][1];
+ mat[8] = self->matrix[2][2];
+ }
+ eul = PyMem_Malloc( 3 * sizeof( float ) );
+ if( eul == NULL ) {
+ PyMem_Free( mat );
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating eul\n\n" ) );
+ }
+ Mat3ToEul( ( float ( * )[3] ) mat, eul );
+
+ for( x = 0; x < 3; x++ ) {
+ eul[x] *= ( float ) ( 180 / Py_PI );
+ }
+
+ return ( PyObject * ) newEulerObject( eul );
}
-//---------------------------Matrix.resize4x4() ------------------
-PyObject *Matrix_Resize4x4(MatrixObject * self)
+
+PyObject *Matrix_Resize4x4( MatrixObject * self )
{
- int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows;
+ float *mat;
+ int x, row, col;
+
+ if( self->colSize == 4 && self->rowSize == 4 )
+ return EXPP_incr_ret( Py_None );
- if(self->data.blend_data){
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "cannot resize wrapped data - only python matrices\n");
+ mat = PyMem_Malloc( 4 * 4 * sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ for( x = 0; x < 16; x++ ) {
+ mat[x] = 0.0f;
}
- self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16));
- if(self->data.py_data == NULL) {
- return EXPP_ReturnPyObjError(PyExc_MemoryError,
- "matrix.resize4x4(): problem allocating pointer space\n\n");
+ if( self->colSize == 2 ) { //2x2, 2x3, 2x4
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[4] = self->matrix[1][0];
+ mat[5] = self->matrix[1][1];
+ if( self->rowSize > 2 ) {
+ mat[8] = self->matrix[2][0];
+ mat[9] = self->matrix[2][1];
+ }
+ if( self->rowSize > 3 ) {
+ mat[12] = self->matrix[3][0];
+ mat[13] = self->matrix[3][1];
+ }
+ mat[10] = 1.0f;
+ mat[15] = 1.0f;
+ } else if( self->colSize == 3 ) { //3x2, 3x3, 3x4
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[2] = self->matrix[0][2];
+ mat[4] = self->matrix[1][0];
+ mat[5] = self->matrix[1][1];
+ mat[6] = self->matrix[1][2];
+ if( self->rowSize > 2 ) {
+ mat[8] = self->matrix[2][0];
+ mat[9] = self->matrix[2][1];
+ mat[10] = self->matrix[2][2];
+ }
+ if( self->rowSize > 3 ) {
+ mat[12] = self->matrix[3][0];
+ mat[13] = self->matrix[3][1];
+ mat[14] = self->matrix[3][2];
+ }
+ if( self->rowSize == 2 )
+ mat[10] = 1.0f;
+ mat[15] = 1.0f;
+ } else if( self->colSize == 4 ) { //2x4, 3x4
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[2] = self->matrix[0][2];
+ mat[3] = self->matrix[0][3];
+ mat[4] = self->matrix[1][0];
+ mat[5] = self->matrix[1][1];
+ mat[6] = self->matrix[1][2];
+ mat[7] = self->matrix[1][3];
+ if( self->rowSize > 2 ) {
+ mat[8] = self->matrix[2][0];
+ mat[9] = self->matrix[2][1];
+ mat[10] = self->matrix[2][2];
+ mat[11] = self->matrix[2][3];
+ }
+ if( self->rowSize == 2 )
+ mat[10] = 1.0f;
+ mat[15] = 1.0f;
}
- self->contigPtr = self->data.py_data; //force
- self->matrix = PyMem_Realloc(self->matrix, (sizeof(float) * 4));
- if(self->matrix == NULL) {
- return EXPP_ReturnPyObjError(PyExc_MemoryError,
- "matrix.resize4x4(): problem allocating pointer space\n\n");
+
+ PyMem_Free( self->matrix );
+ PyMem_Free( self->contigPtr );
+ self->contigPtr = PyMem_Malloc( 4 * 4 * sizeof( float ) );
+ if( self->contigPtr == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating array space\n\n" ) );
}
- //set row pointers
- for(x = 0; x < 4; x++) {
- self->matrix[x] = self->contigPtr + (x * 4);
+ self->matrix = PyMem_Malloc( 4 * sizeof( float * ) );
+ if( self->matrix == NULL ) {
+ PyMem_Free( self->contigPtr );
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating pointer space\n\n" ) );
}
- //move data to new spot in array + clean
- for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
- for(x = 0; x < 4; x++){
- self->contigPtr[(4 * (self->rowSize + (blank_rows - 1))) + x] = 0.0f;
- }
+ for( x = 0; x < 4; x++ ) {
+ self->matrix[x] = self->contigPtr + ( x * 4 );
}
- for(x = 1; x <= self->rowSize; x++){
- first_row_elem = (self->colSize * (self->rowSize - x));
- curr_pos = (first_row_elem + (self->colSize -1));
- new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
- for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
- self->contigPtr[new_pos + blank_columns] = 0.0f;
- }
- for(curr_pos; curr_pos >= first_row_elem; curr_pos--){
- self->contigPtr[new_pos] = self->contigPtr[curr_pos];
- new_pos--;
+
+ for( row = 0; row < 4; row++ ) {
+ for( col = 0; col < 4; col++ ) {
+ self->matrix[row][col] = mat[( row * 4 ) + col];
}
}
- self->rowSize = 4;
+ PyMem_Free( mat );
+
self->colSize = 4;
- return (PyObject*)self;
+ self->rowSize = 4;
+
+ return EXPP_incr_ret( Py_None );
}
-//---------------------------Matrix.translationPart() ------------
-PyObject *Matrix_TranslationPart(MatrixObject * self)
+
+PyObject *Matrix_TranslationPart( MatrixObject * self )
{
- float vec[4];
+ float *vec = NULL;
+ PyObject *retval;
- if(self->colSize < 3 && self->rowSize < 4){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.translationPart: inappropriate matrix size\n");
- }
+ if( self->colSize < 3 ) {
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
+ } else if( self->colSize > 2 ) { //3 or 4 columns
+ if( self->rowSize < 4 ) //all 4 rows
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
- vec[0] = self->matrix[3][0];
- vec[1] = self->matrix[3][1];
- vec[2] = self->matrix[3][2];
+ vec = PyMem_Malloc( 3 * sizeof( float ) );
+ if( vec == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating vec\n\n" ) );
+ }
+ vec[0] = self->matrix[3][0];
+ vec[1] = self->matrix[3][1];
+ vec[2] = self->matrix[3][2];
+ }
- return newVectorObject(vec, 3, Py_NEW);
+ retval = ( PyObject * ) newVectorObject( vec, 3 );
+ PyMem_Free( vec );
+ return retval;
}
-//---------------------------Matrix.rotationPart() ---------------
-PyObject *Matrix_RotationPart(MatrixObject * self)
+
+PyObject *Matrix_RotationPart( MatrixObject * self )
{
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ float *mat;
- if(self->colSize < 3 && self->rowSize < 3){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.rotationPart: inappropriate matrix size\n");
- }
+ if( self->colSize < 3 ) {
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
+ } else if( self->colSize > 2 ) { //3 or 4 col
+ if( self->rowSize < 3 ) //3 or 4 row
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "inappropriate matrix size\n" );
- mat[0] = self->matrix[0][0];
- mat[1] = self->matrix[0][1];
- mat[2] = self->matrix[0][2];
- mat[3] = self->matrix[1][0];
- mat[4] = self->matrix[1][1];
- mat[5] = self->matrix[1][2];
- mat[6] = self->matrix[2][0];
- mat[7] = self->matrix[2][1];
- mat[8] = self->matrix[2][2];
+ mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ mat[0] = self->matrix[0][0];
+ mat[1] = self->matrix[0][1];
+ mat[2] = self->matrix[0][2];
+ mat[3] = self->matrix[1][0];
+ mat[4] = self->matrix[1][1];
+ mat[5] = self->matrix[1][2];
+ mat[6] = self->matrix[2][0];
+ mat[7] = self->matrix[2][1];
+ mat[8] = self->matrix[2][2];
+ }
- return newMatrixObject(mat, 3, 3, Py_NEW);
+ return ( PyObject * ) newMatrixObject( mat, 3, 3 );
}
-//---------------------------Matrix.invert() ---------------------
-PyObject *Matrix_Invert(MatrixObject * self)
+
+PyObject *Matrix_Invert( MatrixObject * self )
{
-
- int x, y, z = 0;
- float det = 0.0f;
- PyObject *f = NULL;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+ float det;
+ int x, y, z;
+ float *mat = NULL;
+ float t;
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.invert: only square matrices are supported\n");
- }
+ if( self->rowSize != self->colSize )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "only square matrices are supported\n" );
//calculate the determinant
- f = Matrix_Determinant(self);
- det = PyFloat_AS_DOUBLE(f);
+ if( self->rowSize == 2 ) {
+ det = Det2x2( self->matrix[0][0], self->matrix[0][1],
+ self->matrix[1][0], self->matrix[1][1] );
+ } else if( self->rowSize == 3 ) {
+ det = Det3x3( self->matrix[0][0], self->matrix[0][1],
+ self->matrix[0][2], self->matrix[1][0],
+ self->matrix[1][1], self->matrix[1][2],
+ self->matrix[2][0], self->matrix[2][1],
+ self->matrix[2][2] );
+ } else if( self->rowSize == 4 ) {
+ det = Det4x4( (float ( * )[4]) *self->matrix );
+ } else {
+ return EXPP_ReturnPyObjError( PyExc_StandardError,
+ "error calculating determinant for inverse()\n" );
+ }
+
+ if( det != 0 ) {
- if(det != 0) {
//calculate the classical adjoint
- if(self->rowSize == 2) {
+ if( self->rowSize == 2 ) {
+ mat = PyMem_Malloc( self->rowSize * self->colSize *
+ sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
mat[0] = self->matrix[1][1];
mat[1] = -self->matrix[1][0];
mat[2] = -self->matrix[0][1];
mat[3] = self->matrix[0][0];
- } else if(self->rowSize == 3) {
- Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
- } else if(self->rowSize == 4) {
- Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
+ } else if( self->rowSize == 3 ) {
+ mat = PyMem_Malloc( self->rowSize * self->colSize *
+ sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ Mat3Adj( ( float ( * )[3] ) mat,( float ( * )[3] ) *self->matrix );
+ } else if( self->rowSize == 4 ) {
+ mat = PyMem_Malloc( self->rowSize * self->colSize *
+ sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError
+ ( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ Mat4Adj( ( float ( * )[4] ) mat, ( float ( * )[4] ) *self->matrix );
}
//divide by determinate
- for(x = 0; x < (self->rowSize * self->colSize); x++) {
+ for( x = 0; x < ( self->rowSize * self->colSize ); x++ ) {
mat[x] /= det;
}
+
//set values
- for(x = 0; x < self->rowSize; x++) {
- for(y = 0; y < self->colSize; y++) {
+ z = 0;
+ for( x = 0; x < self->rowSize; x++ ) {
+ for( y = 0; y < self->colSize; y++ ) {
self->matrix[x][y] = mat[z];
z++;
}
}
+
//transpose
- Matrix_Transpose(self);
+ if( self->rowSize == 2 ) {
+ t = self->matrix[1][0];
+ self->matrix[1][0] = self->matrix[0][1];
+ self->matrix[0][1] = t;
+
+/*
+ Note: is the code below correct?
+ transposing mat and not copying into self->matrix?
+ s. swaney 11-oct-2004
+*/
+ } else if( self->rowSize == 3 ) {
+ Mat3Transp( ( float ( * )[3] ) mat );
+ } else if( self->rowSize == 4 ) {
+ Mat4Transp( ( float ( * )[4] ) mat );
+ }
} else {
- printf("Matrix.invert: matrix does not have an inverse\n");
+ printf( "matrix does not have an inverse - none attempted\n" );
}
- return (PyObject*)self;
+ PyMem_Free( mat );
+ return EXPP_incr_ret( Py_None );
}
-//---------------------------Matrix.determinant() ----------------
-PyObject *Matrix_Determinant(MatrixObject * self)
+
+
+PyObject *Matrix_Determinant( MatrixObject * self )
{
- float det = 0.0f;
-
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.determinant: only square matrices are supported\n");
- }
-
- if(self->rowSize == 2) {
- det = Det2x2(self->matrix[0][0], self->matrix[0][1],
- self->matrix[1][0], self->matrix[1][1]);
- } else if(self->rowSize == 3) {
- det = Det3x3(self->matrix[0][0], self->matrix[0][1],
- self->matrix[0][2], self->matrix[1][0],
- self->matrix[1][1], self->matrix[1][2],
- self->matrix[2][0], self->matrix[2][1],
- self->matrix[2][2]);
+ float det;
+
+ if( self->rowSize != self->colSize )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "only square matrices are supported\n" );
+
+ if( self->rowSize == 2 ) {
+ det = Det2x2( self->matrix[0][0], self->matrix[0][1],
+ self->matrix[1][0], self->matrix[1][1] );
+ } else if( self->rowSize == 3 ) {
+ det = Det3x3( self->matrix[0][0], self->matrix[0][1],
+ self->matrix[0][2], self->matrix[1][0],
+ self->matrix[1][1], self->matrix[1][2],
+ self->matrix[2][0], self->matrix[2][1],
+ self->matrix[2][2] );
+ } else if( self->rowSize == 4 ) {
+ det = Det4x4( (float ( * )[4]) *self->matrix );
} else {
- det = Det4x4((float (*)[4]) *self->matrix);
+ return EXPP_ReturnPyObjError( PyExc_StandardError,
+ "error in determinant()\n" );
}
return PyFloat_FromDouble( (double) det );
}
//---------------------------Matrix.transpose() ------------------
-PyObject *Matrix_Transpose(MatrixObject * self)
+
+PyObject *Matrix_Transpose( MatrixObject * self )
+
{
- float t = 0.0f;
+ float t;
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.transpose: only square matrices are supported\n");
- }
+ if( self->rowSize != self->colSize )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "only square matrices are supported\n" );
- if(self->rowSize == 2) {
+ if( self->rowSize == 2 ) {
t = self->matrix[1][0];
self->matrix[1][0] = self->matrix[0][1];
self->matrix[0][1] = t;
- } else if(self->rowSize == 3) {
- Mat3Transp((float (*)[3])*self->matrix);
- } else {
- Mat4Transp((float (*)[4])*self->matrix);
- }
+ } else if( self->rowSize == 3 ) {
+ Mat3Transp( (float ( * )[3])*self->matrix );
+ } else if( self->rowSize == 4 ) {
+ Mat4Transp( (float ( * )[4])*self->matrix );
+ } else
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unable to transpose matrix\n" ) );
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//---------------------------Matrix.zero() -----------------------
-PyObject *Matrix_Zero(MatrixObject * self)
+
+PyObject *Matrix_Zero( MatrixObject * self )
{
int row, col;
- for(row = 0; row < self->rowSize; row++) {
- for(col = 0; col < self->colSize; col++) {
+ for( row = 0; row < self->rowSize; row++ ) {
+ for( col = 0; col < self->colSize; col++ ) {
self->matrix[row][col] = 0.0f;
}
}
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//---------------------------Matrix.identity(() ------------------
-PyObject *Matrix_Identity(MatrixObject * self)
+
+PyObject *Matrix_Identity( MatrixObject * self )
{
- if(self->rowSize != self->colSize){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix.identity: only square matrices are supported\n");
- }
+ if( self->rowSize != self->colSize )
+ return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "only square matrices supported\n" ) );
- if(self->rowSize == 2) {
+ if( self->rowSize == 2 ) {
self->matrix[0][0] = 1.0f;
self->matrix[0][1] = 0.0f;
self->matrix[1][0] = 0.0f;
self->matrix[1][1] = 1.0f;
- } else if(self->rowSize == 3) {
- Mat3One((float (*)[3]) *self->matrix);
- } else {
- Mat4One((float (*)[4]) *self->matrix);
- }
+ } else if( self->rowSize == 3 ) {
+ Mat3One( ( float ( * )[3] ) *self->matrix );
+ } else if( self->rowSize == 4 ) {
+ Mat4One( ( float ( * )[4] ) *self->matrix );
+ } else
+ return ( EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unable to create identity matrix\n" ) );
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------dealloc()(internal) ----------------
-//free the py_object
-static void Matrix_dealloc(MatrixObject * self)
+
+static void Matrix_dealloc( MatrixObject * self )
{
- Py_XDECREF(self->coerced_object);
- PyMem_Free(self->matrix);
- //only free py_data
- if(self->data.py_data){
- PyMem_Free(self->data.py_data);
- }
- PyObject_DEL(self);
+ PyMem_Free( self->contigPtr );
+ PyMem_Free( self->matrix );
+
+ PyObject_DEL( self );
}
-//----------------------------getattr()(internal) ----------------
-//object.attribute access (get)
-static PyObject *Matrix_getattr(MatrixObject * self, char *name)
+
+static PyObject *Matrix_getattr( MatrixObject * self, char *name )
{
- if(STREQ(name, "rowSize")) {
- return PyInt_FromLong((long) self->rowSize);
- } else if(STREQ(name, "colSize")) {
- return PyInt_FromLong((long) self->colSize);
+ if( strcmp( name, "rowSize" ) == 0 ) {
+ return PyInt_FromLong( ( long ) self->rowSize );
+ } else if( strcmp( name, "colSize" ) == 0 ) {
+ return PyInt_FromLong( ( long ) self->colSize );
}
- return Py_FindMethod(Matrix_methods, (PyObject *) self, name);
+ return Py_FindMethod( Matrix_methods, ( PyObject * ) self, name );
}
-//----------------------------setattr()(internal) ----------------
-//object.attribute access (set)
-static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v)
+
+static int Matrix_setattr( MatrixObject * self, char *name, PyObject * v )
{
/* This is not supported. */
- return (-1);
+ return ( -1 );
}
-//----------------------------print object (internal)-------------
-//print the object to screen
-static PyObject *Matrix_repr(MatrixObject * self)
+
+static PyObject *Matrix_repr( MatrixObject * self )
{
+ PyObject *repr, *str;
int x, y;
- char buffer[48], str[1024];
-
- BLI_strncpy(str,"",1024);
- for(x = 0; x < self->rowSize; x++){
- sprintf(buffer, "[", x);
- strcat(str,buffer);
- for(y = 0; y < (self->colSize - 1); y++) {
- sprintf(buffer, "%.6f, ", self->matrix[x][y]);
- strcat(str,buffer);
- }
- if(x < (self->rowSize-1)){
- sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x);
- strcat(str,buffer);
+ char ftoa[24];
+
+ repr = PyString_FromString( "" );
+ if( !repr )
+ return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "Attribute error in PyMatrix (repr)\n" ) );
+
+ for( x = 0; x < self->rowSize; x++ ) {
+ str = PyString_FromString( "[" );
+ PyString_ConcatAndDel( &repr, str );
+
+ for( y = 0; y < ( self->colSize - 1 ); y++ ) {
+ sprintf( ftoa, "%.4f, ", self->matrix[x][y] );
+ str = PyString_FromString( ftoa );
+ PyString_ConcatAndDel( &repr, str );
}
+ sprintf( ftoa, "%.4f]\n", self->matrix[x][y] );
+ str = PyString_FromString( ftoa );
+ PyString_ConcatAndDel( &repr, str );
}
-
- return EXPP_incr_ret(PyString_FromString(str));
+ return repr;
}
-//---------------------SEQUENCE PROTOCOLS------------------------
-//----------------------------len(object)------------------------
-//sequence length
-static int Matrix_len(MatrixObject * self)
-{
- return (self->colSize * self->rowSize);
-}
-//----------------------------object[]---------------------------
-//sequence accessor (get)
-//the wrapped vector gives direct access to the matrix data
-static PyObject *Matrix_item(MatrixObject * self, int i)
+//no support for matrix[x][y] so have to return by sequence index
+//will return a row from the matrix to support previous API
+//compatability
+static PyObject *Matrix_item( MatrixObject * self, int i )
{
- if(i < 0 || i >= self->rowSize)
- return EXPP_ReturnPyObjError(PyExc_IndexError,
- "matrix[attribute]: array index out of range\n");
+ float *vec = NULL;
+ PyObject *retval;
+ int x;
+
+ if( i < 0 || i >= self->rowSize )
+ return EXPP_ReturnPyObjError( PyExc_IndexError,
+ "matrix row index out of range\n" );
+
+ vec = PyMem_Malloc( self->colSize * sizeof( float ) );
+ if( vec == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating vec\n\n" ) );
+ }
+ for( x = 0; x < self->colSize; x++ ) {
+ vec[x] = self->matrix[i][x];
+ }
- return newVectorObject(self->matrix[i], self->colSize, Py_WRAP);
+ retval =( PyObject * ) newVectorObject( vec, self->colSize );
+ PyMem_Free( vec );
+ return retval;
}
-//----------------------------object[]-------------------------
-//sequence accessor (set)
-static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
+
+static PyObject *Matrix_slice( MatrixObject * self, int begin, int end )
{
- int y, x, size = 0;
- float vec[4];
+ PyObject *list;
+ int count, maxsize, x, y;
- if(i > self->rowSize || i < 0){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: bad row\n");
- }
+ maxsize = self->colSize * self->rowSize;
+ if( begin < 0 )
+ begin = 0;
+ if( end > maxsize )
+ end = maxsize;
+ if( begin > end )
+ begin = end;
- if(PySequence_Check(ob)){
- size = PySequence_Length(ob);
- if(size != self->colSize){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: bad sequence size\n");
- }
- for (x = 0; x < size; x++) {
- PyObject *m, *f;
+ list = PyList_New( end - begin );
- m = PySequence_GetItem(ob, x);
- if (m == NULL) { // Failed to read sequence
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "matrix[attribute] = x: unable to read sequence\n");
- }
- f = PyNumber_Float(m);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(m);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: sequence argument not a number\n");
- }
- vec[x] = PyFloat_AS_DOUBLE(f);
- EXPP_decr2(m, f);
- }
- //parsed well - now set in matrix
- for(y = 0; y < size; y++){
- self->matrix[i][y] = vec[y];
- }
- return 0;
- }else{
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[attribute] = x: expects a sequence of column size\n");
+ for( count = begin; count < end; count++ ) {
+ x = ( int ) floor( ( double ) ( count / self->colSize ) );
+ y = count % self->colSize;
+ PyList_SetItem( list, count - begin,
+ PyFloat_FromDouble( self->matrix[x][y] ) );
}
+
+ return list;
}
-//----------------------------object[z:y]------------------------
-//sequence slice (get)
-static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
-{
- PyObject *list = NULL;
- int count;
+static int Matrix_ass_item( MatrixObject * self, int i, PyObject * ob )
+{
+ int maxsize, x, y;
- CLAMP(begin, 0, self->rowSize);
- CLAMP(end, 0, self->rowSize);
- begin = MIN2(begin,end);
+ maxsize = self->colSize * self->rowSize;
+ if( i < 0 || i >= maxsize )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "array assignment index out of range\n" );
+ if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "matrix member must be a number\n" );
- list = PyList_New(end - begin);
- for(count = begin; count < end; count++) {
- PyList_SetItem(list, count - begin,
- newVectorObject(self->matrix[count], self->colSize, Py_WRAP));
- }
+ x = ( int ) floor( ( double ) ( i / self->colSize ) );
+ y = i % self->colSize;
+ self->matrix[x][y] = ( float ) PyFloat_AsDouble( ob );
- return EXPP_incr_ret(list);
+ return 0;
}
-//----------------------------object[z:y]------------------------
-//sequence slice (set)
-static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
- PyObject * seq)
+
+static int Matrix_ass_slice( MatrixObject * self, int begin, int end,
+ PyObject * seq )
{
- int i, x, y, size, sub_size;
- float mat[16];
-
- CLAMP(begin, 0, self->rowSize);
- CLAMP(end, 0, self->rowSize);
- begin = MIN2(begin,end);
-
- if(PySequence_Check(seq)){
- size = PySequence_Length(seq);
- if(size != (end - begin)){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: size mismatch in slice assignment\n");
- }
- //parse sub items
- for (i = 0; i < size; i++) {
- //parse each sub sequence
- PyObject *subseq;
- subseq = PySequence_GetItem(seq, i);
- if (subseq == NULL) { // Failed to read sequence
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "matrix[begin:end] = []: unable to read sequence\n");
- }
- if(PySequence_Check(subseq)){
- //subsequence is also a sequence
- sub_size = PySequence_Length(subseq);
- if(sub_size != self->colSize){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: size mismatch in slice assignment\n");
- }
- for (y = 0; y < sub_size; y++) {
- PyObject *m, *f;
- m = PySequence_GetItem(subseq, y);
- if (m == NULL) { // Failed to read sequence
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "matrix[begin:end] = []: unable to read sequence\n");
- }
- f = PyNumber_Float(m);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(m);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: sequence argument not a number\n");
- }
- mat[(i * self->colSize) + y] = PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f, m);
- }
- }else{
- Py_DECREF(subseq);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: illegal argument type for built-in operation\n");
- }
- }
- //parsed well - now set in matrix
- for(x = 0; x < (size * sub_size); x++){
- self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
+ int count, maxsize, x, y, z;
+
+ maxsize = self->colSize * self->rowSize;
+ if( begin < 0 )
+ begin = 0;
+ if( end > maxsize )
+ end = maxsize;
+ if( begin > end )
+ begin = end;
+
+ if( !PySequence_Check( seq ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "illegal argument type for built-in operation\n" );
+ if( PySequence_Length( seq ) != ( end - begin ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "size mismatch in slice assignment\n" );
+
+ z = 0;
+ for( count = begin; count < end; count++ ) {
+ PyObject *ob = PySequence_GetItem( seq, z );
+ z++;
+ if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "list member must be a number\n" );
+
+ x = ( int ) floor( ( double ) ( count / self->colSize ) );
+ y = count % self->colSize;
+ if( !PyArg_Parse( ob, "f", &self->matrix[x][y] ) ) {
+ Py_DECREF( ob );
+ return -1;
}
- return 0;
- }else{
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix[begin:end] = []: illegal argument type for built-in operation\n");
}
+ return 0;
}
-//------------------------NUMERIC PROTOCOLS----------------------
-//------------------------obj + obj------------------------------
-static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
+
+static int Matrix_len( MatrixObject * self )
{
- int x, y;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- MatrixObject *mat1 = NULL, *mat2 = NULL;
+ return ( self->colSize * self->rowSize );
+}
- EXPP_incr2(m1, m2);
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
+static PyObject *Matrix_add( PyObject * m1, PyObject * m2 )
+{
+ float *mat;
+ int matSize, rowSize, colSize, x, y;
- if(mat1->coerced_object || mat2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: arguments not valid for this operation....\n");
- }
- if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: matrices must have the same dimensions for this operation\n");
- }
+ if( ( !Matrix_CheckPyObject( m1 ) )
+ || ( !Matrix_CheckPyObject( m2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+
+ if( ( ( MatrixObject * ) m1 )->flag > 0
+ || ( ( MatrixObject * ) m2 )->flag > 0 )
+ return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
+ "cannot add scalar to a matrix\n" );
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
+ if( ( ( MatrixObject * ) m1 )->rowSize !=
+ ( ( MatrixObject * ) m2 )->rowSize
+ || ( ( MatrixObject * ) m1 )->colSize !=
+ ( ( MatrixObject * ) m2 )->colSize )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "matrices must be the same same for this operation\n" );
+
+ rowSize = ( ( ( MatrixObject * ) m1 )->rowSize );
+ colSize = ( ( ( MatrixObject * ) m1 )->colSize );
+ matSize = rowSize * colSize;
+
+ mat = PyMem_Malloc( matSize * sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ for( x = 0; x < rowSize; x++ ) {
+ for( y = 0; y < colSize; y++ ) {
+ mat[( ( x * rowSize ) + y )] =
+ ( ( MatrixObject * ) m1 )->matrix[x][y] +
+ ( ( MatrixObject * ) m2 )->matrix[x][y];
}
}
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
+ return newMatrixObject( mat, rowSize, colSize );
}
-//------------------------obj - obj------------------------------
-//subtraction
-static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
+
+static PyObject *Matrix_sub( PyObject * m1, PyObject * m2 )
{
- int x, y;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- MatrixObject *mat1 = NULL, *mat2 = NULL;
+ float *mat;
+ int matSize, rowSize, colSize, x, y;
- EXPP_incr2(m1, m2);
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
+ if( ( !Matrix_CheckPyObject( m1 ) )
+ || ( !Matrix_CheckPyObject( m2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
- if(mat1->coerced_object || mat2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: arguments not valid for this operation....\n");
- }
- if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix addition: matrices must have the same dimensions for this operation\n");
- }
+ if( ( ( MatrixObject * ) m1 )->flag > 0
+ || ( ( MatrixObject * ) m2 )->flag > 0 )
+ return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
+ "cannot subtract a scalar from a matrix\n" );
+
+ if( ( ( MatrixObject * ) m1 )->rowSize !=
+ ( ( MatrixObject * ) m2 )->rowSize
+ || ( ( MatrixObject * ) m1 )->colSize !=
+ ( ( MatrixObject * ) m2 )->colSize )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "matrices must be the same same for this operation\n" );
+
+ rowSize = ( ( ( MatrixObject * ) m1 )->rowSize );
+ colSize = ( ( ( MatrixObject * ) m1 )->colSize );
+ matSize = rowSize * colSize;
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
+ mat = PyMem_Malloc( matSize * sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ for( x = 0; x < rowSize; x++ ) {
+ for( y = 0; y < colSize; y++ ) {
+ mat[( ( x * rowSize ) + y )] =
+ ( ( MatrixObject * ) m1 )->matrix[x][y] -
+ ( ( MatrixObject * ) m2 )->matrix[x][y];
}
}
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
+ return newMatrixObject( mat, rowSize, colSize );
}
-//------------------------obj * obj------------------------------
-//mulplication
-static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
+
+static PyObject *Matrix_mul( PyObject * m1, PyObject * m2 )
{
- int x, y, z;
- float scalar;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- double dot = 0.0f;
- MatrixObject *mat1 = NULL, *mat2 = NULL;
- PyObject *f = NULL, *retObj = NULL;
- VectorObject *vec = NULL;
-
- EXPP_incr2(m1, m2);
- mat1 = (MatrixObject*)m1;
- mat2 = (MatrixObject*)m2;
-
- if(mat1->coerced_object){
- if (PyFloat_Check(mat1->coerced_object) ||
- PyInt_Check(mat1->coerced_object)){ // FLOAT/INT * MATRIX
- f = PyNumber_Float(mat1->coerced_object);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Matrix multiplication: arguments not acceptable for this operation\n");
- }
- scalar = PyFloat_AS_DOUBLE(f);
- for(x = 0; x < mat2->rowSize; x++) {
- for(y = 0; y < mat2->colSize; y++) {
- mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
- }
- }
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW);
+ PyObject *retval;
+ int matSizeV, rowSizeV, colSizeV, rowSizeW, colSizeW, matSizeW, x, y,z;
+ MatrixObject *matV;
+ MatrixObject *matW;
+ float *mat = NULL;
+ float dot = 0;
+
+
+ if( ( !Matrix_CheckPyObject( m1 ) )
+ || ( !Matrix_CheckPyObject( m2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+
+ //get some vars
+ rowSizeV = ( ( ( MatrixObject * ) m1 )->rowSize );
+ colSizeV = ( ( ( MatrixObject * ) m1 )->colSize );
+ matSizeV = rowSizeV * colSizeV;
+ rowSizeW = ( ( ( MatrixObject * ) m2 )->rowSize );
+ colSizeW = ( ( ( MatrixObject * ) m2 )->colSize );
+ matSizeW = rowSizeW * colSizeW;
+ matV = ( ( MatrixObject * ) m1 );
+ matW = ( ( MatrixObject * ) m2 );
+
+ //coerced int or float for scalar multiplication
+ if( matW->flag > 1 || matW->flag > 2 ) {
+
+ if( rowSizeV != rowSizeW && colSizeV != colSizeW )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "Matrix dimension error during scalar multiplication\n" );
+
+ mat = PyMem_Malloc( matSizeV * sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
}
- }else{
- if(mat2->coerced_object){
- if(VectorObject_Check(mat2->coerced_object)){ //MATRIX * VECTOR
- vec = (VectorObject*)EXPP_incr_ret(mat2->coerced_object);
- retObj = column_vector_multiplication(mat1, vec);
- EXPP_decr3((PyObject*)mat1, (PyObject*)mat2, (PyObject*)vec);
- return retObj;
- }else if (PyFloat_Check(mat2->coerced_object) ||
- PyInt_Check(mat2->coerced_object)){ // MATRIX * FLOAT/INT
- f = PyNumber_Float(mat2->coerced_object);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Matrix multiplication: arguments not acceptable for this operation\n");
- }
- scalar = PyFloat_AS_DOUBLE(f);
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat1->colSize; y++) {
- mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
- }
- }
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
- }
- }else{ //MATRIX * MATRIX
- if(mat1->colSize != mat2->rowSize){
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Matrix multiplication: matrix A rowsize must equal matrix B colsize\n");
+ for( x = 0; x < rowSizeV; x++ ) {
+ for( y = 0; y < colSizeV; y++ ) {
+ mat[( ( x * rowSizeV ) + y )] =
+ matV->matrix[x][y] *
+ matW->matrix[x][y];
}
- for(x = 0; x < mat1->rowSize; x++) {
- for(y = 0; y < mat2->colSize; y++) {
- for(z = 0; z < mat1->colSize; z++) {
- dot += (mat1->matrix[x][z] * mat2->matrix[z][y]);
- }
- mat[((x * mat1->rowSize) + y)] = dot;
- dot = 0.0f;
+ }
+ retval = ( PyObject* ) newMatrixObject( mat, rowSizeV, colSizeV );
+ PyMem_Free( mat );
+ return retval;
+ } else if( matW->flag == 0 && matV->flag == 0 ) { //true matrix multiplication
+ if( colSizeV != rowSizeW ) {
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "Matrix multiplication undefined...\n" );
+ }
+
+ mat = PyMem_Malloc( ( rowSizeV * colSizeW ) *
+ sizeof( float ) );
+ if( mat == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ for( x = 0; x < rowSizeV; x++ ) {
+ for( y = 0; y < colSizeW; y++ ) {
+ for( z = 0; z < colSizeV; z++ ) {
+ dot += ( matV->matrix[x][z] *
+ matW->matrix[z][y] );
}
+ mat[( ( x * rowSizeV ) + y )] = dot;
+ dot = 0;
}
- return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW);
}
- }
-
- EXPP_decr2((PyObject*)mat1, (PyObject*)mat2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Matrix multiplication: arguments not acceptable for this operation\n");
+ retval = ( PyObject* ) newMatrixObject( mat, rowSizeV, colSizeW );
+ PyMem_Free( mat );
+ return retval;
+ } else
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "Error in matrix_mul...\n" );
}
-//------------------------coerce(obj, obj)-----------------------
+
//coercion of unknown types to type MatrixObject for numeric protocols
-/*Coercion() is called whenever a math operation has 2 operands that
- it doesn't understand how to evaluate. 2+Matrix for example. We want to
- evaluate some of these operations like: (vector * 2), however, for math
- to proceed, the unknown operand must be cast to a type that python math will
- understand. (e.g. in the case above case, 2 must be cast to a vector and
- then call vector.multiply(vector, scalar_cast_as_vector)*/
-static int Matrix_coerce(PyObject ** m1, PyObject ** m2)
+static int Matrix_coerce( PyObject ** m1, PyObject ** m2 )
{
- int x;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
- PyObject *coerced = NULL;
-
- if(!MatrixObject_Check(*m2)) {
- if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2)) {
- coerced = EXPP_incr_ret(*m2);
- *m2 = newMatrixObject(NULL,3,3,Py_NEW);
- ((MatrixObject*)*m2)->coerced_object = coerced;
- }else{
- return EXPP_ReturnIntError(PyExc_TypeError,
- "matrix.coerce(): unknown operand - can't coerce for numeric protocols\n");
+ long *tempI;
+ double *tempF;
+ float *mat;
+ int x, matSize;
+
+ matSize =
+ ( ( ( MatrixObject * ) * m1 )->rowSize ) *
+ ( ( ( MatrixObject * ) * m1 )->rowSize );
+ if( Matrix_CheckPyObject( *m1 ) ) {
+ if( Matrix_CheckPyObject( *m2 ) ) { //matrix & matrix
+ Py_INCREF( *m1 );
+ Py_INCREF( *m2 );
+ return 0;
+ } else {
+ if( VectorObject_Check( *m2 ) ) { //matrix & vector?
+ printf( "use MatMultVec() for column vector multiplication\n" );
+ Py_INCREF( *m1 );
+ return 0;
+ } else if( PyNumber_Check( *m2 ) ) { //& scalar?
+ if( PyInt_Check( *m2 ) ) { //it's a int
+ tempI = PyMem_Malloc( 1 *
+ sizeof( long ) );
+ if( tempI == NULL ) {
+ return ( EXPP_ReturnIntError
+ ( PyExc_MemoryError,
+ "problem allocating tempI\n\n" ) );
+ }
+ *tempI = PyInt_AsLong( *m2 );
+ mat = PyMem_Malloc( matSize *
+ sizeof( float ) );
+ if( mat == NULL ) {
+ PyMem_Free( tempI );
+ return ( EXPP_ReturnIntError
+ ( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ for( x = 0; x < matSize; x++ ) {
+ mat[x] = ( float ) *tempI;
+ }
+ PyMem_Free( tempI );
+ *m2 = newMatrixObject( mat,
+ ( ( ( MatrixObject * ) * m1 )->rowSize ), ( ( ( MatrixObject * ) * m1 )->colSize ) );
+ ( ( MatrixObject * ) * m2 )->flag = 1; //int coercion
+ PyMem_Free( mat );
+ Py_INCREF( *m1 );
+ return 0;
+ } else if( PyFloat_Check( *m2 ) ) { //it's a float
+ tempF = PyMem_Malloc( 1 *
+ sizeof
+ ( double ) );
+ if( tempF == NULL ) {
+ return ( EXPP_ReturnIntError
+ ( PyExc_MemoryError,
+ "problem allocating tempF\n\n" ) );
+ }
+ *tempF = PyFloat_AsDouble( *m2 );
+ mat = PyMem_Malloc( matSize *
+ sizeof( float ) );
+ if( mat == NULL ) {
+ PyMem_Free( tempF );
+ return ( EXPP_ReturnIntError
+ ( PyExc_MemoryError,
+ "problem allocating mat\n\n" ) );
+ }
+ for( x = 0; x < matSize; x++ ) {
+ mat[x] = ( float ) *tempF;
+ }
+ PyMem_Free( tempF );
+ *m2 = newMatrixObject( mat,
+ ( ( ( MatrixObject * ) * m1 )->rowSize ), ( ( ( MatrixObject * ) * m1 )->colSize ) );
+ ( ( MatrixObject * ) * m2 )->flag = 2; //float coercion
+ PyMem_Free( mat );
+ Py_INCREF( *m1 );
+ return 0;
+ }
+ }
+ //unknom2n type or numeric cast failure
+ printf( "attempting matrix operation m2ith unsupported type...\n" );
+ Py_INCREF( *m1 );
+ return 0; //operation m2ill type check
}
+ } else {
+ //1st not Matrix
+ printf( "numeric protocol failure...\n" );
+ return -1; //this should not occur - fail
}
- Py_INCREF(*m2);
- Py_INCREF(*m1);
- return 0;
+ return -1;
}
-//-----------------PROTCOL DECLARATIONS--------------------------
+
+//******************************************************************
+// Matrix definition
+//******************************************************************
static PySequenceMethods Matrix_SeqMethods = {
- (inquiry) Matrix_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (intargfunc) 0, /* sq_repeat */
- (intargfunc) Matrix_item, /* sq_item */
- (intintargfunc) Matrix_slice, /* sq_slice */
- (intobjargproc) Matrix_ass_item, /* sq_ass_item */
- (intintobjargproc) Matrix_ass_slice, /* sq_ass_slice */
+ ( inquiry ) Matrix_len, /* sq_length */
+ ( binaryfunc ) 0, /* sq_concat */
+ ( intargfunc ) 0, /* sq_repeat */
+ ( intargfunc ) Matrix_item, /* sq_item */
+ ( intintargfunc ) Matrix_slice, /* sq_slice */
+ ( intobjargproc ) Matrix_ass_item, /* sq_ass_item */
+ ( intintobjargproc ) Matrix_ass_slice, /* sq_ass_slice */
};
+
static PyNumberMethods Matrix_NumMethods = {
- (binaryfunc) Matrix_add, /* __add__ */
- (binaryfunc) Matrix_sub, /* __sub__ */
- (binaryfunc) Matrix_mul, /* __mul__ */
- (binaryfunc) 0, /* __div__ */
- (binaryfunc) 0, /* __mod__ */
- (binaryfunc) 0, /* __divmod__ */
- (ternaryfunc) 0, /* __pow__ */
- (unaryfunc) 0, /* __neg__ */
- (unaryfunc) 0, /* __pos__ */
- (unaryfunc) 0, /* __abs__ */
- (inquiry) 0, /* __nonzero__ */
- (unaryfunc) 0, /* __invert__ */
- (binaryfunc) 0, /* __lshift__ */
- (binaryfunc) 0, /* __rshift__ */
- (binaryfunc) 0, /* __and__ */
- (binaryfunc) 0, /* __xor__ */
- (binaryfunc) 0, /* __or__ */
- (coercion) Matrix_coerce, /* __coerce__ */
- (unaryfunc) 0, /* __int__ */
- (unaryfunc) 0, /* __long__ */
- (unaryfunc) 0, /* __float__ */
- (unaryfunc) 0, /* __oct__ */
- (unaryfunc) 0, /* __hex__ */
+ ( binaryfunc ) Matrix_add, /* __add__ */
+ ( binaryfunc ) Matrix_sub, /* __sub__ */
+ ( binaryfunc ) Matrix_mul, /* __mul__ */
+ ( binaryfunc ) 0, /* __div__ */
+ ( binaryfunc ) 0, /* __mod__ */
+ ( binaryfunc ) 0, /* __divmod__ */
+ ( ternaryfunc ) 0, /* __pow__ */
+ ( unaryfunc ) 0, /* __neg__ */
+ ( unaryfunc ) 0, /* __pos__ */
+ ( unaryfunc ) 0, /* __abs__ */
+ ( inquiry ) 0, /* __nonzero__ */
+ ( unaryfunc ) 0, /* __invert__ */
+ ( binaryfunc ) 0, /* __lshift__ */
+ ( binaryfunc ) 0, /* __rshift__ */
+ ( binaryfunc ) 0, /* __and__ */
+ ( binaryfunc ) 0, /* __xor__ */
+ ( binaryfunc ) 0, /* __or__ */
+ ( coercion ) Matrix_coerce, /* __coerce__ */
+ ( unaryfunc ) 0, /* __int__ */
+ ( unaryfunc ) 0, /* __long__ */
+ ( unaryfunc ) 0, /* __float__ */
+ ( unaryfunc ) 0, /* __oct__ */
+ ( unaryfunc ) 0, /* __hex__ */
};
-//------------------PY_OBECT DEFINITION--------------------------
+
PyTypeObject matrix_Type = {
- PyObject_HEAD_INIT(NULL) /* required python macro */
- 0, /*ob_size */
- "Matrix", /*tp_name */
- sizeof(MatrixObject), /*tp_basicsize */
- 0, /*tp_itemsize */
- (destructor) Matrix_dealloc, /*tp_dealloc */
- (printfunc) 0, /*tp_print */
- (getattrfunc) Matrix_getattr, /*tp_getattr */
- (setattrfunc) Matrix_setattr, /*tp_setattr */
- 0, /*tp_compare */
- (reprfunc) Matrix_repr, /*tp_repr */
- &Matrix_NumMethods, /*tp_as_number */
- &Matrix_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT( NULL ) /* required python macro */
+ 0, /*ob_size */
+ "Matrix", /*tp_name */
+ sizeof( MatrixObject ), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ ( destructor ) Matrix_dealloc, /*tp_dealloc */
+ ( printfunc ) 0, /*tp_print */
+ ( getattrfunc ) Matrix_getattr, /*tp_getattr */
+ ( setattrfunc ) Matrix_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ ( reprfunc ) Matrix_repr, /*tp_repr */
+ &Matrix_NumMethods, /*tp_as_number */
+ &Matrix_SeqMethods, /*tp_as_sequence */
};
-//------------------------newMatrixObject (internal)-------------
-//creates a new matrix object
-//self->matrix self->contiguous_ptr (reference to data.xxx)
-// [0]------------->[0]
-// [1]
-// [2]
-// [1]------------->[3]
-// [4]
-// [5]
-// ....
-//self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]
-/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
- (i.e. it was allocated elsewhere by MEM_mallocN())
- pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
- (i.e. it must be created here with PyMEM_malloc())*/
-PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
+
+//******************************************************************
+//Function: newMatrixObject
+//******************************************************************
+PyObject *newMatrixObject( float *mat, int rowSize, int colSize )
{
MatrixObject *self;
- int x, row, col;
+ int row, col, x;
- //matrix objects can be any 2-4row x 2-4col matrix
- if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
- return EXPP_ReturnPyObjError(PyExc_RuntimeError,
- "matrix(): row and column sizes must be between 2 and 4\n");
+ if( rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4 )
+ return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
+ "row and column sizes must be between 2 and 4\n" ) );
+
+ self = PyObject_NEW( MatrixObject, &matrix_Type );
+
+ //generate contigous memory space
+ self->contigPtr = PyMem_Malloc( rowSize * colSize * sizeof( float ) );
+ if( self->contigPtr == NULL ) {
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating array space\n\n" ) );
+ }
+ //create pointer array
+ self->matrix = PyMem_Malloc( rowSize * sizeof( float * ) );
+ if( self->matrix == NULL ) {
+ PyMem_Free( self->contigPtr );
+ return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "problem allocating pointer space\n\n" ) );
+ }
+ //pointer array points to contigous memory
+ for( x = 0; x < rowSize; x++ ) {
+ self->matrix[x] = self->contigPtr + ( x * colSize );
}
- matrix_Type.ob_type = &PyType_Type;
- self = PyObject_NEW(MatrixObject, &matrix_Type);
- self->data.blend_data = NULL;
- self->data.py_data = NULL;
- self->rowSize = rowSize;
- self->colSize = colSize;
- self->coerced_object = NULL;
-
- if(type == Py_WRAP){
- self->data.blend_data = mat;
- self->contigPtr = self->data.blend_data;
- //create pointer array
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { //allocation failure
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "matrix(): problem allocating pointer space\n");
- }
- //pointer array points to contigous memory
- for(x = 0; x < rowSize; x++) {
- self->matrix[x] = self->contigPtr + (x * colSize);
- }
- }else if (type == Py_NEW){
- self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
- if(self->data.py_data == NULL) { //allocation failure
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "matrix(): problem allocating pointer space\n");
- }
- self->contigPtr = self->data.py_data;
- //create pointer array
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { //allocation failure
- PyMem_Free(self->data.py_data);
- return EXPP_ReturnPyObjError( PyExc_MemoryError,
- "matrix(): problem allocating pointer space\n");
- }
- //pointer array points to contigous memory
- for(x = 0; x < rowSize; x++) {
- self->matrix[x] = self->contigPtr + (x * colSize);
+ if( mat ) { //if a float array passed
+ for( row = 0; row < rowSize; row++ ) {
+ for( col = 0; col < colSize; col++ ) {
+ self->matrix[row][col] =
+ mat[( row * colSize ) + col];
+ }
}
- //parse
- if(mat) { //if a float array passed
- for(row = 0; row < rowSize; row++) {
- for(col = 0; col < colSize; col++) {
- self->matrix[row][col] = mat[(row * colSize) + col];
- }
+ } else { //or if NULL passed
+ for( row = 0; row < rowSize; row++ ) {
+ for( col = 0; col < colSize; col++ ) {
+ self->matrix[row][col] = 0.0f;
}
- } else { //or if no arguments are passed return identity matrix
- Matrix_Identity(self);
}
- }else{ //bad type
- return NULL;
}
- return (PyObject *) EXPP_incr_ret((PyObject *)self);
+
+ //set size vars of matrix
+ self->rowSize = rowSize;
+ self->colSize = colSize;
+
+ //set coercion flag
+ self->flag = 0;
+
+ return ( ( PyObject * ) self );
}
diff --git a/source/blender/python/api2_2x/matrix.h b/source/blender/python/api2_2x/matrix.h
index 9c114867786..b40ec978159 100644
--- a/source/blender/python/api2_2x/matrix.h
+++ b/source/blender/python/api2_2x/matrix.h
@@ -33,31 +33,37 @@
#ifndef EXPP_matrix_h
#define EXPP_matrix_h
-#define MatrixObject_Check(v) ((v)->ob_type == &matrix_Type)
+#include "Python.h"
+#include "BLI_arithb.h"
+#include "vector.h"
+#include "gen_utils.h"
+#include "Types.h"
+#include "quat.h"
+#include "euler.h"
+#define Matrix_CheckPyObject(v) ((v)->ob_type == &matrix_Type)
+
+/*****************************/
+/* Matrix Python Object */
+/*****************************/
typedef float **ptRow;
+
typedef struct _Matrix {
- PyObject_VAR_HEAD
- struct{
- float *py_data; //python managed
- float *blend_data; //blender managed
- }data;
- ptRow matrix; //ptr to the contigPtr (accessor)
- float *contigPtr; //1D array of data (alias)
+ PyObject_VAR_HEAD /* standard python macro */
+ ptRow matrix;
+ float *contigPtr;
int rowSize;
int colSize;
- PyObject *coerced_object;
+ int flag;
+ //0 - no coercion
+ //1 - coerced from int
+ //2 - coerced from float
} MatrixObject;
-/*coerced_object is a pointer to the object that it was
-coerced from when a dummy vector needs to be created from
-the coerce() function for numeric protocol operations*/
-
-/*struct data contains a pointer to the actual data that the
-object uses. It can use either PyMem allocated data (which will
-be stored in py_data) or be a wrapper for data allocated through
-blender (stored in blend_data). This is an either/or struct not both*/
-//prototypes
+/*****************************************************************************/
+/* Python API function prototypes. */
+/*****************************************************************************/
+PyObject *newMatrixObject( float *mat, int rowSize, int colSize );
PyObject *Matrix_Zero( MatrixObject * self );
PyObject *Matrix_Identity( MatrixObject * self );
PyObject *Matrix_Transpose( MatrixObject * self );
@@ -68,6 +74,5 @@ PyObject *Matrix_RotationPart( MatrixObject * self );
PyObject *Matrix_Resize4x4( MatrixObject * self );
PyObject *Matrix_toEuler( MatrixObject * self );
PyObject *Matrix_toQuat( MatrixObject * self );
-PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type);
#endif /* EXPP_matrix_H */
diff --git a/source/blender/python/api2_2x/quat.c b/source/blender/python/api2_2x/quat.c
index 3d6961c78eb..35ef90aca2d 100644
--- a/source/blender/python/api2_2x/quat.c
+++ b/source/blender/python/api2_2x/quat.c
@@ -29,571 +29,545 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include <BLI_arithb.h>
-#include <BKE_utildefines.h>
-#include "Mathutils.h"
-#include "gen_utils.h"
-
-//-------------------------DOC STRINGS ---------------------------
-char Quaternion_Identity_doc[] = "() - set the quaternion to it's identity (1, vector)";
-char Quaternion_Negate_doc[] = "() - set all values in the quaternion to their negative";
+#include "quat.h"
+
+//doc strings
+char Quaternion_Identity_doc[] =
+ "() - set the quaternion to it's identity (1, vector)";
+char Quaternion_Negate_doc[] =
+ "() - set all values in the quaternion to their negative";
char Quaternion_Conjugate_doc[] = "() - set the quaternion to it's conjugate";
char Quaternion_Inverse_doc[] = "() - set the quaternion to it's inverse";
-char Quaternion_Normalize_doc[] = "() - normalize the vector portion of the quaternion";
-char Quaternion_ToEuler_doc[] = "() - return a euler rotation representing the quaternion";
-char Quaternion_ToMatrix_doc[] = "() - return a rotation matrix representing the quaternion";
-//-----------------------METHOD DEFINITIONS ----------------------
+char Quaternion_Normalize_doc[] =
+ "() - normalize the vector portion of the quaternion";
+char Quaternion_ToEuler_doc[] =
+ "() - return a euler rotation representing the quaternion";
+char Quaternion_ToMatrix_doc[] =
+ "() - return a rotation matrix representing the quaternion";
+
+//methods table
struct PyMethodDef Quaternion_methods[] = {
- {"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
- {"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
- {"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
- {"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
- {"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
- {"toEuler", (PyCFunction) Quaternion_ToEuler, METH_NOARGS, Quaternion_ToEuler_doc},
- {"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
+ {"identity", ( PyCFunction ) Quaternion_Identity, METH_NOARGS,
+ Quaternion_Identity_doc},
+ {"negate", ( PyCFunction ) Quaternion_Negate, METH_NOARGS,
+ Quaternion_Negate_doc},
+ {"conjugate", ( PyCFunction ) Quaternion_Conjugate, METH_NOARGS,
+ Quaternion_Conjugate_doc},
+ {"inverse", ( PyCFunction ) Quaternion_Inverse, METH_NOARGS,
+ Quaternion_Inverse_doc},
+ {"normalize", ( PyCFunction ) Quaternion_Normalize, METH_NOARGS,
+ Quaternion_Normalize_doc},
+ {"toEuler", ( PyCFunction ) Quaternion_ToEuler, METH_NOARGS,
+ Quaternion_ToEuler_doc},
+ {"toMatrix", ( PyCFunction ) Quaternion_ToMatrix, METH_NOARGS,
+ Quaternion_ToMatrix_doc},
{NULL, NULL, 0, NULL}
};
-//-----------------------------METHODS------------------------------
-//----------------------------Quaternion.toEuler()------------------
-//return the quat as a euler
-PyObject *Quaternion_ToEuler(QuaternionObject * self)
+
+/* ****** prototypes ********** */
+PyObject *Quaternion_add( PyObject * q1, PyObject * q2 );
+PyObject *Quaternion_sub( PyObject * q1, PyObject * q2 );
+PyObject *Quaternion_mul( PyObject * q1, PyObject * q2 );
+int Quaternion_coerce( PyObject ** q1, PyObject ** q2 );
+
+
+/*****************************/
+// Quaternion Python Object
+/*****************************/
+
+PyObject *Quaternion_ToEuler( QuaternionObject * self )
{
- float eul[3];
+ float *eul;
int x;
- QuatToEul(self->quat, eul);
- for(x = 0; x < 3; x++) {
- eul[x] *= (180 / (float)Py_PI);
+ eul = PyMem_Malloc( 3 * sizeof( float ) );
+ QuatToEul( self->quat, eul );
+
+ for( x = 0; x < 3; x++ ) {
+ eul[x] *= ( float ) ( 180 / Py_PI );
}
- if(self->data.blend_data)
- return newEulerObject(eul, Py_WRAP);
- else
- return newEulerObject(eul, Py_NEW);
+ return ( PyObject * ) newEulerObject( eul );
}
-//----------------------------Quaternion.toMatrix()------------------
-//return the quat as a matrix
-PyObject *Quaternion_ToMatrix(QuaternionObject * self)
+
+PyObject *Quaternion_ToMatrix( QuaternionObject * self )
{
- float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
- QuatToMat3(self->quat, (float (*)[3]) mat);
+ float *mat;
+
+ mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
+ QuatToMat3( self->quat, ( float ( * )[3] ) mat );
- if(self->data.blend_data)
- return newMatrixObject(mat, 3, 3, Py_WRAP);
- else
- return newMatrixObject(mat, 3, 3, Py_NEW);
+ return ( PyObject * ) newMatrixObject( mat, 3, 3 );
}
-//----------------------------Quaternion.normalize()----------------
+
//normalize the axis of rotation of [theta,vector]
-PyObject *Quaternion_Normalize(QuaternionObject * self)
+PyObject *Quaternion_Normalize( QuaternionObject * self )
{
- NormalQuat(self->quat);
- return (PyObject*)self;
+ NormalQuat( self->quat );
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Quaternion.inverse()------------------
-//invert the quat
-PyObject *Quaternion_Inverse(QuaternionObject * self)
+
+PyObject *Quaternion_Inverse( QuaternionObject * self )
{
- double mag = 0.0f;
+ float mag = 0.0f;
int x;
- for(x = 1; x < 4; x++) {
+ for( x = 1; x < 4; x++ ) {
self->quat[x] = -self->quat[x];
}
- for(x = 0; x < 4; x++) {
- mag += (self->quat[x] * self->quat[x]);
+ for( x = 0; x < 4; x++ ) {
+ mag += ( self->quat[x] * self->quat[x] );
}
- mag = sqrt(mag);
- for(x = 0; x < 4; x++) {
- self->quat[x] /= (mag * mag);
+ mag = ( float ) sqrt( mag );
+ for( x = 0; x < 4; x++ ) {
+ self->quat[x] /= ( mag * mag );
}
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Quaternion.identity()-----------------
-//generate the identity quaternion
-PyObject *Quaternion_Identity(QuaternionObject * self)
+
+PyObject *Quaternion_Identity( QuaternionObject * self )
{
self->quat[0] = 1.0;
self->quat[1] = 0.0;
self->quat[2] = 0.0;
self->quat[3] = 0.0;
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Quaternion.negate()-------------------
-//negate the quat
-PyObject *Quaternion_Negate(QuaternionObject * self)
+
+PyObject *Quaternion_Negate( QuaternionObject * self )
{
int x;
- for(x = 0; x < 4; x++) {
+
+ for( x = 0; x < 4; x++ ) {
self->quat[x] = -self->quat[x];
}
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Quaternion.conjugate()----------------
-//negate the vector part
-PyObject *Quaternion_Conjugate(QuaternionObject * self)
+
+PyObject *Quaternion_Conjugate( QuaternionObject * self )
{
int x;
- for(x = 1; x < 4; x++) {
+
+ for( x = 1; x < 4; x++ ) {
self->quat[x] = -self->quat[x];
}
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------dealloc()(internal) ------------------
-//free the py_object
-static void Quaternion_dealloc(QuaternionObject * self)
+
+static void Quaternion_dealloc( QuaternionObject * self )
{
- //only free py_data
- if(self->data.py_data){
- PyMem_Free(self->data.py_data);
- }
- PyObject_DEL(self);
+ PyMem_Free( self->quat );
+ PyObject_DEL( self );
}
-//----------------------------getattr()(internal) ------------------
-//object.attribute access (get)
-static PyObject *Quaternion_getattr(QuaternionObject * self, char *name)
+
+static PyObject *Quaternion_getattr( QuaternionObject * self, char *name )
{
- int x;
double mag = 0.0f;
- float vec[3];
-
- if(STREQ(name,"w")){
- return PyFloat_FromDouble(self->quat[0]);
- }else if(STREQ(name, "x")){
- return PyFloat_FromDouble(self->quat[1]);
- }else if(STREQ(name, "y")){
- return PyFloat_FromDouble(self->quat[2]);
- }else if(STREQ(name, "z")){
- return PyFloat_FromDouble(self->quat[3]);
+ float *vec = NULL;
+ int x;
+ PyObject *retval;
+
+ if( ELEM4( name[0], 'w', 'x', 'y', 'z' ) && name[1] == 0 ) {
+ return PyFloat_FromDouble( self->quat[name[0] - 'w'] );
}
- if(STREQ(name, "magnitude")) {
- for(x = 0; x < 4; x++) {
+ if( strcmp( name, "magnitude" ) == 0 ) {
+ for( x = 0; x < 4; x++ ) {
mag += self->quat[x] * self->quat[x];
}
- mag = sqrt(mag);
- return PyFloat_FromDouble(mag);
+ mag = ( float ) sqrt( mag );
+ return PyFloat_FromDouble( mag );
}
- if(STREQ(name, "angle")) {
+ if( strcmp( name, "angle" ) == 0 ) {
+
mag = self->quat[0];
- mag = 2 * (acos(mag));
- mag *= (180 / Py_PI);
- return PyFloat_FromDouble(mag);
+ mag = 2 * ( acos( mag ) );
+ mag *= ( 180 / Py_PI );
+ return PyFloat_FromDouble( mag );
}
- if(STREQ(name, "axis")) {
- mag = self->quat[0] * (Py_PI / 180);
- mag = 2 * (acos(mag));
- mag = sin(mag / 2);
- for(x = 0; x < 3; x++) {
- vec[x] = (self->quat[x + 1] / mag);
+ if( strcmp( name, "axis" ) == 0 ) {
+
+ mag = ( double ) ( self->quat[0] * ( Py_PI / 180 ) );
+ mag = 2 * ( acos( mag ) );
+ mag = sin( mag / 2 );
+ vec = PyMem_Malloc( 3 * sizeof( float ) );
+ for( x = 0; x < 3; x++ ) {
+ vec[x] = ( self->quat[x + 1] / ( ( float ) ( mag ) ) );
}
- Normalise(vec);
- return (PyObject *) newVectorObject(vec, 3, Py_NEW);
+ Normalise( vec );
+ retval = ( PyObject * ) newVectorObject( vec, 3 );
+ PyMem_Free( vec );
+ return retval;
}
-
- return Py_FindMethod(Quaternion_methods, (PyObject *) self, name);
+ return Py_FindMethod( Quaternion_methods, ( PyObject * ) self, name );
}
-//----------------------------setattr()(internal) ------------------
-//object.attribute access (set)
-static int Quaternion_setattr(QuaternionObject * self, char *name, PyObject * q)
-{
- PyObject *f = NULL;
-
- f = PyNumber_Float(q);
- if(f == NULL) { // parsed item not a number
- return EXPP_ReturnIntError(PyExc_TypeError,
- "quaternion.attribute = x: argument not a number\n");
- }
- if(STREQ(name,"w")){
- self->quat[0] = PyFloat_AS_DOUBLE(f);
- }else if(STREQ(name, "x")){
- self->quat[1] = PyFloat_AS_DOUBLE(f);
- }else if(STREQ(name, "y")){
- self->quat[2] = PyFloat_AS_DOUBLE(f);
- }else if(STREQ(name, "z")){
- self->quat[3] = PyFloat_AS_DOUBLE(f);
- }else{
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_AttributeError,
- "quaternion.attribute = x: unknown attribute\n");
+static int Quaternion_setattr( QuaternionObject * self, char *name,
+ PyObject * v )
+{
+ float val;
+
+ if( !PyFloat_Check( v ) && !PyInt_Check( v ) ) {
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "int or float expected\n" );
+ } else {
+ if( !PyArg_Parse( v, "f", &val ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "unable to parse float argument\n" );
}
+ if( ELEM4( name[0], 'w', 'x', 'y', 'z' ) && name[1] == 0 ) {
+ self->quat[name[0] - 'w'] = val;
+ } else
+ return -1;
- Py_DECREF(f);
return 0;
}
-//----------------------------print object (internal)--------------
-//print the object to screen
-static PyObject *Quaternion_repr(QuaternionObject * self)
-{
- int i;
- char buffer[48], str[1024];
-
- BLI_strncpy(str,"[",1024);
- for(i = 0; i < 4; i++){
- if(i < (3)){
- sprintf(buffer, "%.6f, ", self->quat[i]);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f", self->quat[i]);
- strcat(str,buffer);
- }
- }
- strcat(str, "](quaternion)");
- return EXPP_incr_ret(PyString_FromString(str));
-}
-//---------------------SEQUENCE PROTOCOLS------------------------
-//----------------------------len(object)------------------------
-//sequence length
-static int Quaternion_len(QuaternionObject * self)
+/* Quaternions Sequence methods */
+static PyObject *Quaternion_item( QuaternionObject * self, int i )
{
- return 4;
+ if( i < 0 || i >= 4 )
+ return EXPP_ReturnPyObjError( PyExc_IndexError,
+ "array index out of range\n" );
+
+ return Py_BuildValue( "f", self->quat[i] );
}
-//----------------------------object[]---------------------------
-//sequence accessor (get)
-static PyObject *Quaternion_item(QuaternionObject * self, int i)
+
+static PyObject *Quaternion_slice( QuaternionObject * self, int begin,
+ int end )
{
- if(i < 0 || i >= 4)
- return EXPP_ReturnPyObjError(PyExc_IndexError,
- "quaternion[attribute]: array index out of range\n");
+ PyObject *list;
+ int count;
- return Py_BuildValue("f", self->quat[i]);
+ if( begin < 0 )
+ begin = 0;
+ if( end > 4 )
+ end = 4;
+ if( begin > end )
+ begin = end;
-}
-//----------------------------object[]-------------------------
-//sequence accessor (set)
-static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
-{
- PyObject *f = NULL;
+ list = PyList_New( end - begin );
- f = PyNumber_Float(ob);
- if(f == NULL) { // parsed item not a number
- return EXPP_ReturnIntError(PyExc_TypeError,
- "quaternion[attribute] = x: argument not a number\n");
+ for( count = begin; count < end; count++ ) {
+ PyList_SetItem( list, count - begin,
+ PyFloat_FromDouble( self->quat[count] ) );
}
+ return list;
+}
- if(i < 0 || i >= 4){
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_IndexError,
- "quaternion[attribute] = x: array assignment index out of range\n");
+static int Quaternion_ass_item( QuaternionObject * self, int i, PyObject * ob )
+{
+ if( i < 0 || i >= 4 )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "array assignment index out of range\n" );
+ if( !PyNumber_Check( ob ) )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "Quaternion member must be a number\n" );
+
+ if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "int or float expected\n" );
+ } else {
+ self->quat[i] = ( float ) PyFloat_AsDouble( ob );
}
- self->quat[i] = PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
return 0;
}
-//----------------------------object[z:y]------------------------
-//sequence slice (get)
-static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
-{
- PyObject *list = NULL;
- int count;
- CLAMP(begin, 0, 4);
- CLAMP(end, 0, 4);
- begin = MIN2(begin,end);
-
- list = PyList_New(end - begin);
- for(count = begin; count < end; count++) {
- PyList_SetItem(list, count - begin,
- PyFloat_FromDouble(self->quat[count]));
+static int Quaternion_ass_slice( QuaternionObject * self, int begin, int end,
+ PyObject * seq )
+{
+ int count, z;
+
+ if( begin < 0 )
+ begin = 0;
+ if( end > 4 )
+ end = 4;
+ if( begin > end )
+ begin = end;
+
+ if( !PySequence_Check( seq ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "illegal argument type for built-in operation\n" );
+ if( PySequence_Length( seq ) != ( end - begin ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "size mismatch in slice assignment\n" );
+
+ z = 0;
+ for( count = begin; count < end; count++ ) {
+ PyObject *ob = PySequence_GetItem( seq, z );
+ z++;
+
+ if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
+ Py_DECREF( ob );
+ return -1;
+ } else {
+ if( !PyArg_Parse( ob, "f", &self->quat[count] ) ) {
+ Py_DECREF( ob );
+ return -1;
+ }
+ }
}
-
- return list;
+ return 0;
}
-//----------------------------object[z:y]------------------------
-//sequence slice (set)
-static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end,
- PyObject * seq)
-{
- int i, y, size = 0;
- float quat[4];
- CLAMP(begin, 0, 4);
- CLAMP(end, 0, 4);
- begin = MIN2(begin,end);
-
- size = PySequence_Length(seq);
- if(size != (end - begin)){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "quaternion[begin:end] = []: size mismatch in slice assignment\n");
+static PyObject *Quaternion_repr( QuaternionObject * self )
+{
+ int i, maxindex = 4 - 1;
+ char ftoa[24];
+ PyObject *str1, *str2;
+
+ str1 = PyString_FromString( "[" );
+
+ for( i = 0; i < maxindex; i++ ) {
+ sprintf( ftoa, "%.4f, ", self->quat[i] );
+ str2 = PyString_FromString( ftoa );
+ if( !str1 || !str2 )
+ goto error;
+ PyString_ConcatAndDel( &str1, str2 );
}
- for (i = 0; i < size; i++) {
- PyObject *q, *f;
+ sprintf( ftoa, "%.4f]", self->quat[maxindex] );
+ str2 = PyString_FromString( ftoa );
+ if( !str1 || !str2 )
+ goto error;
+ PyString_ConcatAndDel( &str1, str2 );
- q = PySequence_GetItem(seq, i);
- if (q == NULL) { // Failed to read sequence
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "quaternion[begin:end] = []: unable to read sequence\n");
- }
- f = PyNumber_Float(q);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(q);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "quaternion[begin:end] = []: sequence argument not a number\n");
- }
- quat[i] = PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,q);
- }
- //parsed well - now set in vector
- for(y = 0; y < size; y++){
- self->quat[begin + y] = quat[y];
- }
- return 0;
+ if( str1 )
+ return str1;
+
+ error:
+ Py_XDECREF( str1 );
+ Py_XDECREF( str2 );
+ return EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "couldn't create PyString!\n" );
}
-//------------------------NUMERIC PROTOCOLS----------------------
-//------------------------obj + obj------------------------------
-//addition
-static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
+
+
+PyObject *Quaternion_add( PyObject * q1, PyObject * q2 )
{
+ float *quat = NULL;
+ PyObject *retval;
int x;
- float quat[4];
- QuaternionObject *quat1 = NULL, *quat2 = NULL;
-
- EXPP_incr2(q1, q2);
- quat1 = (QuaternionObject*)q1;
- quat2 = (QuaternionObject*)q2;
- if(quat1->coerced_object || quat2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Quaternion addition: arguments not valid for this operation....\n");
- }
- for(x = 0; x < 4; x++) {
- quat[x] = quat1->quat[x] + quat2->quat[x];
+ if( ( !QuaternionObject_Check( q1 ) )
+ || ( !QuaternionObject_Check( q2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+ if( ( ( QuaternionObject * ) q1 )->flag > 0
+ || ( ( QuaternionObject * ) q2 )->flag > 0 )
+ return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
+ "cannot add a scalar and a quat\n" );
+
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ for( x = 0; x < 4; x++ ) {
+ quat[x] =
+ ( ( ( QuaternionObject * ) q1 )->quat[x] ) +
+ ( ( ( QuaternionObject * ) q2 )->quat[x] );
}
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ retval = ( PyObject * ) newQuaternionObject( quat );
+ PyMem_Free( quat );
+ return retval;
}
-//------------------------obj - obj------------------------------
-//subtraction
-static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
+
+PyObject *Quaternion_sub( PyObject * q1, PyObject * q2 )
{
+ float *quat = NULL;
+ PyObject *retval;
int x;
- float quat[4];
- QuaternionObject *quat1 = NULL, *quat2 = NULL;
-
- EXPP_incr2(q1, q2);
- quat1 = (QuaternionObject*)q1;
- quat2 = (QuaternionObject*)q2;
- if(quat1->coerced_object || quat2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Quaternion addition: arguments not valid for this operation....\n");
- }
- for(x = 0; x < 4; x++) {
- quat[x] = quat1->quat[x] - quat2->quat[x];
+ if( ( !QuaternionObject_Check( q1 ) )
+ || ( !QuaternionObject_Check( q2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+ if( ( ( QuaternionObject * ) q1 )->flag > 0
+ || ( ( QuaternionObject * ) q2 )->flag > 0 )
+ return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
+ "cannot subtract a scalar and a quat\n" );
+
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ for( x = 0; x < 4; x++ ) {
+ quat[x] =
+ ( ( ( QuaternionObject * ) q1 )->quat[x] ) -
+ ( ( ( QuaternionObject * ) q2 )->quat[x] );
}
+ retval = ( PyObject * ) newQuaternionObject( quat );
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
+ PyMem_Free( quat );
+ return retval;
}
-//------------------------obj * obj------------------------------
-//mulplication
-static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
+
+PyObject *Quaternion_mul( PyObject * q1, PyObject * q2 )
{
+ float *quat = NULL;
+ PyObject *retval;
int x;
- float quat[4], scalar, newVec[3];
- double dot = 0.0f;
- QuaternionObject *quat1 = NULL, *quat2 = NULL;
- PyObject *f = NULL;
- VectorObject *vec = NULL;
-
- EXPP_incr2(q1, q2);
- quat1 = (QuaternionObject*)q1;
- quat2 = (QuaternionObject*)q2;
-
- if(quat1->coerced_object){
- if (PyFloat_Check(quat1->coerced_object) ||
- PyInt_Check(quat1->coerced_object)){ // FLOAT/INT * QUAT
- f = PyNumber_Float(quat1->coerced_object);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Quaternion multiplication: arguments not acceptable for this operation\n");
- }
- scalar = PyFloat_AS_DOUBLE(f);
- for(x = 0; x < 4; x++) {
- quat[x] = quat2->quat[x] * scalar;
- }
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
- }
- }else{
- if(quat2->coerced_object){
- if (PyFloat_Check(quat2->coerced_object) ||
- PyInt_Check(quat2->coerced_object)){ // QUAT * FLOAT/INT
- f = PyNumber_Float(quat2->coerced_object);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Quaternion multiplication: arguments not acceptable for this operation\n");
- }
- scalar = PyFloat_AS_DOUBLE(f);
- for(x = 0; x < 4; x++) {
- quat[x] = quat1->quat[x] * scalar;
- }
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return (PyObject *) newQuaternionObject(quat, Py_NEW);
- }else if(VectorObject_Check(quat2->coerced_object)){ //QUAT * VEC
- vec = (VectorObject*)EXPP_incr_ret(quat2->coerced_object);
- if(vec->size != 3){
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Quaternion multiplication: only 3D vector rotations currently supported\n");
- }
- newVec[0] = quat1->quat[0]*quat1->quat[0]*vec->vec[0] +
- 2*quat1->quat[2]*quat1->quat[0]*vec->vec[2] -
- 2*quat1->quat[3]*quat1->quat[0]*vec->vec[1] +
- quat1->quat[1]*quat1->quat[1]*vec->vec[0] +
- 2*quat1->quat[2]*quat1->quat[1]*vec->vec[1] +
- 2*quat1->quat[3]*quat1->quat[1]*vec->vec[2] -
- quat1->quat[3]*quat1->quat[3]*vec->vec[0] -
- quat1->quat[2]*quat1->quat[2]*vec->vec[0];
- newVec[1] = 2*quat1->quat[1]*quat1->quat[2]*vec->vec[0] +
- quat1->quat[2]*quat1->quat[2]*vec->vec[1] +
- 2*quat1->quat[3]*quat1->quat[2]*vec->vec[2] +
- 2*quat1->quat[0]*quat1->quat[3]*vec->vec[0] -
- quat1->quat[3]*quat1->quat[3]*vec->vec[1] +
- quat1->quat[0]*quat1->quat[0]*vec->vec[1] -
- 2*quat1->quat[1]*quat1->quat[0]*vec->vec[2] -
- quat1->quat[1]*quat1->quat[1]*vec->vec[1];
- newVec[2] = 2*quat1->quat[1]*quat1->quat[3]*vec->vec[0] +
- 2*quat1->quat[2]*quat1->quat[3]*vec->vec[1] +
- quat1->quat[3]*quat1->quat[3]*vec->vec[2] -
- 2*quat1->quat[0]*quat1->quat[2]*vec->vec[0] -
- quat1->quat[2]*quat1->quat[2]*vec->vec[2] +
- 2*quat1->quat[0]*quat1->quat[1]*vec->vec[1] -
- quat1->quat[1]*quat1->quat[1]*vec->vec[2] +
- quat1->quat[0]*quat1->quat[0]*vec->vec[2];
- EXPP_decr3((PyObject*)quat1, (PyObject*)quat2, (PyObject*)vec);
- return newVectorObject(newVec,3,Py_NEW);
- }
- }else{ //QUAT * QUAT (dot product)
- for(x = 0; x < 4; x++) {
- dot += quat1->quat[x] * quat1->quat[x];
- }
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return PyFloat_FromDouble(dot);
- }
+
+ if( ( !QuaternionObject_Check( q1 ) )
+ || ( !QuaternionObject_Check( q2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+ if( ( ( QuaternionObject * ) q1 )->flag == 0
+ && ( ( QuaternionObject * ) q2 )->flag == 0 )
+ return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
+ "please use the dot or cross product to multiply quaternions\n" );
+
+ quat = PyMem_Malloc( 4 * sizeof( float ) );
+ //scalar mult by quat
+ for( x = 0; x < 4; x++ ) {
+ quat[x] =
+ ( ( QuaternionObject * ) q1 )->quat[x] *
+ ( ( QuaternionObject * ) q2 )->quat[x];
}
+ retval = ( PyObject * ) newQuaternionObject( quat );
- EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Quaternion multiplication: arguments not acceptable for this operation\n");
+ PyMem_Free( quat );
+ return retval;
}
-//------------------------coerce(obj, obj)-----------------------
+
//coercion of unknown types to type QuaternionObject for numeric protocols
-/*Coercion() is called whenever a math operation has 2 operands that
- it doesn't understand how to evaluate. 2+Matrix for example. We want to
- evaluate some of these operations like: (vector * 2), however, for math
- to proceed, the unknown operand must be cast to a type that python math will
- understand. (e.g. in the case above case, 2 must be cast to a vector and
- then call vector.multiply(vector, scalar_cast_as_vector)*/
-static int Quaternion_coerce(PyObject ** q1, PyObject ** q2)
+int Quaternion_coerce( PyObject ** q1, PyObject ** q2 )
{
+ long *tempI = NULL;
+ double *tempF = NULL;
+ float *quat = NULL;
int x;
- float quat[4];
- PyObject *coerced = NULL;
-
- if(!QuaternionObject_Check(*q2)) {
- if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2)) {
- coerced = EXPP_incr_ret(*q2);
- *q2 = newQuaternionObject(NULL,Py_NEW);
- ((QuaternionObject*)*q2)->coerced_object = coerced;
- }else{
- return EXPP_ReturnIntError(PyExc_TypeError,
- "quaternion.coerce(): unknown operand - can't coerce for numeric protocols\n");
+
+ if( QuaternionObject_Check( *q1 ) ) {
+ if( QuaternionObject_Check( *q2 ) ) { //two Quaternions
+ Py_INCREF( *q1 );
+ Py_INCREF( *q2 );
+ return 0;
+ } else {
+ if( PyNumber_Check( *q2 ) ) {
+ if( PyInt_Check( *q2 ) ) { //cast scalar to Quaternion
+ tempI = PyMem_Malloc( 1 *
+ sizeof( long ) );
+ *tempI = PyInt_AsLong( *q2 );
+ quat = PyMem_Malloc( 4 *
+ sizeof( float ) );
+ for( x = 0; x < 4; x++ ) {
+ quat[x] = ( float ) *tempI;
+ }
+ PyMem_Free( tempI );
+ *q2 = newQuaternionObject( quat );
+ PyMem_Free( quat );
+ ( ( QuaternionObject * ) * q2 )->flag = 1; //int coercion
+ Py_INCREF( *q1 ); /* fixme: is this needed? */
+ return 0;
+ } else if( PyFloat_Check( *q2 ) ) { //cast scalar to Quaternion
+ tempF = PyMem_Malloc( 1 *
+ sizeof
+ ( double ) );
+ *tempF = PyFloat_AsDouble( *q2 );
+ quat = PyMem_Malloc( 4 *
+ sizeof( float ) );
+ for( x = 0; x < 4; x++ ) {
+ quat[x] = ( float ) *tempF;
+ }
+ PyMem_Free( tempF );
+ *q2 = newQuaternionObject( quat );
+ PyMem_Free( quat );
+ ( ( QuaternionObject * ) * q2 )->flag = 2; //float coercion
+ Py_INCREF( *q1 ); /* fixme: is this needed? */
+ return 0;
+ }
+ }
+ //unknown type or numeric cast failure
+ printf( "attempting quaternion operation with unsupported type...\n" );
+ Py_INCREF( *q1 ); /* fixme: is this needed? */
+ return 0; //operation will type check
}
+ } else {
+ printf( "numeric protocol failure...\n" );
+ return -1; //this should not occur - fail
}
- EXPP_incr2(*q1, *q2);
- return 0;
+ return -1;
}
-//-----------------PROTCOL DECLARATIONS--------------------------
+
static PySequenceMethods Quaternion_SeqMethods = {
- (inquiry) Quaternion_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (intargfunc) 0, /* sq_repeat */
- (intargfunc) Quaternion_item, /* sq_item */
- (intintargfunc) Quaternion_slice, /* sq_slice */
- (intobjargproc) Quaternion_ass_item, /* sq_ass_item */
- (intintobjargproc) Quaternion_ass_slice, /* sq_ass_slice */
+ ( inquiry ) 0, /* sq_length */
+ ( binaryfunc ) 0, /* sq_concat */
+ ( intargfunc ) 0, /* sq_repeat */
+ ( intargfunc ) Quaternion_item, /* sq_item */
+ ( intintargfunc ) Quaternion_slice, /* sq_slice */
+ ( intobjargproc ) Quaternion_ass_item, /* sq_ass_item */
+ ( intintobjargproc ) Quaternion_ass_slice, /* sq_ass_slice */
};
+
static PyNumberMethods Quaternion_NumMethods = {
- (binaryfunc) Quaternion_add, /* __add__ */
- (binaryfunc) Quaternion_sub, /* __sub__ */
- (binaryfunc) Quaternion_mul, /* __mul__ */
- (binaryfunc) 0, /* __div__ */
- (binaryfunc) 0, /* __mod__ */
- (binaryfunc) 0, /* __divmod__ */
- (ternaryfunc) 0, /* __pow__ */
- (unaryfunc) 0, /* __neg__ */
- (unaryfunc) 0, /* __pos__ */
- (unaryfunc) 0, /* __abs__ */
- (inquiry) 0, /* __nonzero__ */
- (unaryfunc) 0, /* __invert__ */
- (binaryfunc) 0, /* __lshift__ */
- (binaryfunc) 0, /* __rshift__ */
- (binaryfunc) 0, /* __and__ */
- (binaryfunc) 0, /* __xor__ */
- (binaryfunc) 0, /* __or__ */
- (coercion) Quaternion_coerce, /* __coerce__ */
- (unaryfunc) 0, /* __int__ */
- (unaryfunc) 0, /* __long__ */
- (unaryfunc) 0, /* __float__ */
- (unaryfunc) 0, /* __oct__ */
- (unaryfunc) 0, /* __hex__ */
+ ( binaryfunc ) Quaternion_add, /* __add__ */
+ ( binaryfunc ) Quaternion_sub, /* __sub__ */
+ ( binaryfunc ) Quaternion_mul, /* __mul__ */
+ ( binaryfunc ) 0, /* __div__ */
+ ( binaryfunc ) 0, /* __mod__ */
+ ( binaryfunc ) 0, /* __divmod__ */
+ ( ternaryfunc ) 0, /* __pow__ */
+ ( unaryfunc ) 0, /* __neg__ */
+ ( unaryfunc ) 0, /* __pos__ */
+ ( unaryfunc ) 0, /* __abs__ */
+ ( inquiry ) 0, /* __nonzero__ */
+ ( unaryfunc ) 0, /* __invert__ */
+ ( binaryfunc ) 0, /* __lshift__ */
+ ( binaryfunc ) 0, /* __rshift__ */
+ ( binaryfunc ) 0, /* __and__ */
+ ( binaryfunc ) 0, /* __xor__ */
+ ( binaryfunc ) 0, /* __or__ */
+ ( coercion ) Quaternion_coerce, /* __coerce__ */
+ ( unaryfunc ) 0, /* __int__ */
+ ( unaryfunc ) 0, /* __long__ */
+ ( unaryfunc ) 0, /* __float__ */
+ ( unaryfunc ) 0, /* __oct__ */
+ ( unaryfunc ) 0, /* __hex__ */
};
-//------------------PY_OBECT DEFINITION--------------------------
+
PyTypeObject quaternion_Type = {
- PyObject_HEAD_INIT(NULL)
- 0, /*ob_size */
- "quaternion", /*tp_name */
- sizeof(QuaternionObject), /*tp_basicsize */
- 0, /*tp_itemsize */
- (destructor) Quaternion_dealloc, /*tp_dealloc */
- (printfunc) 0, /*tp_print */
- (getattrfunc) Quaternion_getattr, /*tp_getattr */
- (setattrfunc) Quaternion_setattr, /*tp_setattr */
- 0, /*tp_compare */
- (reprfunc) Quaternion_repr, /*tp_repr */
- &Quaternion_NumMethods, /*tp_as_number */
- &Quaternion_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT( NULL )
+ 0, /*ob_size */
+ "quaternion", /*tp_name */
+ sizeof( QuaternionObject ), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ ( destructor ) Quaternion_dealloc, /*tp_dealloc */
+ ( printfunc ) 0, /*tp_print */
+ ( getattrfunc ) Quaternion_getattr, /*tp_getattr */
+ ( setattrfunc ) Quaternion_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ ( reprfunc ) Quaternion_repr, /*tp_repr */
+ &Quaternion_NumMethods, /*tp_as_number */
+ &Quaternion_SeqMethods, /*tp_as_sequence */
};
-//------------------------newQuaternionObject (internal)-------------
-//creates a new quaternion object
-/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
- (i.e. it was allocated elsewhere by MEM_mallocN())
- pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
- (i.e. it must be created here with PyMEM_malloc())*/
-PyObject *newQuaternionObject(float *quat, int type)
+
+/** Creates a new quaternion object.
+ *
+ * Memory for a new quaternion is allocated. The quaternion copies the given
+ * list of parameters or initializes to the identity, if a <code>NULL</code>
+ * pointer is given as parameter. The memory will be freed in the dealloc
+ * routine.
+ *
+ * @param quat Pointer to a list of floats for the quanternion parameters w, x, y, z.
+ * @return Quaternion Python object.
+ * @see Quaternion_Identity
+ */
+PyObject *newQuaternionObject( float *quat )
{
QuaternionObject *self;
int x;
quaternion_Type.ob_type = &PyType_Type;
- self = PyObject_NEW(QuaternionObject, &quaternion_Type);
- self->data.blend_data = NULL;
- self->data.py_data = NULL;
- self->coerced_object = NULL;
-
- if(type == Py_WRAP){
- self->data.blend_data = quat;
- self->quat = self->data.blend_data;
- }else if (type == Py_NEW){
- self->data.py_data = PyMem_Malloc(4 * sizeof(float));
- self->quat = self->data.py_data;
- if(!quat) { //new empty
- Quaternion_Identity(self);
- }else{
- for(x = 0; x < 4; x++){
- self->quat[x] = quat[x];
- }
+
+ self = PyObject_NEW( QuaternionObject, &quaternion_Type );
+
+ self->quat = PyMem_Malloc( 4 * sizeof( float ) );
+
+ if( !quat ) {
+ Quaternion_Identity(self);
+ } else {
+ for( x = 0; x < 4; x++ ) {
+ self->quat[x] = quat[x];
}
- }else{ //bad type
- return NULL;
}
- return (PyObject *) EXPP_incr_ret((PyObject *)self);
+ self->flag = 0;
+
+ return ( PyObject * ) self;
}
diff --git a/source/blender/python/api2_2x/quat.h b/source/blender/python/api2_2x/quat.h
index 8be94ef3f42..a04e0ee7c37 100644
--- a/source/blender/python/api2_2x/quat.h
+++ b/source/blender/python/api2_2x/quat.h
@@ -34,27 +34,34 @@
#ifndef EXPP_quat_h
#define EXPP_quat_h
+#include "Python.h"
+#include "gen_utils.h"
+#include "Types.h"
+#include <BLI_arithb.h>
+#include "euler.h"
+#include "matrix.h"
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+/*****************************/
+// Quaternion Python Object
+/*****************************/
+
#define QuaternionObject_Check(v) ((v)->ob_type == &quaternion_Type)
typedef struct {
- PyObject_VAR_HEAD
- struct{
- float *py_data; //python managed
- float *blend_data; //blender managed
- }data;
- float *quat; //1D array of data (alias)
- PyObject *coerced_object;
+ PyObject_VAR_HEAD float *quat;
+ int flag;
+ //0 - no coercion
+ //1 - coerced from int
+ //2 - coerced from float
} QuaternionObject;
-/*coerced_object is a pointer to the object that it was
-coerced from when a dummy vector needs to be created from
-the coerce() function for numeric protocol operations*/
-/*struct data contains a pointer to the actual data that the
-object uses. It can use either PyMem allocated data (which will
-be stored in py_data) or be a wrapper for data allocated through
-blender (stored in blend_data). This is an either/or struct not both*/
//prototypes
+PyObject *newQuaternionObject( float *quat );
PyObject *Quaternion_Identity( QuaternionObject * self );
PyObject *Quaternion_Negate( QuaternionObject * self );
PyObject *Quaternion_Conjugate( QuaternionObject * self );
@@ -62,6 +69,5 @@ PyObject *Quaternion_Inverse( QuaternionObject * self );
PyObject *Quaternion_Normalize( QuaternionObject * self );
PyObject *Quaternion_ToEuler( QuaternionObject * self );
PyObject *Quaternion_ToMatrix( QuaternionObject * self );
-PyObject *newQuaternionObject( float *quat, int type );
#endif /* EXPP_quat_h */
diff --git a/source/blender/python/api2_2x/vector.c b/source/blender/python/api2_2x/vector.c
index f9dfe47b693..9e65de3c46d 100644
--- a/source/blender/python/api2_2x/vector.c
+++ b/source/blender/python/api2_2x/vector.c
@@ -28,652 +28,707 @@
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
-#include <BKE_utildefines.h>
-#include "Mathutils.h"
-#include "gen_utils.h"
+#include "vector.h"
-//-------------------------DOC STRINGS ---------------------------
+//doc strings
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
char Vector_Normalize_doc[] = "() - normalize the vector";
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
-//-----------------------METHOD DEFINITIONS ----------------------
+
+//method table
struct PyMethodDef Vector_methods[] = {
- {"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
- {"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
- {"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
- {"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
- {"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
- {"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
+ {"zero", ( PyCFunction ) Vector_Zero, METH_NOARGS,
+ Vector_Zero_doc},
+ {"normalize", ( PyCFunction ) Vector_Normalize, METH_NOARGS,
+ Vector_Normalize_doc},
+ {"negate", ( PyCFunction ) Vector_Negate, METH_NOARGS,
+ Vector_Negate_doc},
+ {"resize2D", ( PyCFunction ) Vector_Resize2D, METH_NOARGS,
+ Vector_Resize2D_doc},
+ {"resize3D", ( PyCFunction ) Vector_Resize3D, METH_NOARGS,
+ Vector_Resize2D_doc},
+ {"resize4D", ( PyCFunction ) Vector_Resize4D, METH_NOARGS,
+ Vector_Resize2D_doc},
{NULL, NULL, 0, NULL}
};
-//-----------------------------METHODS----------------------------
-//----------------------------Vector.zero() ----------------------
-//set the vector data to 0,0,0
-PyObject *Vector_Zero(VectorObject * self)
+
+/******prototypes*************/
+PyObject *Vector_add( PyObject * v1, PyObject * v2 );
+PyObject *Vector_sub( PyObject * v1, PyObject * v2 );
+PyObject *Vector_mul( PyObject * v1, PyObject * v2 );
+PyObject *Vector_div( PyObject * v1, PyObject * v2 );
+int Vector_coerce( PyObject ** v1, PyObject ** v2 );
+
+
+/*****************************/
+// Vector Python Object
+/*****************************/
+
+//object methods
+PyObject *Vector_Zero( VectorObject * self )
{
int x;
- for(x = 0; x < self->size; x++) {
+ for( x = 0; x < self->size; x++ ) {
self->vec[x] = 0.0f;
}
- return (PyObject*)self;
+
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Vector.normalize() -----------------
-//normalize the vector data to a unit vector
-PyObject *Vector_Normalize(VectorObject * self)
+
+PyObject *Vector_Normalize( VectorObject * self )
{
+ float norm;
int x;
- float norm = 0.0f;
- for(x = 0; x < self->size; x++) {
+ norm = 0.0f;
+ for( x = 0; x < self->size; x++ ) {
norm += self->vec[x] * self->vec[x];
}
- norm = (float) sqrt(norm);
- for(x = 0; x < self->size; x++) {
+ norm = ( float ) sqrt( norm );
+ for( x = 0; x < self->size; x++ ) {
self->vec[x] /= norm;
}
- return (PyObject*)self;
+
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Vector.negate() --------------------
-//set the vector to it's negative -x, -y, -z
-PyObject *Vector_Negate(VectorObject * self)
+
+PyObject *Vector_Negate( VectorObject * self )
{
int x;
- for(x = 0; x < self->size; x++) {
- self->vec[x] = -(self->vec[x]);
- }
- return (PyObject*)self;
-}
-//----------------------------Vector.resize2D() ------------------
-//resize the vector to x,y
-PyObject *Vector_Resize2D(VectorObject * self)
-{
- if(self->data.blend_data){
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "vector.resize2d(): cannot resize wrapped data - only python vectors\n");
+ for( x = 0; x < self->size; x++ ) {
+ self->vec[x] = -( self->vec[x] );
}
- self->data.py_data =
- PyMem_Realloc(self->data.py_data, (sizeof(float) * 2));
- if(self->data.py_data == NULL) {
- return EXPP_ReturnPyObjError(PyExc_MemoryError,
- "vector.resize2d(): problem allocating pointer space\n\n");
- }
- self->vec = self->data.py_data; //force
- self->size = 2;
- return (PyObject*)self;
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Vector.resize3D() ------------------
-//resize the vector to x,y,z
-PyObject *Vector_Resize3D(VectorObject * self)
+
+PyObject *Vector_Resize2D( VectorObject * self )
{
- if(self->data.blend_data){
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "vector.resize3d(): cannot resize wrapped data - only python vectors\n");
- }
+ float x, y;
- self->data.py_data =
- PyMem_Realloc(self->data.py_data, (sizeof(float) * 3));
- if(self->data.py_data == NULL) {
- return EXPP_ReturnPyObjError(PyExc_MemoryError,
- "vector.resize3d(): problem allocating pointer space\n\n");
+ if( self->size == 4 || self->size == 3 ) {
+ x = self->vec[0];
+ y = self->vec[1];
+ PyMem_Free( self->vec );
+ self->vec = PyMem_Malloc( 2 * sizeof( float ) );
+ self->vec[0] = x;
+ self->vec[1] = y;
+ self->size = 2;
}
- self->vec = self->data.py_data; //force
- if(self->size == 2){
- self->data.py_data[2] = 0.0f;
- }
- self->size = 3;
- return (PyObject*)self;
+
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------Vector.resize4D() ------------------
-//resize the vector to x,y,z,w
-PyObject *Vector_Resize4D(VectorObject * self)
-{
- if(self->data.blend_data){
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "vector.resize4d(): cannot resize wrapped data - only python vectors\n");
- }
- self->data.py_data =
- PyMem_Realloc(self->data.py_data, (sizeof(float) * 4));
- if(self->data.py_data == NULL) {
- return EXPP_ReturnPyObjError(PyExc_MemoryError,
- "vector.resize4d(): problem allocating pointer space\n\n");
- }
- self->vec = self->data.py_data; //force
- if(self->size == 2){
- self->data.py_data[2] = 0.0f;
- self->data.py_data[3] = 0.0f;
- }else if(self->size == 3){
- self->data.py_data[3] = 0.0f;
- }
- self->size = 4;
- return (PyObject*)self;
+PyObject *Vector_Resize3D( VectorObject * self )
+{
+ float x, y, z;
+
+ if( self->size == 2 ) {
+ x = self->vec[0];
+ y = self->vec[1];
+ PyMem_Free( self->vec );
+ self->vec = PyMem_Malloc( 3 * sizeof( float ) );
+ self->vec[0] = x;
+ self->vec[1] = y;
+ self->vec[2] = 0.0f;
+ self->size = 3;
+ } else if( self->size == 4 ) {
+ x = self->vec[0];
+ y = self->vec[1];
+ z = self->vec[2];
+ PyMem_Free( self->vec );
+ self->vec = PyMem_Malloc( 3 * sizeof( float ) );
+ self->vec[0] = x;
+ self->vec[1] = y;
+ self->vec[2] = z;
+ self->size = 3;
+ }
+
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------dealloc()(internal) ----------------
-//free the py_object
-static void Vector_dealloc(VectorObject * self)
+
+PyObject *Vector_Resize4D( VectorObject * self )
{
- //only free py_data
- if(self->data.py_data){
- PyMem_Free(self->data.py_data);
- }
- PyObject_DEL(self);
+ float x, y, z;
+
+ if( self->size == 2 ) {
+ x = self->vec[0];
+ y = self->vec[1];
+ PyMem_Free( self->vec );
+ self->vec = PyMem_Malloc( 4 * sizeof( float ) );
+ self->vec[0] = x;
+ self->vec[1] = y;
+ self->vec[2] = 0.0f;
+ self->vec[3] = 1.0f;
+ self->size = 4;
+ } else if( self->size == 3 ) {
+ x = self->vec[0];
+ y = self->vec[1];
+ z = self->vec[2];
+ PyMem_Free( self->vec );
+ self->vec = PyMem_Malloc( 4 * sizeof( float ) );
+ self->vec[0] = x;
+ self->vec[1] = y;
+ self->vec[2] = z;
+ self->vec[3] = 1.0f;
+ self->size = 4;
+ }
+
+ return EXPP_incr_ret( Py_None );
}
-//----------------------------getattr()(internal) ----------------
-//object.attribute access (get)
-static PyObject *Vector_getattr(VectorObject * self, char *name)
+
+static void Vector_dealloc( VectorObject * self )
{
- int x;
- double dot = 0.0f;
-
- if(STREQ(name,"x")){
- return PyFloat_FromDouble(self->vec[0]);
- }else if(STREQ(name, "y")){
- return PyFloat_FromDouble(self->vec[1]);
- }else if(STREQ(name, "z")){
- if(self->size > 2){
- return PyFloat_FromDouble(self->vec[2]);
- }else{
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "vector.z: illegal attribute access\n");
- }
- }else if(STREQ(name, "w")){
- if(self->size > 3){
- return PyFloat_FromDouble(self->vec[3]);
- }else{
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "vector.w: illegal attribute access\n");
- }
- }else if(STREQ2(name, "length", "magnitude")) {
- for(x = 0; x < self->size; x++){
- dot += (self->vec[x] * self->vec[x]);
- }
- return PyFloat_FromDouble(sqrt(dot));
- }
+ /* if we own this memory we must delete it */
+ if( self->delete_pymem )
+ PyMem_Free( self->vec );
- return Py_FindMethod(Vector_methods, (PyObject *) self, name);
+ PyObject_DEL( self );
}
-//----------------------------setattr()(internal) ----------------
-//object.attribute access (set)
-static int Vector_setattr(VectorObject * self, char *name, PyObject * v)
-{
- PyObject *f = NULL;
- f = PyNumber_Float(v);
- if(f == NULL) { // parsed item not a number
- return EXPP_ReturnIntError(PyExc_TypeError,
- "vector.attribute = x: argument not a number\n");
- }
+static PyObject *Vector_getattr( VectorObject * self, char *name )
+{
+ if( self->size == 4 && ELEM4( name[0], 'x', 'y', 'z', 'w' )
+ && name[1] == 0 ) {
+ if( ( name[0] ) == ( 'w' ) ) {
+ return PyFloat_FromDouble( self->vec[3] );
+ } else {
+ return PyFloat_FromDouble( self->vec[name[0] - 'x'] );
+ }
+ } else if( self->size == 3 && ELEM3( name[0], 'x', 'y', 'z' )
+ && name[1] == 0 )
+ return PyFloat_FromDouble( self->vec[name[0] - 'x'] );
+ else if( self->size == 2 && ELEM( name[0], 'x', 'y' ) && name[1] == 0 )
+ return PyFloat_FromDouble( self->vec[name[0] - 'x'] );
+
+ if( ( strcmp( name, "length" ) == 0 ) ) {
+ if( self->size == 4 ) {
+ return PyFloat_FromDouble( sqrt
+ ( self->vec[0] *
+ self->vec[0] +
+ self->vec[1] *
+ self->vec[1] +
+ self->vec[2] *
+ self->vec[2] +
+ self->vec[3] *
+ self->vec[3] ) );
+ } else if( self->size == 3 ) {
+ return PyFloat_FromDouble( sqrt
+ ( self->vec[0] *
+ self->vec[0] +
+ self->vec[1] *
+ self->vec[1] +
+ self->vec[2] *
+ self->vec[2] ) );
+ } else if( self->size == 2 ) {
+ return PyFloat_FromDouble( sqrt
+ ( self->vec[0] *
+ self->vec[0] +
+ self->vec[1] *
+ self->vec[1] ) );
+ } else
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "can only return the length of a 2D ,3D or 4D vector\n" );
+ }
+
+ return Py_FindMethod( Vector_methods, ( PyObject * ) self, name );
+}
- if(STREQ(name,"x")){
- self->vec[0] = PyFloat_AS_DOUBLE(f);
- }else if(STREQ(name, "y")){
- self->vec[1] = PyFloat_AS_DOUBLE(f);
- }else if(STREQ(name, "z")){
- if(self->size > 2){
- self->vec[2] = PyFloat_AS_DOUBLE(f);
- }else{
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_AttributeError,
- "vector.z = x: illegal attribute access\n");
+static int Vector_setattr( VectorObject * self, char *name, PyObject * v )
+{
+ float val;
+ int valTemp;
+
+ if( !PyFloat_Check( v ) ) {
+ if( !PyInt_Check( v ) ) {
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "int or float expected\n" );
+ } else {
+ if( !PyArg_Parse( v, "i", &valTemp ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "unable to parse int argument\n" );
+ val = ( float ) valTemp;
}
- }else if(STREQ(name, "w")){
- if(self->size > 3){
- self->vec[3] = PyFloat_AS_DOUBLE(f);
- }else{
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_AttributeError,
- "vector.w = x: illegal attribute access\n");
+ } else {
+ if( !PyArg_Parse( v, "f", &val ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "unable to parse float argument\n" );
+ }
+ if( self->size == 4 && ELEM4( name[0], 'x', 'y', 'z', 'w' )
+ && name[1] == 0 ) {
+ if( ( name[0] ) == ( 'w' ) ) {
+ self->vec[3] = val;
+ } else {
+ self->vec[name[0] - 'x'] = val;
}
- }else{
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_AttributeError,
- "vector.attribute = x: unknown attribute\n");
- }
+ } else if( self->size == 3 && ELEM3( name[0], 'x', 'y', 'z' )
+ && name[1] == 0 )
+ self->vec[name[0] - 'x'] = val;
+ else if( self->size == 2 && ELEM( name[0], 'x', 'y' ) && name[1] == 0 )
+ self->vec[name[0] - 'x'] = val;
+ else
+ return -1;
- Py_DECREF(f);
return 0;
}
-//----------------------------print object (internal)-------------
-//print the object to screen
-static PyObject *Vector_repr(VectorObject * self)
-{
- int i;
- char buffer[48], str[1024];
-
- BLI_strncpy(str,"[",1024);
- for(i = 0; i < self->size; i++){
- if(i < (self->size - 1)){
- sprintf(buffer, "%.6f, ", self->vec[i]);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f", self->vec[i]);
- strcat(str,buffer);
- }
- }
- strcat(str, "](vector)");
- return EXPP_incr_ret(PyString_FromString(str));
-}
-//---------------------SEQUENCE PROTOCOLS------------------------
-//----------------------------len(object)------------------------
-//sequence length
-static int Vector_len(VectorObject * self)
+/* Vectors Sequence methods */
+static int Vector_len( VectorObject * self )
{
return self->size;
}
-//----------------------------object[]---------------------------
-//sequence accessor (get)
-static PyObject *Vector_item(VectorObject * self, int i)
-{
- if(i < 0 || i >= self->size)
- return EXPP_ReturnPyObjError(PyExc_IndexError,
- "vector[attribute]: array index out of range\n");
-
- return Py_BuildValue("f", self->vec[i]);
-}
-//----------------------------object[]-------------------------
-//sequence accessor (set)
-static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
+static PyObject *Vector_item( VectorObject * self, int i )
{
- PyObject *f = NULL;
+ if( i < 0 || i >= self->size )
+ return EXPP_ReturnPyObjError( PyExc_IndexError,
+ "array index out of range\n" );
- f = PyNumber_Float(ob);
- if(f == NULL) { // parsed item not a number
- return EXPP_ReturnIntError(PyExc_TypeError,
- "vector[attribute] = x: argument not a number\n");
- }
+ return Py_BuildValue( "f", self->vec[i] );
- if(i < 0 || i >= self->size){
- Py_DECREF(f);
- return EXPP_ReturnIntError(PyExc_IndexError,
- "vector[attribute] = x: array assignment index out of range\n");
- }
- self->vec[i] = PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
- return 0;
}
-//----------------------------object[z:y]------------------------
-//sequence slice (get)
-static PyObject *Vector_slice(VectorObject * self, int begin, int end)
+
+static PyObject *Vector_slice( VectorObject * self, int begin, int end )
{
- PyObject *list = NULL;
+ PyObject *list;
int count;
- CLAMP(begin, 0, self->size);
- CLAMP(end, 0, self->size);
- begin = MIN2(begin,end);
+ if( begin < 0 )
+ begin = 0;
+ if( end > self->size )
+ end = self->size;
+ if( begin > end )
+ begin = end;
+
+ list = PyList_New( end - begin );
- list = PyList_New(end - begin);
- for(count = begin; count < end; count++) {
- PyList_SetItem(list, count - begin,
- PyFloat_FromDouble(self->vec[count]));
+ for( count = begin; count < end; count++ ) {
+ PyList_SetItem( list, count - begin,
+ PyFloat_FromDouble( self->vec[count] ) );
}
return list;
}
-//----------------------------object[z:y]------------------------
-//sequence slice (set)
-static int Vector_ass_slice(VectorObject * self, int begin, int end,
- PyObject * seq)
-{
- int i, y, size = 0;
- float vec[4];
-
- CLAMP(begin, 0, self->size);
- CLAMP(end, 0, self->size);
- begin = MIN2(begin,end);
- size = PySequence_Length(seq);
- if(size != (end - begin)){
- return EXPP_ReturnIntError(PyExc_TypeError,
- "vector[begin:end] = []: size mismatch in slice assignment\n");
- }
+static int Vector_ass_item( VectorObject * self, int i, PyObject * ob )
+{
+ if( i < 0 || i >= self->size )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "array assignment index out of range\n" );
+ if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "vector member must be a number\n" );
- for (i = 0; i < size; i++) {
- PyObject *v, *f;
+ self->vec[i] = ( float ) PyFloat_AsDouble( ob );
- v = PySequence_GetItem(seq, i);
- if (v == NULL) { // Failed to read sequence
- return EXPP_ReturnIntError(PyExc_RuntimeError,
- "vector[begin:end] = []: unable to read sequence\n");
- }
- f = PyNumber_Float(v);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(v);
- return EXPP_ReturnIntError(PyExc_TypeError,
- "vector[begin:end] = []: sequence argument not a number\n");
- }
- vec[i] = PyFloat_AS_DOUBLE(f);
- EXPP_decr2(f,v);
- }
- //parsed well - now set in vector
- for(y = 0; y < size; y++){
- self->vec[begin + y] = vec[y];
- }
return 0;
}
-//------------------------NUMERIC PROTOCOLS----------------------
-//------------------------obj + obj------------------------------
-//addition
-static PyObject *Vector_add(PyObject * v1, PyObject * v2)
-{
- int x, size;
- float vec[4];
- VectorObject *vec1 = NULL, *vec2 = NULL;
-
- EXPP_incr2(v1, v2);
- vec1 = (VectorObject*)v1;
- vec2 = (VectorObject*)v2;
- if(vec1->coerced_object || vec2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Vector addition: arguments not valid for this operation....\n");
- }
- if(vec1->size != vec2->size){
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Vector addition: vectors must have the same dimensions for this operation\n");
- }
-
- size = vec1->size;
- for(x = 0; x < size; x++) {
- vec[x] = vec1->vec[x] + vec2->vec[x];
+static int Vector_ass_slice( VectorObject * self, int begin, int end,
+ PyObject * seq )
+{
+ int count, z;
+
+ if( begin < 0 )
+ begin = 0;
+ if( end > self->size )
+ end = self->size;
+ if( begin > end )
+ begin = end;
+
+ if( !PySequence_Check( seq ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "illegal argument type for built-in operation\n" );
+ if( PySequence_Length( seq ) != ( end - begin ) )
+ return EXPP_ReturnIntError( PyExc_TypeError,
+ "size mismatch in slice assignment\n" );
+
+ z = 0;
+ for( count = begin; count < end; count++ ) {
+ PyObject *ob = PySequence_GetItem( seq, z );
+ z++;
+ if( !PyInt_Check( ob ) && !PyFloat_Check( ob ) )
+ return EXPP_ReturnIntError( PyExc_IndexError,
+ "list member must be a number\n" );
+
+ if( !PyArg_Parse( ob, "f", &self->vec[count] ) ) {
+ Py_DECREF( ob );
+ return -1;
+ }
}
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return (PyObject *) newVectorObject(vec, size, Py_NEW);
+ return 0;
}
-//------------------------obj - obj------------------------------
-//subtraction
-static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
-{
- int x, size;
- float vec[4];
- VectorObject *vec1 = NULL, *vec2 = NULL;
-
- EXPP_incr2(v1, v2);
- vec1 = (VectorObject*)v1;
- vec2 = (VectorObject*)v2;
- if(vec1->coerced_object || vec2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Vector subtraction: arguments not valid for this operation....\n");
- }
- if(vec1->size != vec2->size){
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Vector subtraction: vectors must have the same dimensions for this operation\n");
- }
+static PyObject *Vector_repr( VectorObject * self )
+{
+ int i, maxindex = self->size - 1;
+ char ftoa[24];
+ PyObject *str1, *str2;
+
+ str1 = PyString_FromString( "[" );
+
+ for( i = 0; i < maxindex; i++ ) {
+ sprintf( ftoa, "%.4f, ", self->vec[i] );
+ str2 = PyString_FromString( ftoa );
+ if( !str1 || !str2 )
+ goto error;
+ PyString_ConcatAndDel( &str1, str2 );
+ }
+
+ sprintf( ftoa, "%.4f]", self->vec[maxindex] );
+ str2 = PyString_FromString( ftoa );
+ if( !str1 || !str2 )
+ goto error;
+ PyString_ConcatAndDel( &str1, str2 );
+
+ if( str1 )
+ return str1;
+
+ error:
+ Py_XDECREF( str1 );
+ Py_XDECREF( str2 );
+ return EXPP_ReturnPyObjError( PyExc_MemoryError,
+ "couldn't create PyString!\n" );
+}
- size = vec1->size;
- for(x = 0; x < size; x++) {
- vec[x] = vec1->vec[x] - vec2->vec[x];
- }
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return (PyObject *) newVectorObject(vec, size, Py_NEW);
-}
-//------------------------obj * obj------------------------------
-//mulplication
-static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
+PyObject *Vector_add( PyObject * v1, PyObject * v2 )
{
- int x, size;
- float vec[4], scalar, newVec[3];
- double dot = 0.0f;
- VectorObject *vec1 = NULL, *vec2 = NULL;
- PyObject *f = NULL, *retObj = NULL;
- MatrixObject *mat = NULL;
- QuaternionObject *quat = NULL;
-
- EXPP_incr2(v1, v2);
- vec1 = (VectorObject*)v1;
- vec2 = (VectorObject*)v2;
-
- if(vec1->coerced_object){
- if (PyFloat_Check(vec1->coerced_object) ||
- PyInt_Check(vec1->coerced_object)){ // FLOAT/INT * VECTOR
- f = PyNumber_Float(vec1->coerced_object);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Vector multiplication: arguments not acceptable for this operation\n");
- }
- scalar = PyFloat_AS_DOUBLE(f);
- size = vec2->size;
- for(x = 0; x < size; x++) {
- vec[x] = vec2->vec[x] * scalar;
- }
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return (PyObject *) newVectorObject(vec, size, Py_NEW);
- }
- }else{
- if(vec2->coerced_object){
- if(MatrixObject_Check(vec2->coerced_object)){ //VECTOR * MATRIX
- mat = (MatrixObject*)EXPP_incr_ret(vec2->coerced_object);
- retObj = row_vector_multiplication(vec1, mat);
- EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)mat);
- return retObj;
- }else if (PyFloat_Check(vec2->coerced_object) ||
- PyInt_Check(vec2->coerced_object)){ // VECTOR * FLOAT/INT
- f = PyNumber_Float(vec2->coerced_object);
- if(f == NULL) { // parsed item not a number
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Vector multiplication: arguments not acceptable for this operation\n");
- }
- scalar = PyFloat_AS_DOUBLE(f);
- size = vec1->size;
- for(x = 0; x < size; x++) {
- vec[x] = vec1->vec[x] * scalar;
- }
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return (PyObject *) newVectorObject(vec, size, Py_NEW);
- }else if(QuaternionObject_Check(vec2->coerced_object)){ //QUAT * VEC
- quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object);
- if(vec1->size != 3){
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
- }
- newVec[0] = quat->quat[0]*quat->quat[0]*vec1->vec[0] +
- 2*quat->quat[2]*quat->quat[0]*vec1->vec[2] -
- 2*quat->quat[3]*quat->quat[0]*vec1->vec[1] +
- quat->quat[1]*quat->quat[1]*vec1->vec[0] +
- 2*quat->quat[2]*quat->quat[1]*vec1->vec[1] +
- 2*quat->quat[3]*quat->quat[1]*vec1->vec[2] -
- quat->quat[3]*quat->quat[3]*vec1->vec[0] -
- quat->quat[2]*quat->quat[2]*vec1->vec[0];
- newVec[1] = 2*quat->quat[1]*quat->quat[2]*vec1->vec[0] +
- quat->quat[2]*quat->quat[2]*vec1->vec[1] +
- 2*quat->quat[3]*quat->quat[2]*vec1->vec[2] +
- 2*quat->quat[0]*quat->quat[3]*vec1->vec[0] -
- quat->quat[3]*quat->quat[3]*vec1->vec[1] +
- quat->quat[0]*quat->quat[0]*vec1->vec[1] -
- 2*quat->quat[1]*quat->quat[0]*vec1->vec[2] -
- quat->quat[1]*quat->quat[1]*vec1->vec[1];
- newVec[2] = 2*quat->quat[1]*quat->quat[3]*vec1->vec[0] +
- 2*quat->quat[2]*quat->quat[3]*vec1->vec[1] +
- quat->quat[3]*quat->quat[3]*vec1->vec[2] -
- 2*quat->quat[0]*quat->quat[2]*vec1->vec[0] -
- quat->quat[2]*quat->quat[2]*vec1->vec[2] +
- 2*quat->quat[0]*quat->quat[1]*vec1->vec[1] -
- quat->quat[1]*quat->quat[1]*vec1->vec[2] +
- quat->quat[0]*quat->quat[0]*vec1->vec[2];
- EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat);
- return newVectorObject(newVec,3,Py_NEW);
- }
- }else{ //VECTOR * VECTOR
- if(vec1->size != vec2->size){
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Vector multiplication: vectors must have the same dimensions for this operation\n");
- }
- size = vec1->size;
- //dot product
- for(x = 0; x < size; x++) {
- dot += vec1->vec[x] * vec2->vec[x];
- }
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return PyFloat_FromDouble(dot);
- }
- }
-
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_TypeError,
- "Vector multiplication: arguments not acceptable for this operation\n");
+ float *vec;
+ int x;
+ PyObject *retval;
+
+ if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+ if( ( ( VectorObject * ) v1 )->flag != 0
+ || ( ( VectorObject * ) v2 )->flag != 0 )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "cannot add a scalar to a vector\n" );
+ if( ( ( VectorObject * ) v1 )->size !=
+ ( ( VectorObject * ) v2 )->size )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "vectors must have the same dimensions for this operation\n" );
+
+ vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
+ sizeof( float ) );
+
+ for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
+ vec[x] = ( ( VectorObject * ) v1 )->vec[x] +
+ ( ( VectorObject * ) v2 )->vec[x];
+ }
+
+ retval = ( PyObject * ) newVectorObject( vec,
+ ( ( ( VectorObject * ) v1 )->
+ size ) );
+ PyMem_Free( vec );
+ return retval;
}
-//------------------------obj / obj------------------------------
-//division
-static PyObject *Vector_div(PyObject * v1, PyObject * v2)
-{
- int x, size;
- float vec[4];
- VectorObject *vec1 = NULL, *vec2 = NULL;
- EXPP_incr2(v1, v2);
- vec1 = (VectorObject*)v1;
- vec2 = (VectorObject*)v2;
-
- if(vec1->coerced_object || vec2->coerced_object){
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Vector division: arguments not valid for this operation....\n");
- }
- if(vec1->size != vec2->size){
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return EXPP_ReturnPyObjError(PyExc_AttributeError,
- "Vector division: vectors must have the same dimensions for this operation\n");
- }
+PyObject *Vector_sub( PyObject * v1, PyObject * v2 )
+{
+ float *vec;
+ int x;
+ PyObject *retval;
+
+ if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+ if( ( ( VectorObject * ) v1 )->flag != 0
+ || ( ( VectorObject * ) v2 )->flag != 0 )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "cannot subtract a scalar from a vector\n" );
+ if( ( ( VectorObject * ) v1 )->size !=
+ ( ( VectorObject * ) v2 )->size )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "vectors must have the same dimensions for this operation\n" );
+
+ vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
+ sizeof( float ) );
+
+ for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
+ vec[x] = ( ( VectorObject * ) v1 )->vec[x] -
+ ( ( VectorObject * ) v2 )->vec[x];
+ }
+
+ retval = ( PyObject * ) newVectorObject( vec,
+ ( ( ( VectorObject * ) v1 )->
+ size ) );
+ PyMem_Free( vec );
+ return retval;
+}
- size = vec1->size;
- for(x = 0; x < size; x++) {
- vec[x] = vec1->vec[x] / vec2->vec[x];
- }
+PyObject *Vector_mul( PyObject * v1, PyObject * v2 )
+{
+ float *vec;
+ int x;
+ PyObject *retval;
+
+ if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+ if( ( ( VectorObject * ) v1 )->flag == 0
+ && ( ( VectorObject * ) v2 )->flag == 0 )
+ return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
+ "please use the dot product or the cross product to multiply vectors\n" );
+ if( ( ( VectorObject * ) v1 )->size !=
+ ( ( VectorObject * ) v2 )->size )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "vector dimension error during Vector_mul\n" );
+
+ vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
+ sizeof( float ) );
+
+ for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
+ vec[x] = ( ( VectorObject * ) v1 )->vec[x] *
+ ( ( VectorObject * ) v2 )->vec[x];
+ }
+
+ retval = ( PyObject * ) newVectorObject( vec,
+ ( ( ( VectorObject * ) v1 )->
+ size ) );
+ PyMem_Free( vec );
+ return retval;
+}
- EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
- return (PyObject *) newVectorObject(vec, size, Py_NEW);
+PyObject *Vector_div( PyObject * v1, PyObject * v2 )
+{
+ float *vec;
+ int x;
+ PyObject *retval;
+
+ if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "unsupported type for this operation\n" );
+ if( ( ( VectorObject * ) v1 )->flag == 0
+ && ( ( VectorObject * ) v2 )->flag == 0 )
+ return EXPP_ReturnPyObjError( PyExc_ArithmeticError,
+ "cannot divide two vectors\n" );
+ if( ( ( VectorObject * ) v1 )->flag != 0
+ && ( ( VectorObject * ) v2 )->flag == 0 )
+ return EXPP_ReturnPyObjError( PyExc_TypeError,
+ "cannot divide a scalar by a vector\n" );
+ if( ( ( VectorObject * ) v1 )->size !=
+ ( ( VectorObject * ) v2 )->size )
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "vector dimension error during Vector_mul\n" );
+
+ vec = PyMem_Malloc( ( ( ( VectorObject * ) v1 )->size ) *
+ sizeof( float ) );
+
+ for( x = 0; x < ( ( VectorObject * ) v1 )->size; x++ ) {
+ vec[x] = ( ( VectorObject * ) v1 )->vec[x] /
+ ( ( VectorObject * ) v2 )->vec[x];
+ }
+
+ retval = ( PyObject * ) newVectorObject( vec,
+ ( ( ( VectorObject * ) v1 )->
+ size ) );
+ PyMem_Free( vec );
+ return retval;
}
-//------------------------coerce(obj, obj)-----------------------
+
//coercion of unknown types to type VectorObject for numeric protocols
-/*Coercion() is called whenever a math operation has 2 operands that
- it doesn't understand how to evaluate. 2+Matrix for example. We want to
- evaluate some of these operations like: (vector * 2), however, for math
- to proceed, the unknown operand must be cast to a type that python math will
- understand. (e.g. in the case above case, 2 must be cast to a vector and
- then call vector.multiply(vector, scalar_cast_as_vector)*/
-static int Vector_coerce(PyObject ** v1, PyObject ** v2)
+int Vector_coerce( PyObject ** v1, PyObject ** v2 )
{
+ long *tempI;
+ double *tempF;
+ float *vec;
int x;
- float vec[4];
- PyObject *coerced = NULL;
-
- if(!VectorObject_Check(*v2)) {
- if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || QuaternionObject_Check(*v2)) {
- coerced = EXPP_incr_ret(*v2);
- *v2 = newVectorObject(NULL,3,Py_NEW);
- ((VectorObject*)*v2)->coerced_object = coerced;
- }else{
- return EXPP_ReturnIntError(PyExc_TypeError,
- "vector.coerce(): unknown operand - can't coerce for numeric protocols\n");
+
+ if( VectorObject_Check( *v1 ) ) {
+ if( VectorObject_Check( *v2 ) ) { //two vectors
+ Py_INCREF( *v1 ); /* fixme: wahy are we bumping the ref count? */
+ Py_INCREF( *v2 );
+ return 0;
+ } else {
+ if( Matrix_CheckPyObject( *v2 ) ) {
+ printf( "vector/matrix numeric protocols unsupported...\n" );
+ Py_INCREF( *v1 );
+ return 0; //operation will type check
+ } else if( PyNumber_Check( *v2 ) ) {
+ if( PyInt_Check( *v2 ) ) { //cast scalar to vector
+ tempI = PyMem_Malloc( 1 *
+ sizeof( long ) );
+ *tempI = PyInt_AsLong( *v2 );
+ vec = PyMem_Malloc( ( ( ( VectorObject
+ * ) *
+ v1 )->size ) *
+ sizeof( float ) );
+ for( x = 0;
+ x < ( ( ( VectorObject * ) * v1 )->size );
+ x++ ) {
+ vec[x] = ( float ) *tempI;
+ }
+ PyMem_Free( tempI );
+ *v2 = newVectorObject( vec,
+ ( ( ( VectorObject * ) * v1 )->size ) );
+ ( ( VectorObject * ) * v2 )->flag = 1; //int coercion
+ Py_INCREF( *v1 );
+ return 0;
+ } else if( PyFloat_Check( *v2 ) ) { //cast scalar to vector
+ tempF = PyMem_Malloc( 1 *
+ sizeof
+ ( double ) );
+ *tempF = PyFloat_AsDouble( *v2 );
+ vec = PyMem_Malloc( ( ( ( VectorObject
+ * ) *
+ v1 )->size ) *
+ sizeof( float ) );
+ for( x = 0;
+ x <
+ ( ( ( VectorObject * ) *
+ v1 )->size ); x++ ) {
+ vec[x] = ( float ) *tempF;
+ }
+ PyMem_Free( tempF );
+ *v2 = newVectorObject( vec,
+ ( ( ( VectorObject * ) * v1 )->size ) );
+ ( ( VectorObject * ) * v2 )->flag = 2; //float coercion
+ Py_INCREF( *v1 );
+ return 0;
+ }
+ }
+ //unknown type or numeric cast failure
+ printf( "attempting vector operation with unsupported type...\n" );
+ Py_INCREF( *v1 );
+ return 0; //operation will type check
}
+ } else {
+ printf( "numeric protocol failure...\n" );
+ return -1; //this should not occur - fail
}
- EXPP_incr2(*v1, *v2);
- return 0;
+ return -1;
}
-//-----------------PROTCOL DECLARATIONS--------------------------
+
+
static PySequenceMethods Vector_SeqMethods = {
- (inquiry) Vector_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (intargfunc) 0, /* sq_repeat */
- (intargfunc) Vector_item, /* sq_item */
- (intintargfunc) Vector_slice, /* sq_slice */
- (intobjargproc) Vector_ass_item, /* sq_ass_item */
- (intintobjargproc) Vector_ass_slice, /* sq_ass_slice */
+ ( inquiry ) Vector_len, /* sq_length */
+ ( binaryfunc ) 0, /* sq_concat */
+ ( intargfunc ) 0, /* sq_repeat */
+ ( intargfunc ) Vector_item, /* sq_item */
+ ( intintargfunc ) Vector_slice, /* sq_slice */
+ ( intobjargproc ) Vector_ass_item, /* sq_ass_item */
+ ( intintobjargproc ) Vector_ass_slice, /* sq_ass_slice */
};
+
static PyNumberMethods Vector_NumMethods = {
- (binaryfunc) Vector_add, /* __add__ */
- (binaryfunc) Vector_sub, /* __sub__ */
- (binaryfunc) Vector_mul, /* __mul__ */
- (binaryfunc) Vector_div, /* __div__ */
- (binaryfunc) 0, /* __mod__ */
- (binaryfunc) 0, /* __divmod__ */
- (ternaryfunc) 0, /* __pow__ */
- (unaryfunc) 0, /* __neg__ */
- (unaryfunc) 0, /* __pos__ */
- (unaryfunc) 0, /* __abs__ */
- (inquiry) 0, /* __nonzero__ */
- (unaryfunc) 0, /* __invert__ */
- (binaryfunc) 0, /* __lshift__ */
- (binaryfunc) 0, /* __rshift__ */
- (binaryfunc) 0, /* __and__ */
- (binaryfunc) 0, /* __xor__ */
- (binaryfunc) 0, /* __or__ */
- (coercion) Vector_coerce, /* __coerce__ */
- (unaryfunc) 0, /* __int__ */
- (unaryfunc) 0, /* __long__ */
- (unaryfunc) 0, /* __float__ */
- (unaryfunc) 0, /* __oct__ */
- (unaryfunc) 0, /* __hex__ */
+ ( binaryfunc ) Vector_add, /* __add__ */
+ ( binaryfunc ) Vector_sub, /* __sub__ */
+ ( binaryfunc ) Vector_mul, /* __mul__ */
+ ( binaryfunc ) Vector_div, /* __div__ */
+ ( binaryfunc ) 0, /* __mod__ */
+ ( binaryfunc ) 0, /* __divmod__ */
+ ( ternaryfunc ) 0, /* __pow__ */
+ ( unaryfunc ) 0, /* __neg__ */
+ ( unaryfunc ) 0, /* __pos__ */
+ ( unaryfunc ) 0, /* __abs__ */
+ ( inquiry ) 0, /* __nonzero__ */
+ ( unaryfunc ) 0, /* __invert__ */
+ ( binaryfunc ) 0, /* __lshift__ */
+ ( binaryfunc ) 0, /* __rshift__ */
+ ( binaryfunc ) 0, /* __and__ */
+ ( binaryfunc ) 0, /* __xor__ */
+ ( binaryfunc ) 0, /* __or__ */
+ ( coercion ) Vector_coerce, /* __coerce__ */
+ ( unaryfunc ) 0, /* __int__ */
+ ( unaryfunc ) 0, /* __long__ */
+ ( unaryfunc ) 0, /* __float__ */
+ ( unaryfunc ) 0, /* __oct__ */
+ ( unaryfunc ) 0, /* __hex__ */
};
-//------------------PY_OBECT DEFINITION--------------------------
+
PyTypeObject vector_Type = {
- PyObject_HEAD_INIT(NULL)
- 0, /*ob_size */
- "vector", /*tp_name */
- sizeof(VectorObject), /*tp_basicsize */
- 0, /*tp_itemsize */
- (destructor) Vector_dealloc, /*tp_dealloc */
- (printfunc) 0, /*tp_print */
- (getattrfunc) Vector_getattr, /*tp_getattr */
- (setattrfunc) Vector_setattr, /*tp_setattr */
- 0, /*tp_compare */
- (reprfunc) Vector_repr, /*tp_repr */
- &Vector_NumMethods, /*tp_as_number */
- &Vector_SeqMethods, /*tp_as_sequence */
+ PyObject_HEAD_INIT( NULL ) 0, /*ob_size */
+ "vector", /*tp_name */
+ sizeof( VectorObject ), /*tp_basicsize */
+ 0, /*tp_itemsize */
+ ( destructor ) Vector_dealloc, /*tp_dealloc */
+ ( printfunc ) 0, /*tp_print */
+ ( getattrfunc ) Vector_getattr, /*tp_getattr */
+ ( setattrfunc ) Vector_setattr, /*tp_setattr */
+ 0, /*tp_compare */
+ ( reprfunc ) Vector_repr, /*tp_repr */
+ &Vector_NumMethods, /*tp_as_number */
+ &Vector_SeqMethods, /*tp_as_sequence */
};
-//------------------------newVectorObject (internal)-------------
-//creates a new vector object
-/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
- (i.e. it was allocated elsewhere by MEM_mallocN())
- pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
- (i.e. it must be created here with PyMEM_malloc())*/
-PyObject *newVectorObject(float *vec, int size, int type)
+
+
+/*
+ * create a Vector Object( vec, size )
+ *
+ * Note: Vector now uses copy semantics like STL containers.
+ * Memory for vec member is allocated on python stack.
+ * We own this memory and will free it later.
+ *
+ * size arg is number of floats to alloc.
+ *
+ * if vec arg is NULL
+ * fill our vec with zeros
+ * initialize 4d vectors to zero in homogenous coords.
+ * else
+ * vec param is copied into our local memory and always freed.
+ */
+
+PyObject *newVectorObject( float *vec, int size )
{
VectorObject *self;
int x;
vector_Type.ob_type = &PyType_Type;
- self = PyObject_NEW(VectorObject, &vector_Type);
- self->data.blend_data = NULL;
- self->data.py_data = NULL;
- self->size = size;
- self->coerced_object = NULL;
-
- if(type == Py_WRAP){
- self->data.blend_data = vec;
- self->vec = self->data.blend_data;
- }else if (type == Py_NEW){
- self->data.py_data = PyMem_Malloc(size * sizeof(float));
- self->vec = self->data.py_data;
- if(!vec) { //new empty
- for(x = 0; x < size; x++){
- self->vec[x] = 0.0f;
- }
- if(size == 4) /* do the homogenous thing */
- self->vec[3] = 1.0f;
- }else{
- for(x = 0; x < size; x++){
- self->vec[x] = vec[x];
- }
+
+ self = PyObject_NEW( VectorObject, &vector_Type );
+
+ self->vec = PyMem_Malloc( size * sizeof( float ) );
+ self->delete_pymem = 1; /* must free this alloc later */
+
+ if( !vec ) {
+ for( x = 0; x < size; x++ ) {
+ self->vec[x] = 0.0f;
+ }
+ if( size == 4 ) /* do the homogenous thing */
+ self->vec[3] = 1.0f;
+ } else {
+ for( x = 0; x < size; x++ ){
+ self->vec[x] = vec[x];
}
- }else{ //bad type
- return NULL;
}
- return (PyObject *) EXPP_incr_ret((PyObject *)self);
+
+ self->size = size;
+ self->flag = 0;
+
+ return ( PyObject * ) self;
}
+
+/*
+ create a Vector that is a proxy for blender data.
+ we do not own this data, we NEVER free it.
+ Note: users must deal with bad pointer issue
+*/
+
+PyObject *newVectorProxy( float *vec, int size)
+{
+ VectorObject *proxy;
+
+ proxy = PyObject_NEW( VectorObject, &vector_Type );
+
+ proxy->delete_pymem = 0; /* must NOT free this alloc later */
+
+ if( !vec || size < 1 ) {
+ return EXPP_ReturnPyObjError( PyExc_AttributeError,
+ "cannot creat zero length vector proxy" );
+ }
+
+ proxy->vec = vec;
+ proxy->size = size;
+ proxy->flag = 0;
+
+ return ( PyObject * ) proxy;
+}
+
diff --git a/source/blender/python/api2_2x/vector.h b/source/blender/python/api2_2x/vector.h
index 048fa1df8bc..40e5851359a 100644
--- a/source/blender/python/api2_2x/vector.h
+++ b/source/blender/python/api2_2x/vector.h
@@ -33,34 +33,40 @@
#ifndef EXPP_vector_h
#define EXPP_vector_h
+#include "Python.h"
+#include "gen_utils.h"
+#include "Types.h"
+#include "matrix.h"
+#include "BKE_utildefines.h"
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+/*****************************/
+// Vector Python Object
+/*****************************/
+
#define VectorObject_Check(v) ((v)->ob_type == &vector_Type)
typedef struct {
- PyObject_VAR_HEAD
- struct{
- float *py_data; //python managed
- float *blend_data; //blender managed
- }data;
- float *vec; //1D array of data (alias)
+ PyObject_VAR_HEAD float *vec;
int size;
- PyObject *coerced_object;
+ int flag;
+ //0 - no coercion
+ //1 - coerced from int
+ //2 - coerced from float
+ int delete_pymem; /* flag to delete the memory vec points at */
} VectorObject;
-/*coerced_object is a pointer to the object that it was
-coerced from when a dummy vector needs to be created from
-the coerce() function for numeric protocol operations*/
-
-/*struct data contains a pointer to the actual data that the
-object uses. It can use either PyMem allocated data (which will
-be stored in py_data) or be a wrapper for data allocated through
-blender (stored in blend_data). This is an either/or struct not both*/
//prototypes
+PyObject *newVectorObject( float *vec, int size );
+PyObject *newVectorProxy( float *vec, int size );
PyObject *Vector_Zero( VectorObject * self );
PyObject *Vector_Normalize( VectorObject * self );
PyObject *Vector_Negate( VectorObject * self );
PyObject *Vector_Resize2D( VectorObject * self );
PyObject *Vector_Resize3D( VectorObject * self );
PyObject *Vector_Resize4D( VectorObject * self );
-PyObject *newVectorObject(float *vec, int size, int type);
#endif /* EXPP_vector_h */