Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Lucke <jacques@blender.org>2020-07-16 15:27:47 +0300
committerJacques Lucke <jacques@blender.org>2020-07-16 15:28:38 +0300
commit9363c4de0635394548fa2eb8d205581313029775 (patch)
tree18f0a4be6ed78a8c8f8f5a33d575f2465ed95ee9 /source/blender/simulation/intern/implicit_eigen.cpp
parent66b48ad8fb3bea4c0b643fe23fd25e70843067cd (diff)
Simulation: Rename `physics` directory to `simulation`
Function names will be updated in a separate commit. This will be the place for the new particle system and other code related to the Simulation data block. We don't want to have all that code in blenkernel. Approved by brecht.
Diffstat (limited to 'source/blender/simulation/intern/implicit_eigen.cpp')
-rw-r--r--source/blender/simulation/intern/implicit_eigen.cpp1509
1 files changed, 1509 insertions, 0 deletions
diff --git a/source/blender/simulation/intern/implicit_eigen.cpp b/source/blender/simulation/intern/implicit_eigen.cpp
new file mode 100644
index 00000000000..58538c13116
--- /dev/null
+++ b/source/blender/simulation/intern/implicit_eigen.cpp
@@ -0,0 +1,1509 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) Blender Foundation
+ * All rights reserved.
+ */
+
+/** \file
+ * \ingroup bph
+ */
+
+#include "implicit.h"
+
+#ifdef IMPLICIT_SOLVER_EIGEN
+
+//#define USE_EIGEN_CORE
+# define USE_EIGEN_CONSTRAINED_CG
+
+# ifdef __GNUC__
+# pragma GCC diagnostic push
+/* XXX suppress verbose warnings in eigen */
+//# pragma GCC diagnostic ignored "-Wlogical-op"
+# endif
+
+# ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
+# ifdef NDEBUG
+# define IMPLICIT_NDEBUG
+# endif
+# define NDEBUG
+# endif
+
+# include <Eigen/Sparse>
+# include <Eigen/src/Core/util/DisableStupidWarnings.h>
+
+# ifdef USE_EIGEN_CONSTRAINED_CG
+# include <intern/ConstrainedConjugateGradient.h>
+# endif
+
+# ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
+# ifndef IMPLICIT_NDEBUG
+# undef NDEBUG
+# else
+# undef IMPLICIT_NDEBUG
+# endif
+# endif
+
+# ifdef __GNUC__
+# pragma GCC diagnostic pop
+# endif
+
+# include "MEM_guardedalloc.h"
+
+extern "C" {
+# include "DNA_meshdata_types.h"
+# include "DNA_object_force_types.h"
+# include "DNA_object_types.h"
+# include "DNA_scene_types.h"
+# include "DNA_texture_types.h"
+
+# include "BLI_linklist.h"
+# include "BLI_math.h"
+# include "BLI_utildefines.h"
+
+# include "BKE_cloth.h"
+# include "BKE_collision.h"
+# include "BKE_effect.h"
+# include "BKE_global.h"
+
+# include "BPH_mass_spring.h"
+}
+
+typedef float Scalar;
+
+static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
+
+/* slightly extended Eigen vector class
+ * with conversion to/from plain C float array
+ */
+class fVector : public Eigen::Vector3f {
+ public:
+ typedef float *ctype;
+
+ fVector()
+ {
+ }
+
+ fVector(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ coeffRef(k) = v[k];
+ }
+ }
+
+ fVector &operator=(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ coeffRef(k) = v[k];
+ }
+ return *this;
+ }
+
+ operator ctype()
+ {
+ return data();
+ }
+};
+
+/* slightly extended Eigen matrix class
+ * with conversion to/from plain C float array
+ */
+class fMatrix : public Eigen::Matrix3f {
+ public:
+ typedef float (*ctype)[3];
+
+ fMatrix()
+ {
+ }
+
+ fMatrix(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ coeffRef(l, k) = v[k][l];
+ }
+ }
+ }
+
+ fMatrix &operator=(const ctype &v)
+ {
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ coeffRef(l, k) = v[k][l];
+ }
+ }
+ return *this;
+ }
+
+ operator ctype()
+ {
+ return (ctype)data();
+ }
+};
+
+/* Extension of dense Eigen vectors,
+ * providing 3-float block access for blenlib math functions
+ */
+class lVector : public Eigen::VectorXf {
+ public:
+ typedef Eigen::VectorXf base_t;
+
+ lVector()
+ {
+ }
+
+ template<typename T> lVector &operator=(T rhs)
+ {
+ base_t::operator=(rhs);
+ return *this;
+ }
+
+ float *v3(int vertex)
+ {
+ return &coeffRef(3 * vertex);
+ }
+
+ const float *v3(int vertex) const
+ {
+ return &coeffRef(3 * vertex);
+ }
+};
+
+typedef Eigen::Triplet<Scalar> Triplet;
+typedef std::vector<Triplet> TripletList;
+
+typedef Eigen::SparseMatrix<Scalar> lMatrix;
+
+/* Constructor type that provides more convenient handling of Eigen triplets
+ * for efficient construction of sparse 3x3 block matrices.
+ * This should be used for building lMatrix instead of writing to such lMatrix directly (which is
+ * very inefficient). After all elements have been defined using the set() method, the actual
+ * matrix can be filled using construct().
+ */
+struct lMatrixCtor {
+ lMatrixCtor()
+ {
+ }
+
+ void reset()
+ {
+ m_trips.clear();
+ }
+
+ void reserve(int numverts)
+ {
+ /* reserve for diagonal entries */
+ m_trips.reserve(numverts * 9);
+ }
+
+ void add(int i, int j, const fMatrix &m)
+ {
+ i *= 3;
+ j *= 3;
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ m_trips.push_back(Triplet(i + k, j + l, m.coeff(l, k)));
+ }
+ }
+ }
+
+ void sub(int i, int j, const fMatrix &m)
+ {
+ i *= 3;
+ j *= 3;
+ for (int k = 0; k < 3; k++) {
+ for (int l = 0; l < 3; l++) {
+ m_trips.push_back(Triplet(i + k, j + l, -m.coeff(l, k)));
+ }
+ }
+ }
+
+ inline void construct(lMatrix &m)
+ {
+ m.setFromTriplets(m_trips.begin(), m_trips.end());
+ m_trips.clear();
+ }
+
+ private:
+ TripletList m_trips;
+};
+
+# ifdef USE_EIGEN_CORE
+typedef Eigen::ConjugateGradient<lMatrix, Eigen::Lower, Eigen::DiagonalPreconditioner<Scalar>>
+ ConjugateGradient;
+# endif
+# ifdef USE_EIGEN_CONSTRAINED_CG
+typedef Eigen::ConstrainedConjugateGradient<lMatrix,
+ Eigen::Lower,
+ lMatrix,
+ Eigen::DiagonalPreconditioner<Scalar>>
+ ConstraintConjGrad;
+# endif
+using Eigen::ComputationInfo;
+
+static void print_lvector(const lVector &v)
+{
+ for (int i = 0; i < v.rows(); i++) {
+ if (i > 0 && i % 3 == 0) {
+ printf("\n");
+ }
+
+ printf("%f,\n", v[i]);
+ }
+}
+
+static void print_lmatrix(const lMatrix &m)
+{
+ for (int j = 0; j < m.rows(); j++) {
+ if (j > 0 && j % 3 == 0) {
+ printf("\n");
+ }
+
+ for (int i = 0; i < m.cols(); i++) {
+ if (i > 0 && i % 3 == 0) {
+ printf(" ");
+ }
+
+ implicit_print_matrix_elem(m.coeff(j, i));
+ }
+ printf("\n");
+ }
+}
+
+BLI_INLINE void lMatrix_reserve_elems(lMatrix &m, int num)
+{
+ m.reserve(Eigen::VectorXi::Constant(m.cols(), num));
+}
+
+BLI_INLINE float *lVector_v3(lVector &v, int vertex)
+{
+ return v.data() + 3 * vertex;
+}
+
+BLI_INLINE const float *lVector_v3(const lVector &v, int vertex)
+{
+ return v.data() + 3 * vertex;
+}
+
+# if 0
+BLI_INLINE void triplets_m3(TripletList &tlist, float m[3][3], int i, int j)
+{
+ i *= 3;
+ j *= 3;
+ for (int l = 0; l < 3; l++) {
+ for (int k = 0; k < 3; k++) {
+ tlist.push_back(Triplet(i + k, j + l, m[k][l]));
+ }
+ }
+}
+
+BLI_INLINE void triplets_m3fl(TripletList &tlist, float m[3][3], int i, int j, float factor)
+{
+ i *= 3;
+ j *= 3;
+ for (int l = 0; l < 3; l++) {
+ for (int k = 0; k < 3; k++) {
+ tlist.push_back(Triplet(i + k, j + l, m[k][l] * factor));
+ }
+ }
+}
+
+BLI_INLINE void lMatrix_add_triplets(lMatrix &r, const TripletList &tlist)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r += t;
+}
+
+BLI_INLINE void lMatrix_madd_triplets(lMatrix &r, const TripletList &tlist, float f)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r += f * t;
+}
+
+BLI_INLINE void lMatrix_sub_triplets(lMatrix &r, const TripletList &tlist)
+{
+ lMatrix t(r.rows(), r.cols());
+ t.setFromTriplets(tlist.begin(), tlist.end());
+ r -= t;
+}
+# endif
+
+BLI_INLINE void outerproduct(float r[3][3], const float a[3], const float b[3])
+{
+ mul_v3_v3fl(r[0], a, b[0]);
+ mul_v3_v3fl(r[1], a, b[1]);
+ mul_v3_v3fl(r[2], a, b[2]);
+}
+
+BLI_INLINE void cross_m3_v3m3(float r[3][3], const float v[3], float m[3][3])
+{
+ cross_v3_v3v3(r[0], v, m[0]);
+ cross_v3_v3v3(r[1], v, m[1]);
+ cross_v3_v3v3(r[2], v, m[2]);
+}
+
+BLI_INLINE void cross_v3_identity(float r[3][3], const float v[3])
+{
+ r[0][0] = 0.0f;
+ r[1][0] = v[2];
+ r[2][0] = -v[1];
+ r[0][1] = -v[2];
+ r[1][1] = 0.0f;
+ r[2][1] = v[0];
+ r[0][2] = v[1];
+ r[1][2] = -v[0];
+ r[2][2] = 0.0f;
+}
+
+BLI_INLINE void madd_m3_m3fl(float r[3][3], float m[3][3], float f)
+{
+ r[0][0] += m[0][0] * f;
+ r[0][1] += m[0][1] * f;
+ r[0][2] += m[0][2] * f;
+ r[1][0] += m[1][0] * f;
+ r[1][1] += m[1][1] * f;
+ r[1][2] += m[1][2] * f;
+ r[2][0] += m[2][0] * f;
+ r[2][1] += m[2][1] * f;
+ r[2][2] += m[2][2] * f;
+}
+
+BLI_INLINE void madd_m3_m3m3fl(float r[3][3], float a[3][3], float b[3][3], float f)
+{
+ r[0][0] = a[0][0] + b[0][0] * f;
+ r[0][1] = a[0][1] + b[0][1] * f;
+ r[0][2] = a[0][2] + b[0][2] * f;
+ r[1][0] = a[1][0] + b[1][0] * f;
+ r[1][1] = a[1][1] + b[1][1] * f;
+ r[1][2] = a[1][2] + b[1][2] * f;
+ r[2][0] = a[2][0] + b[2][0] * f;
+ r[2][1] = a[2][1] + b[2][1] * f;
+ r[2][2] = a[2][2] + b[2][2] * f;
+}
+
+struct Implicit_Data {
+ typedef std::vector<fMatrix> fMatrixVector;
+
+ Implicit_Data(int numverts)
+ {
+ resize(numverts);
+ }
+
+ void resize(int numverts)
+ {
+ this->numverts = numverts;
+ int tot = 3 * numverts;
+
+ M.resize(tot, tot);
+ F.resize(tot);
+ dFdX.resize(tot, tot);
+ dFdV.resize(tot, tot);
+
+ tfm.resize(numverts, I);
+
+ X.resize(tot);
+ Xnew.resize(tot);
+ V.resize(tot);
+ Vnew.resize(tot);
+
+ A.resize(tot, tot);
+ B.resize(tot);
+
+ dV.resize(tot);
+ z.resize(tot);
+ S.resize(tot, tot);
+
+ iM.reserve(numverts);
+ idFdX.reserve(numverts);
+ idFdV.reserve(numverts);
+ iS.reserve(numverts);
+ }
+
+ int numverts;
+
+ /* inputs */
+ lMatrix M; /* masses */
+ lVector F; /* forces */
+ lMatrix dFdX, dFdV; /* force jacobians */
+
+ fMatrixVector tfm; /* local coordinate transform */
+
+ /* motion state data */
+ lVector X, Xnew; /* positions */
+ lVector V, Vnew; /* velocities */
+
+ /* internal solver data */
+ lVector B; /* B for A*dV = B */
+ lMatrix A; /* A for A*dV = B */
+
+ lVector dV; /* velocity change (solution of A*dV = B) */
+ lVector z; /* target velocity in constrained directions */
+ lMatrix S; /* filtering matrix for constraints */
+
+ /* temporary constructors */
+ lMatrixCtor iM; /* masses */
+ lMatrixCtor idFdX, idFdV; /* force jacobians */
+ lMatrixCtor iS; /* filtering matrix for constraints */
+};
+
+Implicit_Data *BPH_mass_spring_solver_create(int numverts, int numsprings)
+{
+ Implicit_Data *id = new Implicit_Data(numverts);
+ return id;
+}
+
+void BPH_mass_spring_solver_free(Implicit_Data *id)
+{
+ if (id) {
+ delete id;
+ }
+}
+
+int BPH_mass_spring_solver_numvert(Implicit_Data *id)
+{
+ if (id) {
+ return id->numverts;
+ }
+ else {
+ return 0;
+ }
+}
+
+/* ==== Transformation from/to root reference frames ==== */
+
+BLI_INLINE void world_to_root_v3(Implicit_Data *data, int index, float r[3], const float v[3])
+{
+ copy_v3_v3(r, v);
+ mul_transposed_m3_v3(data->tfm[index], r);
+}
+
+BLI_INLINE void root_to_world_v3(Implicit_Data *data, int index, float r[3], const float v[3])
+{
+ mul_v3_m3v3(r, data->tfm[index], v);
+}
+
+BLI_INLINE void world_to_root_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
+{
+ float trot[3][3];
+ copy_m3_m3(trot, data->tfm[index]);
+ transpose_m3(trot);
+ mul_m3_m3m3(r, trot, m);
+}
+
+BLI_INLINE void root_to_world_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
+{
+ mul_m3_m3m3(r, data->tfm[index], m);
+}
+
+/* ================================ */
+
+bool BPH_mass_spring_solve_velocities(Implicit_Data *data, float dt, ImplicitSolverResult *result)
+{
+# ifdef USE_EIGEN_CORE
+ typedef ConjugateGradient solver_t;
+# endif
+# ifdef USE_EIGEN_CONSTRAINED_CG
+ typedef ConstraintConjGrad solver_t;
+# endif
+
+ data->iM.construct(data->M);
+ data->idFdX.construct(data->dFdX);
+ data->idFdV.construct(data->dFdV);
+ data->iS.construct(data->S);
+
+ solver_t cg;
+ cg.setMaxIterations(100);
+ cg.setTolerance(0.01f);
+
+# ifdef USE_EIGEN_CONSTRAINED_CG
+ cg.filter() = data->S;
+# endif
+
+ data->A = data->M - dt * data->dFdV - dt * dt * data->dFdX;
+ cg.compute(data->A);
+
+ data->B = dt * data->F + dt * dt * data->dFdX * data->V;
+
+# ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
+ printf("==== A ====\n");
+ print_lmatrix(id->A);
+ printf("==== z ====\n");
+ print_lvector(id->z);
+ printf("==== B ====\n");
+ print_lvector(id->B);
+ printf("==== S ====\n");
+ print_lmatrix(id->S);
+# endif
+
+# ifdef USE_EIGEN_CORE
+ data->dV = cg.solve(data->B);
+# endif
+# ifdef USE_EIGEN_CONSTRAINED_CG
+ data->dV = cg.solveWithGuess(data->B, data->z);
+# endif
+
+# ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
+ printf("==== dV ====\n");
+ print_lvector(id->dV);
+ printf("========\n");
+# endif
+
+ data->Vnew = data->V + data->dV;
+
+ switch (cg.info()) {
+ case Eigen::Success:
+ result->status = BPH_SOLVER_SUCCESS;
+ break;
+ case Eigen::NoConvergence:
+ result->status = BPH_SOLVER_NO_CONVERGENCE;
+ break;
+ case Eigen::InvalidInput:
+ result->status = BPH_SOLVER_INVALID_INPUT;
+ break;
+ case Eigen::NumericalIssue:
+ result->status = BPH_SOLVER_NUMERICAL_ISSUE;
+ break;
+ }
+
+ result->iterations = cg.iterations();
+ result->error = cg.error();
+
+ return cg.info() == Eigen::Success;
+}
+
+bool BPH_mass_spring_solve_positions(Implicit_Data *data, float dt)
+{
+ data->Xnew = data->X + data->Vnew * dt;
+ return true;
+}
+
+/* ================================ */
+
+void BPH_mass_spring_apply_result(Implicit_Data *data)
+{
+ data->X = data->Xnew;
+ data->V = data->Vnew;
+}
+
+void BPH_mass_spring_set_vertex_mass(Implicit_Data *data, int index, float mass)
+{
+ float m[3][3];
+ copy_m3_m3(m, I);
+ mul_m3_fl(m, mass);
+ data->iM.add(index, index, m);
+}
+
+void BPH_mass_spring_set_rest_transform(Implicit_Data *data, int index, float tfm[3][3])
+{
+# ifdef CLOTH_ROOT_FRAME
+ copy_m3_m3(data->tfm[index], tfm);
+# else
+ unit_m3(data->tfm[index]);
+ (void)tfm;
+# endif
+}
+
+void BPH_mass_spring_set_motion_state(Implicit_Data *data,
+ int index,
+ const float x[3],
+ const float v[3])
+{
+ world_to_root_v3(data, index, data->X.v3(index), x);
+ world_to_root_v3(data, index, data->V.v3(index), v);
+}
+
+void BPH_mass_spring_set_position(Implicit_Data *data, int index, const float x[3])
+{
+ world_to_root_v3(data, index, data->X.v3(index), x);
+}
+
+void BPH_mass_spring_set_velocity(Implicit_Data *data, int index, const float v[3])
+{
+ world_to_root_v3(data, index, data->V.v3(index), v);
+}
+
+void BPH_mass_spring_get_motion_state(struct Implicit_Data *data,
+ int index,
+ float x[3],
+ float v[3])
+{
+ if (x) {
+ root_to_world_v3(data, index, x, data->X.v3(index));
+ }
+ if (v) {
+ root_to_world_v3(data, index, v, data->V.v3(index));
+ }
+}
+
+void BPH_mass_spring_get_position(struct Implicit_Data *data, int index, float x[3])
+{
+ root_to_world_v3(data, index, x, data->X.v3(index));
+}
+
+void BPH_mass_spring_get_new_velocity(Implicit_Data *data, int index, float v[3])
+{
+ root_to_world_v3(data, index, v, data->V.v3(index));
+}
+
+void BPH_mass_spring_set_new_velocity(Implicit_Data *data, int index, const float v[3])
+{
+ world_to_root_v3(data, index, data->V.v3(index), v);
+}
+
+void BPH_mass_spring_clear_constraints(Implicit_Data *data)
+{
+ int numverts = data->numverts;
+ for (int i = 0; i < numverts; i++) {
+ data->iS.add(i, i, I);
+ zero_v3(data->z.v3(i));
+ }
+}
+
+void BPH_mass_spring_add_constraint_ndof0(Implicit_Data *data, int index, const float dV[3])
+{
+ data->iS.sub(index, index, I);
+
+ world_to_root_v3(data, index, data->z.v3(index), dV);
+}
+
+void BPH_mass_spring_add_constraint_ndof1(
+ Implicit_Data *data, int index, const float c1[3], const float c2[3], const float dV[3])
+{
+ float m[3][3], p[3], q[3], u[3], cmat[3][3];
+
+ world_to_root_v3(data, index, p, c1);
+ outerproduct(cmat, p, p);
+ copy_m3_m3(m, cmat);
+
+ world_to_root_v3(data, index, q, c2);
+ outerproduct(cmat, q, q);
+ add_m3_m3m3(m, m, cmat);
+
+ /* XXX not sure but multiplication should work here */
+ data->iS.sub(index, index, m);
+ // mul_m3_m3m3(data->S[index].m, data->S[index].m, m);
+
+ world_to_root_v3(data, index, u, dV);
+ add_v3_v3(data->z.v3(index), u);
+}
+
+void BPH_mass_spring_add_constraint_ndof2(Implicit_Data *data,
+ int index,
+ const float c1[3],
+ const float dV[3])
+{
+ float m[3][3], p[3], u[3], cmat[3][3];
+
+ world_to_root_v3(data, index, p, c1);
+ outerproduct(cmat, p, p);
+ copy_m3_m3(m, cmat);
+
+ data->iS.sub(index, index, m);
+ // mul_m3_m3m3(data->S[index].m, data->S[index].m, m);
+
+ world_to_root_v3(data, index, u, dV);
+ add_v3_v3(data->z.v3(index), u);
+}
+
+void BPH_mass_spring_clear_forces(Implicit_Data *data)
+{
+ data->F.setZero();
+ data->dFdX.setZero();
+ data->dFdV.setZero();
+}
+
+void BPH_mass_spring_force_reference_frame(Implicit_Data *data,
+ int index,
+ const float acceleration[3],
+ const float omega[3],
+ const float domega_dt[3],
+ float mass)
+{
+# ifdef CLOTH_ROOT_FRAME
+ float acc[3], w[3], dwdt[3];
+ float f[3], dfdx[3][3], dfdv[3][3];
+ float euler[3], coriolis[3], centrifugal[3], rotvel[3];
+ float deuler[3][3], dcoriolis[3][3], dcentrifugal[3][3], drotvel[3][3];
+
+ world_to_root_v3(data, index, acc, acceleration);
+ world_to_root_v3(data, index, w, omega);
+ world_to_root_v3(data, index, dwdt, domega_dt);
+
+ cross_v3_v3v3(euler, dwdt, data->X.v3(index));
+ cross_v3_v3v3(coriolis, w, data->V.v3(index));
+ mul_v3_fl(coriolis, 2.0f);
+ cross_v3_v3v3(rotvel, w, data->X.v3(index));
+ cross_v3_v3v3(centrifugal, w, rotvel);
+
+ sub_v3_v3v3(f, acc, euler);
+ sub_v3_v3(f, coriolis);
+ sub_v3_v3(f, centrifugal);
+
+ mul_v3_fl(f, mass); /* F = m * a */
+
+ cross_v3_identity(deuler, dwdt);
+ cross_v3_identity(dcoriolis, w);
+ mul_m3_fl(dcoriolis, 2.0f);
+ cross_v3_identity(drotvel, w);
+ cross_m3_v3m3(dcentrifugal, w, drotvel);
+
+ add_m3_m3m3(dfdx, deuler, dcentrifugal);
+ negate_m3(dfdx);
+ mul_m3_fl(dfdx, mass);
+
+ copy_m3_m3(dfdv, dcoriolis);
+ negate_m3(dfdv);
+ mul_m3_fl(dfdv, mass);
+
+ add_v3_v3(data->F.v3(index), f);
+ data->idFdX.add(index, index, dfdx);
+ data->idFdV.add(index, index, dfdv);
+# else
+ (void)data;
+ (void)index;
+ (void)acceleration;
+ (void)omega;
+ (void)domega_dt;
+# endif
+}
+
+void BPH_mass_spring_force_gravity(Implicit_Data *data, int index, float mass, const float g[3])
+{
+ /* force = mass * acceleration (in this case: gravity) */
+ float f[3];
+ world_to_root_v3(data, index, f, g);
+ mul_v3_fl(f, mass);
+
+ add_v3_v3(data->F.v3(index), f);
+}
+
+void BPH_mass_spring_force_drag(Implicit_Data *data, float drag)
+{
+ int numverts = data->numverts;
+ for (int i = 0; i < numverts; i++) {
+ float tmp[3][3];
+
+ /* NB: uses root space velocity, no need to transform */
+ madd_v3_v3fl(data->F.v3(i), data->V.v3(i), -drag);
+
+ copy_m3_m3(tmp, I);
+ mul_m3_fl(tmp, -drag);
+ data->idFdV.add(i, i, tmp);
+ }
+}
+
+void BPH_mass_spring_force_extern(
+ struct Implicit_Data *data, int i, const float f[3], float dfdx[3][3], float dfdv[3][3])
+{
+ float tf[3], tdfdx[3][3], tdfdv[3][3];
+ world_to_root_v3(data, i, tf, f);
+ world_to_root_m3(data, i, tdfdx, dfdx);
+ world_to_root_m3(data, i, tdfdv, dfdv);
+
+ add_v3_v3(data->F.v3(i), tf);
+ data->idFdX.add(i, i, tdfdx);
+ data->idFdV.add(i, i, tdfdv);
+}
+
+static float calc_nor_area_tri(float nor[3],
+ const float v1[3],
+ const float v2[3],
+ const float v3[3])
+{
+ float n1[3], n2[3];
+
+ sub_v3_v3v3(n1, v1, v2);
+ sub_v3_v3v3(n2, v2, v3);
+
+ cross_v3_v3v3(nor, n1, n2);
+ return normalize_v3(nor) / 2.0f;
+}
+
+/* XXX does not support force jacobians yet,
+ * since the effector system does not provide them either. */
+void BPH_mass_spring_force_face_wind(
+ Implicit_Data *data, int v1, int v2, int v3, const float (*winvec)[3])
+{
+ const float effector_scale = 0.02f;
+ float win[3], nor[3], area;
+ float factor;
+
+ // calculate face normal and area
+ area = calc_nor_area_tri(nor, data->X.v3(v1), data->X.v3(v2), data->X.v3(v3));
+ factor = effector_scale * area / 3.0f;
+
+ world_to_root_v3(data, v1, win, winvec[v1]);
+ madd_v3_v3fl(data->F.v3(v1), nor, factor * dot_v3v3(win, nor));
+
+ world_to_root_v3(data, v2, win, winvec[v2]);
+ madd_v3_v3fl(data->F.v3(v2), nor, factor * dot_v3v3(win, nor));
+
+ world_to_root_v3(data, v3, win, winvec[v3]);
+ madd_v3_v3fl(data->F.v3(v3), nor, factor * dot_v3v3(win, nor));
+}
+
+void BPH_mass_spring_force_edge_wind(Implicit_Data *data, int v1, int v2, const float (*winvec)[3])
+{
+ const float effector_scale = 0.01;
+ float win[3], dir[3], nor[3], length;
+
+ sub_v3_v3v3(dir, data->X.v3(v1), data->X.v3(v2));
+ length = normalize_v3(dir);
+
+ world_to_root_v3(data, v1, win, winvec[v1]);
+ madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
+ madd_v3_v3fl(data->F.v3(v1), nor, effector_scale * length);
+
+ world_to_root_v3(data, v2, win, winvec[v2]);
+ madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
+ madd_v3_v3fl(data->F.v3(v2), nor, effector_scale * length);
+}
+
+BLI_INLINE void dfdx_spring(float to[3][3], const float dir[3], float length, float L, float k)
+{
+ /* dir is unit length direction, rest is spring's restlength, k is spring constant. */
+ // return ((I - outerprod(dir, dir)) * Min(1.0f, rest / length) - I) * -k;
+ outerproduct(to, dir, dir);
+ sub_m3_m3m3(to, I, to);
+
+ mul_m3_fl(to, (L / length));
+ sub_m3_m3m3(to, to, I);
+ mul_m3_fl(to, k);
+}
+
+/* unused */
+# if 0
+BLI_INLINE void dfdx_damp(float to[3][3],
+ const float dir[3],
+ float length,
+ const float vel[3],
+ float rest,
+ float damping)
+{
+ // inner spring damping vel is the relative velocity of the endpoints.
+ // return (I-outerprod(dir, dir)) * (-damping * -(dot(dir, vel)/Max(length, rest)));
+ mul_fvectorT_fvector(to, dir, dir);
+ sub_fmatrix_fmatrix(to, I, to);
+ mul_fmatrix_S(to, (-damping * -(dot_v3v3(dir, vel) / MAX2(length, rest))));
+}
+# endif
+
+BLI_INLINE void dfdv_damp(float to[3][3], const float dir[3], float damping)
+{
+ // derivative of force wrt velocity
+ outerproduct(to, dir, dir);
+ mul_m3_fl(to, -damping);
+}
+
+BLI_INLINE float fb(float length, float L)
+{
+ float x = length / L;
+ return (-11.541f * powf(x, 4) + 34.193f * powf(x, 3) - 39.083f * powf(x, 2) + 23.116f * x -
+ 9.713f);
+}
+
+BLI_INLINE float fbderiv(float length, float L)
+{
+ float x = length / L;
+
+ return (-46.164f * powf(x, 3) + 102.579f * powf(x, 2) - 78.166f * x + 23.116f);
+}
+
+BLI_INLINE float fbstar(float length, float L, float kb, float cb)
+{
+ float tempfb_fl = kb * fb(length, L);
+ float fbstar_fl = cb * (length - L);
+
+ if (tempfb_fl < fbstar_fl) {
+ return fbstar_fl;
+ }
+ else {
+ return tempfb_fl;
+ }
+}
+
+// function to calculae bending spring force (taken from Choi & Co)
+BLI_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
+{
+ float tempfb_fl = kb * fb(length, L);
+ float fbstar_fl = cb * (length - L);
+
+ if (tempfb_fl < fbstar_fl) {
+ return -cb;
+ }
+ else {
+ return -kb * fbderiv(length, L);
+ }
+}
+
+/* calculate elonglation */
+BLI_INLINE bool spring_length(Implicit_Data *data,
+ int i,
+ int j,
+ float r_extent[3],
+ float r_dir[3],
+ float *r_length,
+ float r_vel[3])
+{
+ sub_v3_v3v3(r_extent, data->X.v3(j), data->X.v3(i));
+ sub_v3_v3v3(r_vel, data->V.v3(j), data->V.v3(i));
+ *r_length = len_v3(r_extent);
+
+ if (*r_length > ALMOST_ZERO) {
+# if 0
+ if (length > L) {
+ if ((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) &&
+ (((length - L) * 100.0f / L) > clmd->sim_parms->maxspringlen)) {
+ // cut spring!
+ s->flags |= CSPRING_FLAG_DEACTIVATE;
+ return false;
+ }
+ }
+# endif
+ mul_v3_v3fl(r_dir, r_extent, 1.0f / (*r_length));
+ }
+ else {
+ zero_v3(r_dir);
+ }
+
+ return true;
+}
+
+BLI_INLINE void apply_spring(
+ Implicit_Data *data, int i, int j, const float f[3], float dfdx[3][3], float dfdv[3][3])
+{
+ add_v3_v3(data->F.v3(i), f);
+ sub_v3_v3(data->F.v3(j), f);
+
+ data->idFdX.add(i, i, dfdx);
+ data->idFdX.add(j, j, dfdx);
+ data->idFdX.sub(i, j, dfdx);
+ data->idFdX.sub(j, i, dfdx);
+
+ data->idFdV.add(i, i, dfdv);
+ data->idFdV.add(j, j, dfdv);
+ data->idFdV.sub(i, j, dfdv);
+ data->idFdV.sub(j, i, dfdv);
+}
+
+bool BPH_mass_spring_force_spring_linear(Implicit_Data *data,
+ int i,
+ int j,
+ float restlen,
+ float stiffness,
+ float damping,
+ bool no_compress,
+ float clamp_force,
+ float r_f[3],
+ float r_dfdx[3][3],
+ float r_dfdv[3][3])
+{
+ float extent[3], length, dir[3], vel[3];
+
+ // calculate elonglation
+ spring_length(data, i, j, extent, dir, &length, vel);
+
+ if (length > restlen || no_compress) {
+ float stretch_force, f[3], dfdx[3][3], dfdv[3][3];
+
+ stretch_force = stiffness * (length - restlen);
+ if (clamp_force > 0.0f && stretch_force > clamp_force) {
+ stretch_force = clamp_force;
+ }
+ mul_v3_v3fl(f, dir, stretch_force);
+
+ // Ascher & Boxman, p.21: Damping only during elonglation
+ // something wrong with it...
+ madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));
+
+ dfdx_spring(dfdx, dir, length, restlen, stiffness);
+ dfdv_damp(dfdv, dir, damping);
+
+ apply_spring(data, i, j, f, dfdx, dfdv);
+
+ if (r_f) {
+ copy_v3_v3(r_f, f);
+ }
+ if (r_dfdx) {
+ copy_m3_m3(r_dfdx, dfdx);
+ }
+ if (r_dfdv) {
+ copy_m3_m3(r_dfdv, dfdv);
+ }
+
+ return true;
+ }
+ else {
+ if (r_f) {
+ zero_v3(r_f);
+ }
+ if (r_dfdx) {
+ zero_m3(r_dfdx);
+ }
+ if (r_dfdv) {
+ zero_m3(r_dfdv);
+ }
+
+ return false;
+ }
+}
+
+/* See "Stable but Responsive Cloth" (Choi, Ko 2005) */
+bool BPH_mass_spring_force_spring_bending(Implicit_Data *data,
+ int i,
+ int j,
+ float restlen,
+ float kb,
+ float cb,
+ float r_f[3],
+ float r_dfdx[3][3],
+ float r_dfdv[3][3])
+{
+ float extent[3], length, dir[3], vel[3];
+
+ // calculate elonglation
+ spring_length(data, i, j, extent, dir, &length, vel);
+
+ if (length < restlen) {
+ float f[3], dfdx[3][3], dfdv[3][3];
+
+ mul_v3_v3fl(f, dir, fbstar(length, restlen, kb, cb));
+
+ outerproduct(dfdx, dir, dir);
+ mul_m3_fl(dfdx, fbstar_jacobi(length, restlen, kb, cb));
+
+ /* XXX damping not supported */
+ zero_m3(dfdv);
+
+ apply_spring(data, i, j, f, dfdx, dfdv);
+
+ if (r_f) {
+ copy_v3_v3(r_f, f);
+ }
+ if (r_dfdx) {
+ copy_m3_m3(r_dfdx, dfdx);
+ }
+ if (r_dfdv) {
+ copy_m3_m3(r_dfdv, dfdv);
+ }
+
+ return true;
+ }
+ else {
+ if (r_f) {
+ zero_v3(r_f);
+ }
+ if (r_dfdx) {
+ zero_m3(r_dfdx);
+ }
+ if (r_dfdv) {
+ zero_m3(r_dfdv);
+ }
+
+ return false;
+ }
+}
+
+/* Jacobian of a direction vector.
+ * Basically the part of the differential orthogonal to the direction,
+ * inversely proportional to the length of the edge.
+ *
+ * dD_ij/dx_i = -dD_ij/dx_j = (D_ij * D_ij^T - I) / len_ij
+ */
+BLI_INLINE void spring_grad_dir(
+ Implicit_Data *data, int i, int j, float edge[3], float dir[3], float grad_dir[3][3])
+{
+ float length;
+
+ sub_v3_v3v3(edge, data->X.v3(j), data->X.v3(i));
+ length = normalize_v3_v3(dir, edge);
+
+ if (length > ALMOST_ZERO) {
+ outerproduct(grad_dir, dir, dir);
+ sub_m3_m3m3(grad_dir, I, grad_dir);
+ mul_m3_fl(grad_dir, 1.0f / length);
+ }
+ else {
+ zero_m3(grad_dir);
+ }
+}
+
+BLI_INLINE void spring_angbend_forces(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float goal[3],
+ float stiffness,
+ float damping,
+ int q,
+ const float dx[3],
+ const float dv[3],
+ float r_f[3])
+{
+ float edge_ij[3], dir_ij[3];
+ float edge_jk[3], dir_jk[3];
+ float vel_ij[3], vel_jk[3], vel_ortho[3];
+ float f_bend[3], f_damp[3];
+ float fk[3];
+ float dist[3];
+
+ zero_v3(fk);
+
+ sub_v3_v3v3(edge_ij, data->X.v3(j), data->X.v3(i));
+ if (q == i) {
+ sub_v3_v3(edge_ij, dx);
+ }
+ if (q == j) {
+ add_v3_v3(edge_ij, dx);
+ }
+ normalize_v3_v3(dir_ij, edge_ij);
+
+ sub_v3_v3v3(edge_jk, data->X.v3(k), data->X.v3(j));
+ if (q == j) {
+ sub_v3_v3(edge_jk, dx);
+ }
+ if (q == k) {
+ add_v3_v3(edge_jk, dx);
+ }
+ normalize_v3_v3(dir_jk, edge_jk);
+
+ sub_v3_v3v3(vel_ij, data->V.v3(j), data->V.v3(i));
+ if (q == i) {
+ sub_v3_v3(vel_ij, dv);
+ }
+ if (q == j) {
+ add_v3_v3(vel_ij, dv);
+ }
+
+ sub_v3_v3v3(vel_jk, data->V.v3(k), data->V.v3(j));
+ if (q == j) {
+ sub_v3_v3(vel_jk, dv);
+ }
+ if (q == k) {
+ add_v3_v3(vel_jk, dv);
+ }
+
+ /* bending force */
+ sub_v3_v3v3(dist, goal, edge_jk);
+ mul_v3_v3fl(f_bend, dist, stiffness);
+
+ add_v3_v3(fk, f_bend);
+
+ /* damping force */
+ madd_v3_v3v3fl(vel_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
+ mul_v3_v3fl(f_damp, vel_ortho, damping);
+
+ sub_v3_v3(fk, f_damp);
+
+ copy_v3_v3(r_f, fk);
+}
+
+/* Finite Differences method for estimating the jacobian of the force */
+BLI_INLINE void spring_angbend_estimate_dfdx(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float goal[3],
+ float stiffness,
+ float damping,
+ int q,
+ float dfdx[3][3])
+{
+ const float delta = 0.00001f; // TODO find a good heuristic for this
+ float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
+ float f[3];
+ int a, b;
+
+ zero_m3(dvec_null);
+ unit_m3(dvec_pos);
+ mul_m3_fl(dvec_pos, delta * 0.5f);
+ copy_m3_m3(dvec_neg, dvec_pos);
+ negate_m3(dvec_neg);
+
+ /* XXX TODO offset targets to account for position dependency */
+
+ for (a = 0; a < 3; a++) {
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_pos[a], dvec_null[a], f);
+ copy_v3_v3(dfdx[a], f);
+
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_neg[a], dvec_null[a], f);
+ sub_v3_v3(dfdx[a], f);
+
+ for (b = 0; b < 3; b++) {
+ dfdx[a][b] /= delta;
+ }
+ }
+}
+
+/* Finite Differences method for estimating the jacobian of the force */
+BLI_INLINE void spring_angbend_estimate_dfdv(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float goal[3],
+ float stiffness,
+ float damping,
+ int q,
+ float dfdv[3][3])
+{
+ const float delta = 0.00001f; // TODO find a good heuristic for this
+ float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
+ float f[3];
+ int a, b;
+
+ zero_m3(dvec_null);
+ unit_m3(dvec_pos);
+ mul_m3_fl(dvec_pos, delta * 0.5f);
+ copy_m3_m3(dvec_neg, dvec_pos);
+ negate_m3(dvec_neg);
+
+ /* XXX TODO offset targets to account for position dependency */
+
+ for (a = 0; a < 3; a++) {
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_null[a], dvec_pos[a], f);
+ copy_v3_v3(dfdv[a], f);
+
+ spring_angbend_forces(
+ data, i, j, k, goal, stiffness, damping, q, dvec_null[a], dvec_neg[a], f);
+ sub_v3_v3(dfdv[a], f);
+
+ for (b = 0; b < 3; b++) {
+ dfdv[a][b] /= delta;
+ }
+ }
+}
+
+/* Angular spring that pulls the vertex toward the local target
+ * See "Artistic Simulation of Curly Hair" (Pixar technical memo #12-03a)
+ */
+bool BPH_mass_spring_force_spring_bending_angular(Implicit_Data *data,
+ int i,
+ int j,
+ int k,
+ const float target[3],
+ float stiffness,
+ float damping)
+{
+ float goal[3];
+ float fj[3], fk[3];
+ float dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
+ float dfj_dvi[3][3], dfj_dvj[3][3], dfk_dvi[3][3], dfk_dvj[3][3], dfk_dvk[3][3];
+
+ const float vecnull[3] = {0.0f, 0.0f, 0.0f};
+
+ world_to_root_v3(data, j, goal, target);
+
+ spring_angbend_forces(data, i, j, k, goal, stiffness, damping, k, vecnull, vecnull, fk);
+ negate_v3_v3(fj, fk); /* counterforce */
+
+ spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, i, dfk_dxi);
+ spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, j, dfk_dxj);
+ spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, k, dfk_dxk);
+ copy_m3_m3(dfj_dxi, dfk_dxi);
+ negate_m3(dfj_dxi);
+ copy_m3_m3(dfj_dxj, dfk_dxj);
+ negate_m3(dfj_dxj);
+
+ spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, i, dfk_dvi);
+ spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, j, dfk_dvj);
+ spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, k, dfk_dvk);
+ copy_m3_m3(dfj_dvi, dfk_dvi);
+ negate_m3(dfj_dvi);
+ copy_m3_m3(dfj_dvj, dfk_dvj);
+ negate_m3(dfj_dvj);
+
+ /* add forces and jacobians to the solver data */
+
+ add_v3_v3(data->F.v3(j), fj);
+ add_v3_v3(data->F.v3(k), fk);
+
+ data->idFdX.add(j, j, dfj_dxj);
+ data->idFdX.add(k, k, dfk_dxk);
+
+ data->idFdX.add(i, j, dfj_dxi);
+ data->idFdX.add(j, i, dfj_dxi);
+ data->idFdX.add(j, k, dfk_dxj);
+ data->idFdX.add(k, j, dfk_dxj);
+ data->idFdX.add(i, k, dfk_dxi);
+ data->idFdX.add(k, i, dfk_dxi);
+
+ data->idFdV.add(j, j, dfj_dvj);
+ data->idFdV.add(k, k, dfk_dvk);
+
+ data->idFdV.add(i, j, dfj_dvi);
+ data->idFdV.add(j, i, dfj_dvi);
+ data->idFdV.add(j, k, dfk_dvj);
+ data->idFdV.add(k, j, dfk_dvj);
+ data->idFdV.add(i, k, dfk_dvi);
+ data->idFdV.add(k, i, dfk_dvi);
+
+ /* XXX analytical calculation of derivatives below is incorrect.
+ * This proved to be difficult, but for now just using the finite difference method for
+ * estimating the jacobians should be sufficient.
+ */
+# if 0
+ float edge_ij[3], dir_ij[3], grad_dir_ij[3][3];
+ float edge_jk[3], dir_jk[3], grad_dir_jk[3][3];
+ float dist[3], vel_jk[3], vel_jk_ortho[3], projvel[3];
+ float target[3];
+ float tmp[3][3];
+ float fi[3], fj[3], fk[3];
+ float dfi_dxi[3][3], dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
+ float dfdvi[3][3];
+
+ // TESTING
+ damping = 0.0f;
+
+ zero_v3(fi);
+ zero_v3(fj);
+ zero_v3(fk);
+ zero_m3(dfi_dxi);
+ zero_m3(dfj_dxi);
+ zero_m3(dfk_dxi);
+ zero_m3(dfk_dxj);
+ zero_m3(dfk_dxk);
+
+ /* jacobian of direction vectors */
+ spring_grad_dir(data, i, j, edge_ij, dir_ij, grad_dir_ij);
+ spring_grad_dir(data, j, k, edge_jk, dir_jk, grad_dir_jk);
+
+ sub_v3_v3v3(vel_jk, data->V[k], data->V[j]);
+
+ /* bending force */
+ mul_v3_v3fl(target, dir_ij, restlen);
+ sub_v3_v3v3(dist, target, edge_jk);
+ mul_v3_v3fl(fk, dist, stiffness);
+
+ /* damping force */
+ madd_v3_v3v3fl(vel_jk_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
+ madd_v3_v3fl(fk, vel_jk_ortho, damping);
+
+ /* XXX this only holds true as long as we assume straight rest shape!
+ * eventually will become a bit more involved since the opposite segment
+ * gets its own target, under condition of having equal torque on both sides.
+ */
+ copy_v3_v3(fi, fk);
+
+ /* counterforce on the middle point */
+ sub_v3_v3(fj, fi);
+ sub_v3_v3(fj, fk);
+
+ /* === derivatives === */
+
+ madd_m3_m3fl(dfk_dxi, grad_dir_ij, stiffness * restlen);
+
+ madd_m3_m3fl(dfk_dxj, grad_dir_ij, -stiffness * restlen);
+ madd_m3_m3fl(dfk_dxj, I, stiffness);
+
+ madd_m3_m3fl(dfk_dxk, I, -stiffness);
+
+ copy_m3_m3(dfi_dxi, dfk_dxk);
+ negate_m3(dfi_dxi);
+
+ /* dfj_dfi == dfi_dfj due to symmetry,
+ * dfi_dfj == dfk_dfj due to fi == fk
+ * XXX see comment above on future bent rest shapes
+ */
+ copy_m3_m3(dfj_dxi, dfk_dxj);
+
+ /* dfj_dxj == -(dfi_dxj + dfk_dxj) due to fj == -(fi + fk) */
+ sub_m3_m3m3(dfj_dxj, dfj_dxj, dfj_dxi);
+ sub_m3_m3m3(dfj_dxj, dfj_dxj, dfk_dxj);
+
+ /* add forces and jacobians to the solver data */
+ add_v3_v3(data->F[i], fi);
+ add_v3_v3(data->F[j], fj);
+ add_v3_v3(data->F[k], fk);
+
+ add_m3_m3m3(data->dFdX[i].m, data->dFdX[i].m, dfi_dxi);
+ add_m3_m3m3(data->dFdX[j].m, data->dFdX[j].m, dfj_dxj);
+ add_m3_m3m3(data->dFdX[k].m, data->dFdX[k].m, dfk_dxk);
+
+ add_m3_m3m3(data->dFdX[block_ij].m, data->dFdX[block_ij].m, dfj_dxi);
+ add_m3_m3m3(data->dFdX[block_jk].m, data->dFdX[block_jk].m, dfk_dxj);
+ add_m3_m3m3(data->dFdX[block_ik].m, data->dFdX[block_ik].m, dfk_dxi);
+# endif
+
+ return true;
+}
+
+bool BPH_mass_spring_force_spring_goal(Implicit_Data *data,
+ int i,
+ const float goal_x[3],
+ const float goal_v[3],
+ float stiffness,
+ float damping,
+ float r_f[3],
+ float r_dfdx[3][3],
+ float r_dfdv[3][3])
+{
+ float root_goal_x[3], root_goal_v[3], extent[3], length, dir[3], vel[3];
+ float f[3], dfdx[3][3], dfdv[3][3];
+
+ /* goal is in world space */
+ world_to_root_v3(data, i, root_goal_x, goal_x);
+ world_to_root_v3(data, i, root_goal_v, goal_v);
+
+ sub_v3_v3v3(extent, root_goal_x, data->X.v3(i));
+ sub_v3_v3v3(vel, root_goal_v, data->V.v3(i));
+ length = normalize_v3_v3(dir, extent);
+
+ if (length > ALMOST_ZERO) {
+ mul_v3_v3fl(f, dir, stiffness * length);
+
+ // Ascher & Boxman, p.21: Damping only during elonglation
+ // something wrong with it...
+ madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));
+
+ dfdx_spring(dfdx, dir, length, 0.0f, stiffness);
+ dfdv_damp(dfdv, dir, damping);
+
+ add_v3_v3(data->F.v3(i), f);
+ data->idFdX.add(i, i, dfdx);
+ data->idFdV.add(i, i, dfdv);
+
+ if (r_f) {
+ copy_v3_v3(r_f, f);
+ }
+ if (r_dfdx) {
+ copy_m3_m3(r_dfdx, dfdx);
+ }
+ if (r_dfdv) {
+ copy_m3_m3(r_dfdv, dfdv);
+ }
+
+ return true;
+ }
+ else {
+ if (r_f) {
+ zero_v3(r_f);
+ }
+ if (r_dfdx) {
+ zero_m3(r_dfdx);
+ }
+ if (r_dfdv) {
+ zero_m3(r_dfdv);
+ }
+
+ return false;
+ }
+}
+
+#endif /* IMPLICIT_SOLVER_EIGEN */