Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Schlaile <peter@schlaile.de>2006-03-07 23:01:12 +0300
committerPeter Schlaile <peter@schlaile.de>2006-03-07 23:01:12 +0300
commit327d413eb3c0c4cf07b71903eaa27e784be172c3 (patch)
tree9563098700eaa9f038dd476541ba71adf9d50e16 /source/blender/src/seqeffects.c
parent9ce587e2117dcb2340d75c4bfa2b6e3c1135254c (diff)
this patch features several cleanups and bugfixes for the sequencer:
- blur works again (this was a serious bug in gamwarp...) - seperates all sequence effects into a seperate file with a clean interface - thereby fixing some obscure segfaults - seperates the scope views into a seperate file - adds float support to all effects and scope views - removes a bad level call to open_plugin_seq - FFMPEG seeking improved a lot. - FFMPEG compiles with debian sarge version cleanly - Makes hdaudio seek and resample code really work
Diffstat (limited to 'source/blender/src/seqeffects.c')
-rw-r--r--source/blender/src/seqeffects.c2515
1 files changed, 2515 insertions, 0 deletions
diff --git a/source/blender/src/seqeffects.c b/source/blender/src/seqeffects.c
new file mode 100644
index 00000000000..d1d04a7eb96
--- /dev/null
+++ b/source/blender/src/seqeffects.c
@@ -0,0 +1,2515 @@
+/**
+ * $Id$
+ *
+ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version. The Blender
+ * Foundation also sells licenses for use in proprietary software under
+ * the Blender License. See http://www.blender.org/BL/ for information
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * Contributor(s): Peter Schlaile <peter [at] schlaile [dot] de> 2005/2006
+ *
+ * ***** END GPL/BL DUAL LICENSE BLOCK *****
+ */
+
+#include <string.h>
+#include <math.h>
+#include <stdlib.h>
+
+#include "MEM_guardedalloc.h"
+#include "PIL_dynlib.h"
+#include "BKE_plugin_types.h"
+
+#include "IMB_imbuf_types.h"
+#include "IMB_imbuf.h"
+
+#include "DNA_sequence_types.h"
+#include "BSE_seqeffects.h"
+
+#include "BLI_blenlib.h"
+#include "BLI_arithb.h"
+
+#include "DNA_sequence_types.h"
+
+#include "BKE_utildefines.h"
+#include "BKE_global.h"
+#include "BKE_ipo.h"
+#include "BKE_texture.h"
+#include "BIF_toolbox.h"
+#include "BIF_interface.h"
+
+#include "BSE_sequence.h"
+
+#include "RE_pipeline.h" // talks to entire render API
+
+#include "blendef.h"
+
+/* Glow effect */
+enum {
+ GlowR=0,
+ GlowG=1,
+ GlowB=2,
+ GlowA=3
+};
+
+
+/* **********************************************************************
+ PLUGINS
+ ********************************************************************** */
+
+static void open_plugin_seq(PluginSeq *pis, const char *seqname)
+{
+ int (*version)();
+ void* (*alloc_private)();
+ char *cp;
+
+ /* to be sure: (is tested for) */
+ pis->doit= 0;
+ pis->pname= 0;
+ pis->varstr= 0;
+ pis->cfra= 0;
+ pis->version= 0;
+ pis->instance_private_data = 0;
+
+ /* clear the error list */
+ PIL_dynlib_get_error_as_string(NULL);
+
+ /* if(pis->handle) PIL_dynlib_close(pis->handle); */
+ /* pis->handle= 0; */
+
+ /* open the needed object */
+ pis->handle= PIL_dynlib_open(pis->name);
+ if(test_dlerr(pis->name, pis->name)) return;
+
+ if (pis->handle != 0) {
+ /* find the address of the version function */
+ version= (int (*)())PIL_dynlib_find_symbol(pis->handle, "plugin_seq_getversion");
+ if (test_dlerr(pis->name, "plugin_seq_getversion")) return;
+
+ if (version != 0) {
+ pis->version= version();
+ if (pis->version==2 || pis->version==3) {
+ int (*info_func)(PluginInfo *);
+ PluginInfo *info= (PluginInfo*) MEM_mallocN(sizeof(PluginInfo), "plugin_info");;
+
+ info_func= (int (*)(PluginInfo *))PIL_dynlib_find_symbol(pis->handle, "plugin_getinfo");
+
+ if(info_func == NULL) error("No info func");
+ else {
+ info_func(info);
+
+ pis->pname= info->name;
+ pis->vars= info->nvars;
+ pis->cfra= info->cfra;
+
+ pis->varstr= info->varstr;
+
+ pis->doit= (void(*)(void))info->seq_doit;
+ if (info->init)
+ info->init();
+ }
+ MEM_freeN(info);
+
+ cp= PIL_dynlib_find_symbol(pis->handle, "seqname");
+ if(cp) strncpy(cp, seqname, 21);
+ } else {
+ printf ("Plugin returned unrecognized version number\n");
+ return;
+ }
+ }
+ alloc_private = (void* (*)())PIL_dynlib_find_symbol(
+ pis->handle, "plugin_seq_alloc_private_data");
+ if (alloc_private) {
+ pis->instance_private_data = alloc_private();
+ }
+
+ pis->current_private_data = (void**)
+ PIL_dynlib_find_symbol(
+ pis->handle, "plugin_private_data");
+ }
+}
+
+static PluginSeq *add_plugin_seq(const char *str, const char *seqname)
+{
+ PluginSeq *pis;
+ VarStruct *varstr;
+ int a;
+
+ pis= MEM_callocN(sizeof(PluginSeq), "PluginSeq");
+
+ strncpy(pis->name, str, FILE_MAXDIR+FILE_MAXFILE);
+ open_plugin_seq(pis, seqname);
+
+ if(pis->doit==0) {
+ if(pis->handle==0) error("no plugin: %s", str);
+ else error("in plugin: %s", str);
+ MEM_freeN(pis);
+ return 0;
+ }
+
+ /* default values */
+ varstr= pis->varstr;
+ for(a=0; a<pis->vars; a++, varstr++) {
+ if( (varstr->type & FLO)==FLO)
+ pis->data[a]= varstr->def;
+ else if( (varstr->type & INT)==INT)
+ *((int *)(pis->data+a))= (int) varstr->def;
+ }
+
+ return pis;
+}
+
+static void free_plugin_seq(PluginSeq *pis)
+{
+ if(pis==0) return;
+
+ /* no PIL_dynlib_close: same plugin can be opened multiple times with 1 handle */
+
+ if (pis->instance_private_data) {
+ void (*free_private)(void *);
+
+ free_private = (void (*)(void *))PIL_dynlib_find_symbol(
+ pis->handle, "plugin_seq_free_private_data");
+ if (free_private) {
+ free_private(pis->instance_private_data);
+ }
+ }
+
+ MEM_freeN(pis);
+}
+
+static void init_plugin(Sequence * seq, const char * fname)
+{
+ seq->plugin= (PluginSeq *)add_plugin_seq(fname, seq->name+2);
+}
+
+static void load_plugin(Sequence * seq)
+{
+ if (seq) {
+ open_plugin_seq(seq->plugin, seq->name+2);
+ }
+}
+
+static void copy_plugin(Sequence * dst, Sequence * src)
+{
+ if(src->plugin) {
+ dst->plugin= MEM_dupallocN(src->plugin);
+ open_plugin_seq(dst->plugin, dst->name+2);
+ }
+}
+
+static void do_plugin_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ char *cp;
+
+ if(seq->plugin && seq->plugin->doit) {
+ if(seq->plugin->cfra)
+ *(seq->plugin->cfra)= frame_to_float(cfra);
+
+ cp = PIL_dynlib_find_symbol(
+ seq->plugin->handle, "seqname");
+
+ if(cp) strncpy(cp, seq->name+2, 22);
+
+ if (seq->plugin->current_private_data) {
+ *seq->plugin->current_private_data
+ = seq->plugin->instance_private_data;
+ }
+
+ if (seq->plugin->version<=2) {
+ if(ibuf1) IMB_convert_rgba_to_abgr(ibuf1);
+ if(ibuf2) IMB_convert_rgba_to_abgr(ibuf2);
+ if(ibuf3) IMB_convert_rgba_to_abgr(ibuf3);
+ }
+
+ ((SeqDoit)seq->plugin->doit)(
+ seq->plugin->data, facf0, facf1, x, y,
+ ibuf1, ibuf2, out, ibuf3);
+
+ if (seq->plugin->version<=2) {
+ if(ibuf1) IMB_convert_rgba_to_abgr(ibuf1);
+ if(ibuf2) IMB_convert_rgba_to_abgr(ibuf2);
+ if(ibuf3) IMB_convert_rgba_to_abgr(ibuf3);
+ IMB_convert_rgba_to_abgr(out);
+ }
+ }
+}
+
+static int do_plugin_early_out(struct Sequence *seq,
+ float facf0, float facf1)
+{
+ return 0;
+}
+
+static void free_plugin(struct Sequence * seq)
+{
+ free_plugin_seq(seq->plugin);
+ seq->plugin = 0;
+}
+
+/* **********************************************************************
+ ALPHA OVER
+ ********************************************************************** */
+
+static void init_alpha_over_or_under(Sequence * seq)
+{
+ Sequence * seq1 = seq->seq1;
+ Sequence * seq2 = seq->seq2;
+
+ seq->seq2= seq1;
+ seq->seq1= seq2;
+}
+
+static void do_alphaover_effect_byte(float facf0, float facf1, int x, int y,
+ char * rect1, char *rect2, char *out)
+{
+ int fac2, mfac, fac, fac4;
+ int xo, tempc;
+ char *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= (char *)rect1;
+ rt2= (char *)rect2;
+ rt= (char *)out;
+
+ fac2= (int)(256.0*facf0);
+ fac4= (int)(256.0*facf1);
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ /* rt = rt1 over rt2 (alpha from rt1) */
+
+ fac= fac2;
+ mfac= 256 - ( (fac2*rt1[3])>>8 );
+
+ if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
+ else if(mfac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
+ else {
+ tempc= ( fac*rt1[0] + mfac*rt2[0])>>8;
+ if(tempc>255) rt[0]= 255; else rt[0]= tempc;
+ tempc= ( fac*rt1[1] + mfac*rt2[1])>>8;
+ if(tempc>255) rt[1]= 255; else rt[1]= tempc;
+ tempc= ( fac*rt1[2] + mfac*rt2[2])>>8;
+ if(tempc>255) rt[2]= 255; else rt[2]= tempc;
+ tempc= ( fac*rt1[3] + mfac*rt2[3])>>8;
+ if(tempc>255) rt[3]= 255; else rt[3]= tempc;
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ fac= fac4;
+ mfac= 256 - ( (fac4*rt1[3])>>8 );
+
+ if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
+ else if(mfac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
+ else {
+ tempc= ( fac*rt1[0] + mfac*rt2[0])>>8;
+ if(tempc>255) rt[0]= 255; else rt[0]= tempc;
+ tempc= ( fac*rt1[1] + mfac*rt2[1])>>8;
+ if(tempc>255) rt[1]= 255; else rt[1]= tempc;
+ tempc= ( fac*rt1[2] + mfac*rt2[2])>>8;
+ if(tempc>255) rt[2]= 255; else rt[2]= tempc;
+ tempc= ( fac*rt1[3] + mfac*rt2[3])>>8;
+ if(tempc>255) rt[3]= 255; else rt[3]= tempc;
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+static void do_alphaover_effect_float(float facf0, float facf1, int x, int y,
+ float * rect1, float *rect2, float *out)
+{
+ float fac2, mfac, fac, fac4;
+ int xo;
+ float *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac2= facf0;
+ fac4= facf1;
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ /* rt = rt1 over rt2 (alpha from rt1) */
+
+ fac= fac2;
+ mfac= 1.0 - (fac2*rt1[3]) ;
+
+ if(fac <= 0.0) {
+ memcpy(rt, rt2, 4 * sizeof(float));
+ } else if(mfac <=0) {
+ memcpy(rt, rt1, 4 * sizeof(float));
+ } else {
+ rt[0] = fac*rt1[0] + mfac*rt2[0];
+ rt[1] = fac*rt1[1] + mfac*rt2[1];
+ rt[2] = fac*rt1[2] + mfac*rt2[2];
+ rt[3] = fac*rt1[3] + mfac*rt2[3];
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ fac= fac4;
+ mfac= 1.0 - (fac4*rt1[3]);
+
+ if(fac <= 0.0) {
+ memcpy(rt, rt2, 4 * sizeof(float));
+ } else if(mfac <= 0.0) {
+ memcpy(rt, rt1, 4 * sizeof(float));
+ } else {
+ rt[0] = fac*rt1[0] + mfac*rt2[0];
+ rt[1] = fac*rt1[1] + mfac*rt2[1];
+ rt[2] = fac*rt1[2] + mfac*rt2[2];
+ rt[3] = fac*rt1[3] + mfac*rt2[3];
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+static void do_alphaover_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_alphaover_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_alphaover_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+
+/* **********************************************************************
+ ALPHA UNDER
+ ********************************************************************** */
+
+void do_alphaunder_effect_byte(
+ float facf0, float facf1, int x, int y, char *rect1,
+ char *rect2, char *out)
+{
+ int fac2, mfac, fac, fac4;
+ int xo;
+ char *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac2= (int)(256.0*facf0);
+ fac4= (int)(256.0*facf1);
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ /* rt = rt1 under rt2 (alpha from rt2) */
+
+ /* this complex optimalisation is because the
+ * 'skybuf' can be crossed in
+ */
+ if(rt2[3]==0 && fac2==256) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
+ else if(rt2[3]==255) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
+ else {
+ mfac= rt2[3];
+ fac= (fac2*(256-mfac))>>8;
+
+ if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
+ else {
+ rt[0]= ( fac*rt1[0] + mfac*rt2[0])>>8;
+ rt[1]= ( fac*rt1[1] + mfac*rt2[1])>>8;
+ rt[2]= ( fac*rt1[2] + mfac*rt2[2])>>8;
+ rt[3]= ( fac*rt1[3] + mfac*rt2[3])>>8;
+ }
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ if(rt2[3]==0 && fac4==256) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
+ else if(rt2[3]==255) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
+ else {
+ mfac= rt2[3];
+ fac= (fac4*(256-mfac))>>8;
+
+ if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
+ else {
+ rt[0]= ( fac*rt1[0] + mfac*rt2[0])>>8;
+ rt[1]= ( fac*rt1[1] + mfac*rt2[1])>>8;
+ rt[2]= ( fac*rt1[2] + mfac*rt2[2])>>8;
+ rt[3]= ( fac*rt1[3] + mfac*rt2[3])>>8;
+ }
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+
+static void do_alphaunder_effect_float(float facf0, float facf1, int x, int y,
+ float *rect1, float *rect2,
+ float *out)
+{
+ float fac2, mfac, fac, fac4;
+ int xo;
+ float *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac2= facf0;
+ fac4= facf1;
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ /* rt = rt1 under rt2 (alpha from rt2) */
+
+ /* this complex optimalisation is because the
+ * 'skybuf' can be crossed in
+ */
+ if( rt2[3]<=0 && fac2>=1.0) {
+ memcpy(rt, rt1, 4 * sizeof(float));
+ } else if(rt2[3]>=1.0) {
+ memcpy(rt, rt2, 4 * sizeof(float));
+ } else {
+ mfac = rt2[3];
+ fac = fac2 * (1.0 - mfac);
+
+ if(fac == 0) {
+ memcpy(rt, rt2, 4 * sizeof(float));
+ } else {
+ rt[0]= fac*rt1[0] + mfac*rt2[0];
+ rt[1]= fac*rt1[1] + mfac*rt2[1];
+ rt[2]= fac*rt1[2] + mfac*rt2[2];
+ rt[3]= fac*rt1[3] + mfac*rt2[3];
+ }
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ if(rt2[3]<=0 && fac4 >= 1.0) {
+ memcpy(rt, rt1, 4 * sizeof(float));
+
+ } else if(rt2[3]>=1.0) {
+ memcpy(rt, rt2, 4 * sizeof(float));
+ } else {
+ mfac= rt2[3];
+ fac= fac4*(1.0-mfac);
+
+ if(fac == 0) {
+ memcpy(rt, rt2, 4 * sizeof(float));
+ } else {
+ rt[0]= fac * rt1[0] + mfac * rt2[0];
+ rt[1]= fac * rt1[1] + mfac * rt2[1];
+ rt[2]= fac * rt1[2] + mfac * rt2[2];
+ rt[3]= fac * rt1[3] + mfac * rt2[3];
+ }
+ }
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+static void do_alphaunder_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_alphaunder_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_alphaunder_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+
+/* **********************************************************************
+ CROSS
+ ********************************************************************** */
+
+void do_cross_effect_byte(float facf0, float facf1, int x, int y,
+ char *rect1, char *rect2,
+ char *out)
+{
+ int fac1, fac2, fac3, fac4;
+ int xo;
+ char *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac2= (int)(256.0*facf0);
+ fac1= 256-fac2;
+ fac4= (int)(256.0*facf1);
+ fac3= 256-fac4;
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= (fac1*rt1[0] + fac2*rt2[0])>>8;
+ rt[1]= (fac1*rt1[1] + fac2*rt2[1])>>8;
+ rt[2]= (fac1*rt1[2] + fac2*rt2[2])>>8;
+ rt[3]= (fac1*rt1[3] + fac2*rt2[3])>>8;
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= (fac3*rt1[0] + fac4*rt2[0])>>8;
+ rt[1]= (fac3*rt1[1] + fac4*rt2[1])>>8;
+ rt[2]= (fac3*rt1[2] + fac4*rt2[2])>>8;
+ rt[3]= (fac3*rt1[3] + fac4*rt2[3])>>8;
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ }
+}
+
+void do_cross_effect_float(float facf0, float facf1, int x, int y,
+ float*rect1, float *rect2, float *out)
+{
+ int fac1, fac2, fac3, fac4;
+ int xo;
+ float *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac2= facf0;
+ fac1= 1.0 - fac2;
+ fac4= facf1;
+ fac3= 1.0 - fac4;
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= fac1*rt1[0] + fac2*rt2[0];
+ rt[1]= fac1*rt1[1] + fac2*rt2[1];
+ rt[2]= fac1*rt1[2] + fac2*rt2[2];
+ rt[3]= fac1*rt1[3] + fac2*rt2[3];
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= fac3*rt1[0] + fac4*rt2[0];
+ rt[1]= fac3*rt1[1] + fac4*rt2[1];
+ rt[2]= fac3*rt1[2] + fac4*rt2[2];
+ rt[3]= fac3*rt1[3] + fac4*rt2[3];
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ }
+}
+
+static void do_cross_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_cross_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_cross_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+
+/* **********************************************************************
+ GAMMA CROSS
+ ********************************************************************** */
+
+/* copied code from initrender.c */
+static unsigned short *gamtab = 0;
+static unsigned short *igamtab1 = 0;
+static int gamma_tabs_refcount = 0;
+
+#define RE_GAMMA_TABLE_SIZE 400
+
+static float gamma_range_table[RE_GAMMA_TABLE_SIZE + 1];
+static float gamfactor_table[RE_GAMMA_TABLE_SIZE];
+static float inv_gamma_range_table[RE_GAMMA_TABLE_SIZE + 1];
+static float inv_gamfactor_table[RE_GAMMA_TABLE_SIZE];
+static float colour_domain_table[RE_GAMMA_TABLE_SIZE + 1];
+static float colour_step;
+static float inv_colour_step;
+static float valid_gamma;
+static float valid_inv_gamma;
+
+static void makeGammaTables(float gamma)
+{
+ /* we need two tables: one forward, one backward */
+ int i;
+
+ valid_gamma = gamma;
+ valid_inv_gamma = 1.0 / gamma;
+ colour_step = 1.0 / RE_GAMMA_TABLE_SIZE;
+ inv_colour_step = (float) RE_GAMMA_TABLE_SIZE;
+
+ /* We could squeeze out the two range tables to gain some memory. */
+ for (i = 0; i < RE_GAMMA_TABLE_SIZE; i++) {
+ colour_domain_table[i] = i * colour_step;
+ gamma_range_table[i] = pow(colour_domain_table[i],
+ valid_gamma);
+ inv_gamma_range_table[i] = pow(colour_domain_table[i],
+ valid_inv_gamma);
+ }
+
+ /* The end of the table should match 1.0 carefully. In order to avoid */
+ /* rounding errors, we just set this explicitly. The last segment may */
+ /* have a different lenght than the other segments, but our */
+ /* interpolation is insensitive to that. */
+ colour_domain_table[RE_GAMMA_TABLE_SIZE] = 1.0;
+ gamma_range_table[RE_GAMMA_TABLE_SIZE] = 1.0;
+ inv_gamma_range_table[RE_GAMMA_TABLE_SIZE] = 1.0;
+
+ /* To speed up calculations, we make these calc factor tables. They are */
+ /* multiplication factors used in scaling the interpolation. */
+ for (i = 0; i < RE_GAMMA_TABLE_SIZE; i++ ) {
+ gamfactor_table[i] = inv_colour_step
+ * (gamma_range_table[i + 1] - gamma_range_table[i]) ;
+ inv_gamfactor_table[i] = inv_colour_step
+ * (inv_gamma_range_table[i + 1] - inv_gamma_range_table[i]) ;
+ }
+
+} /* end of void makeGammaTables(float gamma) */
+
+
+static float gammaCorrect(float c)
+{
+ int i;
+ float res = 0.0;
+
+ i = floor(c * inv_colour_step);
+ /* Clip to range [0,1]: outside, just do the complete calculation. */
+ /* We may have some performance problems here. Stretching up the LUT */
+ /* may help solve that, by exchanging LUT size for the interpolation. */
+ /* Negative colours are explicitly handled. */
+ if (i < 0) res = -pow(abs(c), valid_gamma);
+ else if (i >= RE_GAMMA_TABLE_SIZE ) res = pow(c, valid_gamma);
+ else res = gamma_range_table[i] +
+ ( (c - colour_domain_table[i]) * gamfactor_table[i]);
+
+ return res;
+} /* end of float gammaCorrect(float col) */
+
+/* ------------------------------------------------------------------------- */
+
+static float invGammaCorrect(float col)
+{
+ int i;
+ float res = 0.0;
+
+ i = floor(col*inv_colour_step);
+ /* Negative colours are explicitly handled. */
+ if (i < 0) res = -pow(abs(col), valid_inv_gamma);
+ else if (i >= RE_GAMMA_TABLE_SIZE) res = pow(col, valid_inv_gamma);
+ else res = inv_gamma_range_table[i] +
+ ( (col - colour_domain_table[i]) * inv_gamfactor_table[i]);
+
+ return res;
+} /* end of float invGammaCorrect(float col) */
+
+
+static void gamtabs(float gamma)
+{
+ float val, igamma= 1.0f/gamma;
+ int a;
+
+ gamtab= MEM_mallocN(65536*sizeof(short), "initGaus2");
+ igamtab1= MEM_mallocN(256*sizeof(short), "initGaus2");
+
+ /* gamtab: in short, out short */
+ for(a=0; a<65536; a++) {
+ val= a;
+ val/= 65535.0;
+
+ if(gamma==2.0) val= sqrt(val);
+ else if(gamma!=1.0) val= pow(val, igamma);
+
+ gamtab[a]= (65535.99*val);
+ }
+ /* inverse gamtab1 : in byte, out short */
+ for(a=1; a<=256; a++) {
+ if(gamma==2.0) igamtab1[a-1]= a*a-1;
+ else if(gamma==1.0) igamtab1[a-1]= 256*a-1;
+ else {
+ val= a/256.0;
+ igamtab1[a-1]= (65535.0*pow(val, gamma)) -1 ;
+ }
+ }
+
+}
+
+static void alloc_or_ref_gammatabs()
+{
+ if (gamma_tabs_refcount == 0) {
+ gamtabs(2.0f);
+ makeGammaTables(2.0f);
+ }
+ gamma_tabs_refcount++;
+}
+
+static void init_gammacross(Sequence * seq)
+{
+ alloc_or_ref_gammatabs();
+}
+
+static void load_gammacross(Sequence * seq)
+{
+ alloc_or_ref_gammatabs();
+}
+
+static void free_gammacross(Sequence * seq)
+{
+ if (--gamma_tabs_refcount == 0) {
+ MEM_freeN(gamtab);
+ MEM_freeN(igamtab1);
+ gamtab = 0;
+ igamtab1 = 0;
+ }
+ if (gamma_tabs_refcount < 0) {
+ fprintf(stderr, "seqeffects: free_gammacross double free!\n");
+ }
+}
+
+static void do_gammacross_effect_byte(float facf0, float facf1,
+ int x, int y,
+ char *rect1,
+ char *rect2,
+ char *out)
+{
+ int fac1, fac2, col;
+ int xo;
+ char *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= (char *)rect1;
+ rt2= (char *)rect2;
+ rt= (char *)out;
+
+ fac2= (int)(256.0*facf0);
+ fac1= 256-fac2;
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ col= (fac1*igamtab1[rt1[0]] + fac2*igamtab1[rt2[0]])>>8;
+ if(col>65535) rt[0]= 255; else rt[0]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+ col=(fac1*igamtab1[rt1[1]] + fac2*igamtab1[rt2[1]])>>8;
+ if(col>65535) rt[1]= 255; else rt[1]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+ col= (fac1*igamtab1[rt1[2]] + fac2*igamtab1[rt2[2]])>>8;
+ if(col>65535) rt[2]= 255; else rt[2]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+ col= (fac1*igamtab1[rt1[3]] + fac2*igamtab1[rt2[3]])>>8;
+ if(col>65535) rt[3]= 255; else rt[3]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ col= (fac1*igamtab1[rt1[0]] + fac2*igamtab1[rt2[0]])>>8;
+ if(col>65535) rt[0]= 255; else rt[0]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+ col= (fac1*igamtab1[rt1[1]] + fac2*igamtab1[rt2[1]])>>8;
+ if(col>65535) rt[1]= 255; else rt[1]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+ col= (fac1*igamtab1[rt1[2]] + fac2*igamtab1[rt2[2]])>>8;
+ if(col>65535) rt[2]= 255; else rt[2]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+ col= (fac1*igamtab1[rt1[3]] + fac2*igamtab1[rt2[3]])>>8;
+ if(col>65535) rt[3]= 255; else rt[3]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+
+}
+
+static void do_gammacross_effect_float(float facf0, float facf1,
+ int x, int y,
+ float *rect1, float *rect2,
+ float *out)
+{
+ float fac1, fac2, col;
+ int xo;
+ float *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac2= facf0;
+ fac1= 1.0 - fac2;
+
+ while(y--) {
+
+ x= xo * 4;
+ while(x--) {
+
+ *rt= gammaCorrect(
+ fac1 * invGammaCorrect(*rt1)
+ + fac2 * invGammaCorrect(*rt2));
+ rt1++; rt2++; rt++;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo * 4;
+ while(x--) {
+
+ col= gammaCorrect(
+ fac1*invGammaCorrect(*rt1)
+ + fac2*invGammaCorrect(*rt2));
+
+ rt1++; rt2++; rt++;
+ }
+ }
+}
+
+static void do_gammacross_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_gammacross_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_gammacross_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+
+/* **********************************************************************
+ ADD
+ ********************************************************************** */
+
+static void do_add_effect_byte(float facf0, float facf1, int x, int y,
+ unsigned char *rect1, unsigned char *rect2,
+ unsigned char *out)
+{
+ int col, xo, fac1, fac3;
+ char *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= (char *)rect1;
+ rt2= (char *)rect2;
+ rt= (char *)out;
+
+ fac1= (int)(256.0*facf0);
+ fac3= (int)(256.0*facf1);
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ col= rt1[0]+ ((fac1*rt2[0])>>8);
+ if(col>255) rt[0]= 255; else rt[0]= col;
+ col= rt1[1]+ ((fac1*rt2[1])>>8);
+ if(col>255) rt[1]= 255; else rt[1]= col;
+ col= rt1[2]+ ((fac1*rt2[2])>>8);
+ if(col>255) rt[2]= 255; else rt[2]= col;
+ col= rt1[3]+ ((fac1*rt2[3])>>8);
+ if(col>255) rt[3]= 255; else rt[3]= col;
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ col= rt1[0]+ ((fac3*rt2[0])>>8);
+ if(col>255) rt[0]= 255; else rt[0]= col;
+ col= rt1[1]+ ((fac3*rt2[1])>>8);
+ if(col>255) rt[1]= 255; else rt[1]= col;
+ col= rt1[2]+ ((fac3*rt2[2])>>8);
+ if(col>255) rt[2]= 255; else rt[2]= col;
+ col= rt1[3]+ ((fac3*rt2[3])>>8);
+ if(col>255) rt[3]= 255; else rt[3]= col;
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+static void do_add_effect_float(float facf0, float facf1, int x, int y,
+ float *rect1, float *rect2,
+ float *out)
+{
+ int xo;
+ float fac1, fac3;
+ float *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac1= facf0;
+ fac3= facf1;
+
+ while(y--) {
+
+ x= xo * 4;
+ while(x--) {
+ *rt = *rt1 + fac1 * (*rt2);
+
+ rt1++; rt2++; rt++;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo * 4;
+ while(x--) {
+ *rt = *rt1 + fac3 * (*rt2);
+
+ rt1++; rt2++; rt++;
+ }
+ }
+}
+
+static void do_add_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_add_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_add_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+
+/* **********************************************************************
+ SUB
+ ********************************************************************** */
+
+static void do_sub_effect_byte(float facf0, float facf1,
+ int x, int y,
+ char *rect1, char *rect2, char *out)
+{
+ int col, xo, fac1, fac3;
+ char *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= (char *)rect1;
+ rt2= (char *)rect2;
+ rt= (char *)out;
+
+ fac1= (int)(256.0*facf0);
+ fac3= (int)(256.0*facf1);
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ col= rt1[0]- ((fac1*rt2[0])>>8);
+ if(col<0) rt[0]= 0; else rt[0]= col;
+ col= rt1[1]- ((fac1*rt2[1])>>8);
+ if(col<0) rt[1]= 0; else rt[1]= col;
+ col= rt1[2]- ((fac1*rt2[2])>>8);
+ if(col<0) rt[2]= 0; else rt[2]= col;
+ col= rt1[3]- ((fac1*rt2[3])>>8);
+ if(col<0) rt[3]= 0; else rt[3]= col;
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ col= rt1[0]- ((fac3*rt2[0])>>8);
+ if(col<0) rt[0]= 0; else rt[0]= col;
+ col= rt1[1]- ((fac3*rt2[1])>>8);
+ if(col<0) rt[1]= 0; else rt[1]= col;
+ col= rt1[2]- ((fac3*rt2[2])>>8);
+ if(col<0) rt[2]= 0; else rt[2]= col;
+ col= rt1[3]- ((fac3*rt2[3])>>8);
+ if(col<0) rt[3]= 0; else rt[3]= col;
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+static void do_sub_effect_float(float facf0, float facf1, int x, int y,
+ float *rect1, float *rect2,
+ float *out)
+{
+ int xo;
+ float fac1, fac3;
+ float *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac1= facf0;
+ fac3= facf1;
+
+ while(y--) {
+
+ x= xo * 4;
+ while(x--) {
+ *rt = *rt1 - fac1 * (*rt2);
+
+ rt1++; rt2++; rt++;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo * 4;
+ while(x--) {
+ *rt = *rt1 - fac3 * (*rt2);
+
+ rt1++; rt2++; rt++;
+ }
+ }
+}
+
+static void do_sub_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_sub_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_sub_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+/* **********************************************************************
+ DROP
+ ********************************************************************** */
+
+/* Must be > 0 or add precopy, etc to the function */
+#define XOFF 8
+#define YOFF 8
+
+static void do_drop_effect_byte(float facf0, float facf1, int x, int y,
+ unsigned char *rect2i, unsigned char *rect1i,
+ unsigned char *outi)
+{
+ int height, width, temp, fac, fac1, fac2;
+ char *rt1, *rt2, *out;
+ int field= 1;
+
+ width= x;
+ height= y;
+
+ fac1= (int)(70.0*facf0);
+ fac2= (int)(70.0*facf1);
+
+ rt2= (char*) (rect2i + YOFF*width);
+ rt1= (char*) rect1i;
+ out= (char*) outi;
+ for (y=0; y<height-YOFF; y++) {
+ if(field) fac= fac1;
+ else fac= fac2;
+ field= !field;
+
+ memcpy(out, rt1, sizeof(int)*XOFF);
+ rt1+= XOFF*4;
+ out+= XOFF*4;
+
+ for (x=XOFF; x<width; x++) {
+ temp= ((fac*rt2[3])>>8);
+
+ *(out++)= MAX2(0, *rt1 - temp); rt1++;
+ *(out++)= MAX2(0, *rt1 - temp); rt1++;
+ *(out++)= MAX2(0, *rt1 - temp); rt1++;
+ *(out++)= MAX2(0, *rt1 - temp); rt1++;
+ rt2+=4;
+ }
+ rt2+=XOFF*4;
+ }
+ memcpy(out, rt1, sizeof(int)*YOFF*width);
+}
+
+static void do_drop_effect_float(float facf0, float facf1, int x, int y,
+ float *rect2i, float *rect1i,
+ float *outi)
+{
+ int height, width;
+ float temp, fac, fac1, fac2;
+ float *rt1, *rt2, *out;
+ int field= 1;
+
+ width= x;
+ height= y;
+
+ fac1= 70.0*facf0;
+ fac2= 70.0*facf1;
+
+ rt2= (rect2i + YOFF*width);
+ rt1= rect1i;
+ out= outi;
+ for (y=0; y<height-YOFF; y++) {
+ if(field) fac= fac1;
+ else fac= fac2;
+ field= !field;
+
+ memcpy(out, rt1, 4 * sizeof(float)*XOFF);
+ rt1+= XOFF*4;
+ out+= XOFF*4;
+
+ for (x=XOFF; x<width; x++) {
+ temp= fac * rt2[3];
+
+ *(out++)= MAX2(0.0, *rt1 - temp); rt1++;
+ *(out++)= MAX2(0.0, *rt1 - temp); rt1++;
+ *(out++)= MAX2(0.0, *rt1 - temp); rt1++;
+ *(out++)= MAX2(0.0, *rt1 - temp); rt1++;
+ rt2+=4;
+ }
+ rt2+=XOFF*4;
+ }
+ memcpy(out, rt1, 4 * sizeof(float)*YOFF*width);
+}
+
+
+static void do_drop_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf * ibuf3,
+ struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_drop_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_drop_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+/* **********************************************************************
+ MUL
+ ********************************************************************** */
+
+static void do_mul_effect_byte(float facf0, float facf1, int x, int y,
+ unsigned char *rect1, unsigned char *rect2,
+ unsigned char *out)
+{
+ int xo, fac1, fac3;
+ char *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= (char *)rect1;
+ rt2= (char *)rect2;
+ rt= (char *)out;
+
+ fac1= (int)(256.0*facf0);
+ fac3= (int)(256.0*facf1);
+
+ /* formula:
+ * fac*(a*b) + (1-fac)*a => fac*a*(b-1)+a
+ */
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= rt1[0] + ((fac1*rt1[0]*(rt2[0]-256))>>16);
+ rt[1]= rt1[1] + ((fac1*rt1[1]*(rt2[1]-256))>>16);
+ rt[2]= rt1[2] + ((fac1*rt1[2]*(rt2[2]-256))>>16);
+ rt[3]= rt1[3] + ((fac1*rt1[3]*(rt2[3]-256))>>16);
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= rt1[0] + ((fac3*rt1[0]*(rt2[0]-256))>>16);
+ rt[1]= rt1[1] + ((fac3*rt1[1]*(rt2[1]-256))>>16);
+ rt[2]= rt1[2] + ((fac3*rt1[2]*(rt2[2]-256))>>16);
+ rt[3]= rt1[3] + ((fac3*rt1[3]*(rt2[3]-256))>>16);
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+static void do_mul_effect_float(float facf0, float facf1, int x, int y,
+ float *rect1, float *rect2,
+ float *out)
+{
+ int xo;
+ float fac1, fac3;
+ float *rt1, *rt2, *rt;
+
+ xo= x;
+ rt1= rect1;
+ rt2= rect2;
+ rt= out;
+
+ fac1= facf0;
+ fac3= facf1;
+
+ /* formula:
+ * fac*(a*b) + (1-fac)*a => fac*a*(b-1)+a
+ */
+
+ while(y--) {
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= rt1[0] + fac1*rt1[0]*(rt2[0]-1.0);
+ rt[1]= rt1[1] + fac1*rt1[1]*(rt2[1]-1.0);
+ rt[2]= rt1[2] + fac1*rt1[2]*(rt2[2]-1.0);
+ rt[3]= rt1[3] + fac1*rt1[3]*(rt2[3]-1.0);
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+
+ if(y==0) break;
+ y--;
+
+ x= xo;
+ while(x--) {
+
+ rt[0]= rt1[0] + fac3*rt1[0]*(rt2[0]-1.0);
+ rt[1]= rt1[1] + fac3*rt1[1]*(rt2[1]-1.0);
+ rt[2]= rt1[2] + fac3*rt1[2]*(rt2[2]-1.0);
+ rt[3]= rt1[3] + fac3*rt1[3]*(rt2[3]-1.0);
+
+ rt1+= 4; rt2+= 4; rt+= 4;
+ }
+ }
+}
+
+static void do_mul_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_mul_effect_float(
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_mul_effect_byte(
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+/* **********************************************************************
+ WIPE
+ ********************************************************************** */
+
+// This function calculates the blur band for the wipe effects
+static float in_band(float width,float dist, float perc,int side,int dir){
+
+ float t1,t2,alpha,percwidth;
+ if(width == 0)
+ return (float)side;
+ if(side == 1)
+ percwidth = width * perc;
+ else
+ percwidth = width * (1 - perc);
+
+ if(width < dist)
+ return side;
+
+ t1 = dist / width; //percentange of width that is
+ t2 = 1 / width; //amount of alpha per % point
+
+ if(side == 1)
+ alpha = (t1*t2*100) + (1-perc); // add point's alpha contrib to current position in wipe
+ else
+ alpha = (1-perc) - (t1*t2*100);
+
+ if(dir == 0)
+ alpha = 1-alpha;
+ return alpha;
+}
+
+static float check_zone(int x, int y, int xo, int yo,
+ Sequence *seq, float facf0)
+{
+ float posx, posy,hyp,hyp2,angle,hwidth,b1,b2,b3,pointdist;
+ /*some future stuff
+ float hyp3,hyp4,b4,b5
+ */
+ float temp1,temp2,temp3,temp4; //some placeholder variables
+ float halfx = xo/2;
+ float halfy = yo/2;
+ float widthf,output=0;
+ WipeVars *wipe = (WipeVars *)seq->effectdata;
+ int width;
+
+ angle = wipe->angle;
+ if(angle < 0){
+ x = xo-x;
+ //y = yo-y
+ }
+ angle = pow(fabs(angle)/45,log(xo)/log(2));
+
+ posy = facf0 * yo;
+ if(wipe->forward){
+ posx = facf0 * xo;
+ posy = facf0 * yo;
+ } else{
+ posx = xo - facf0 * xo;
+ posy = yo - facf0 * yo;
+ }
+ switch (wipe->wipetype) {
+ case DO_SINGLE_WIPE:
+ width = (int)(wipe->edgeWidth*((xo+yo)/2.0));
+ hwidth = (float)width/2.0;
+
+ if (angle == 0.0)angle = 0.000001;
+ b1 = posy - (-angle)*posx;
+ b2 = y - (-angle)*x;
+ hyp = fabs(angle*x+y+(-posy-angle*posx))/sqrt(angle*angle+1);
+ if(angle < 0){
+ temp1 = b1;
+ b1 = b2;
+ b2 = temp1;
+ }
+ if(wipe->forward){
+ if(b1 < b2)
+ output = in_band(width,hyp,facf0,1,1);
+ else
+ output = in_band(width,hyp,facf0,0,1);
+ }
+ else{
+ if(b1 < b2)
+ output = in_band(width,hyp,facf0,0,1);
+ else
+ output = in_band(width,hyp,facf0,1,1);
+ }
+ break;
+
+
+ case DO_DOUBLE_WIPE:
+ if(!wipe->forward)facf0 = 1-facf0; // Go the other direction
+
+ width = (int)(wipe->edgeWidth*((xo+yo)/2.0)); // calculate the blur width
+ hwidth = (float)width/2.0;
+ if (angle == 0)angle = 0.000001;
+ b1 = posy/2 - (-angle)*posx/2;
+ b3 = (yo-posy/2) - (-angle)*(xo-posx/2);
+ b2 = y - (-angle)*x;
+
+ hyp = abs(angle*x+y+(-posy/2-angle*posx/2))/sqrt(angle*angle+1);
+ hyp2 = abs(angle*x+y+(-(yo-posy/2)-angle*(xo-posx/2)))/sqrt(angle*angle+1);
+
+ temp1 = xo*(1-facf0/2)-xo*facf0/2;
+ temp2 = yo*(1-facf0/2)-yo*facf0/2;
+ pointdist = sqrt(temp1*temp1 + temp2*temp2);
+
+ if(b2 < b1 && b2 < b3 ){
+ if(hwidth < pointdist)
+ output = in_band(hwidth,hyp,facf0,0,1);
+ }
+ else if(b2 > b1 && b2 > b3 ){
+ if(hwidth < pointdist)
+ output = in_band(hwidth,hyp2,facf0,0,1);
+ }
+ else{
+ if( hyp < hwidth && hyp2 > hwidth )
+ output = in_band(hwidth,hyp,facf0,1,1);
+ else if( hyp > hwidth && hyp2 < hwidth )
+ output = in_band(hwidth,hyp2,facf0,1,1);
+ else
+ output = in_band(hwidth,hyp2,facf0,1,1) * in_band(hwidth,hyp,facf0,1,1);
+ }
+ if(!wipe->forward)output = 1-output;
+ break;
+ case DO_CLOCK_WIPE:
+ /*
+ temp1: angle of effect center in rads
+ temp2: angle of line through (halfx,halfy) and (x,y) in rads
+ temp3: angle of low side of blur
+ temp4: angle of high side of blur
+ */
+ output = 1-facf0;
+ widthf = wipe->edgeWidth*2*3.14159;
+ temp1 = 2 * 3.14159 * facf0;
+
+ if(wipe->forward){
+ temp1 = 2*3.14159-temp1;
+ }
+
+ x = x - halfx;
+ y = y - halfy;
+
+ temp2 = asin(abs(y)/sqrt(x*x + y*y));
+ if(x <= 0 && y >= 0)
+ temp2 = 3.14159 - temp2;
+ else if(x<=0 && y <= 0)
+ temp2 += 3.14159;
+ else if(x >= 0 && y <= 0)
+ temp2 = 2*3.14159 - temp2;
+
+ if(wipe->forward){
+ temp3 = temp1-(widthf/2)*facf0;
+ temp4 = temp1+(widthf/2)*(1-facf0);
+ }
+ else{
+ temp3 = temp1-(widthf/2)*(1-facf0);
+ temp4 = temp1+(widthf/2)*facf0;
+ }
+ if (temp3 < 0) temp3 = 0;
+ if (temp4 > 2*3.14159) temp4 = 2*3.14159;
+
+
+ if(temp2 < temp3)
+ output = 0;
+ else if (temp2 > temp4)
+ output = 1;
+ else
+ output = (temp2-temp3)/(temp4-temp3);
+ if(x == 0 && y == 0){
+ output = 1;
+ }
+ if(output != output)
+ output = 1;
+ if(wipe->forward)
+ output = 1 - output;
+ break;
+ /* BOX WIPE IS NOT WORKING YET */
+ /* case DO_CROSS_WIPE: */
+ /* BOX WIPE IS NOT WORKING YET */
+ /* case DO_BOX_WIPE:
+ if(invert)facf0 = 1-facf0;
+
+ width = (int)(wipe->edgeWidth*((xo+yo)/2.0));
+ hwidth = (float)width/2.0;
+ if (angle == 0)angle = 0.000001;
+ b1 = posy/2 - (-angle)*posx/2;
+ b3 = (yo-posy/2) - (-angle)*(xo-posx/2);
+ b2 = y - (-angle)*x;
+
+ hyp = abs(angle*x+y+(-posy/2-angle*posx/2))/sqrt(angle*angle+1);
+ hyp2 = abs(angle*x+y+(-(yo-posy/2)-angle*(xo-posx/2)))/sqrt(angle*angle+1);
+
+ temp1 = xo*(1-facf0/2)-xo*facf0/2;
+ temp2 = yo*(1-facf0/2)-yo*facf0/2;
+ pointdist = sqrt(temp1*temp1 + temp2*temp2);
+
+ if(b2 < b1 && b2 < b3 ){
+ if(hwidth < pointdist)
+ output = in_band(hwidth,hyp,facf0,0,1);
+ }
+ else if(b2 > b1 && b2 > b3 ){
+ if(hwidth < pointdist)
+ output = in_band(hwidth,hyp2,facf0,0,1);
+ }
+ else{
+ if( hyp < hwidth && hyp2 > hwidth )
+ output = in_band(hwidth,hyp,facf0,1,1);
+ else if( hyp > hwidth && hyp2 < hwidth )
+ output = in_band(hwidth,hyp2,facf0,1,1);
+ else
+ output = in_band(hwidth,hyp2,facf0,1,1) * in_band(hwidth,hyp,facf0,1,1);
+ }
+ if(invert)facf0 = 1-facf0;
+ angle = -1/angle;
+ b1 = posy/2 - (-angle)*posx/2;
+ b3 = (yo-posy/2) - (-angle)*(xo-posx/2);
+ b2 = y - (-angle)*x;
+
+ hyp = abs(angle*x+y+(-posy/2-angle*posx/2))/sqrt(angle*angle+1);
+ hyp2 = abs(angle*x+y+(-(yo-posy/2)-angle*(xo-posx/2)))/sqrt(angle*angle+1);
+
+ if(b2 < b1 && b2 < b3 ){
+ if(hwidth < pointdist)
+ output *= in_band(hwidth,hyp,facf0,0,1);
+ }
+ else if(b2 > b1 && b2 > b3 ){
+ if(hwidth < pointdist)
+ output *= in_band(hwidth,hyp2,facf0,0,1);
+ }
+ else{
+ if( hyp < hwidth && hyp2 > hwidth )
+ output *= in_band(hwidth,hyp,facf0,1,1);
+ else if( hyp > hwidth && hyp2 < hwidth )
+ output *= in_band(hwidth,hyp2,facf0,1,1);
+ else
+ output *= in_band(hwidth,hyp2,facf0,1,1) * in_band(hwidth,hyp,facf0,1,1);
+ }
+
+ break;*/
+ case DO_IRIS_WIPE:
+ if(xo > yo) yo = xo;
+ else xo = yo;
+
+ if(!wipe->forward)
+ facf0 = 1-facf0;
+
+ width = (int)(wipe->edgeWidth*((xo+yo)/2.0));
+ hwidth = (float)width/2.0;
+
+ temp1 = (halfx-(halfx)*facf0);
+ pointdist = sqrt(temp1*temp1 + temp1*temp1);
+
+ temp2 = sqrt((halfx-x)*(halfx-x) + (halfy-y)*(halfy-y));
+ if(temp2 > pointdist)
+ output = in_band(hwidth,fabs(temp2-pointdist),facf0,0,1);
+ else
+ output = in_band(hwidth,fabs(temp2-pointdist),facf0,1,1);
+
+ if(!wipe->forward)
+ output = 1-output;
+
+ break;
+ }
+ if (output < 0) output = 0;
+ else if(output > 1) output = 1;
+ return output;
+}
+
+static void init_wipe_effect(Sequence *seq)
+{
+ if(seq->effectdata)MEM_freeN(seq->effectdata);
+ seq->effectdata = MEM_callocN(sizeof(struct WipeVars), "wipevars");
+}
+
+static void free_wipe_effect(Sequence *seq)
+{
+ if(seq->effectdata)MEM_freeN(seq->effectdata);
+ seq->effectdata = 0;
+}
+
+static void copy_wipe_effect(Sequence *dst, Sequence *src)
+{
+ dst->effectdata = MEM_dupallocN(src->effectdata);
+}
+
+static void do_wipe_effect_byte(Sequence *seq, float facf0, float facf1,
+ int x, int y,
+ unsigned char *rect1,
+ unsigned char *rect2, unsigned char *out)
+{
+ int xo, yo;
+ char *rt1, *rt2, *rt;
+ rt1 = (char *)rect1;
+ rt2 = (char *)rect2;
+ rt = (char *)out;
+
+ xo = x;
+ yo = y;
+ for(y=0;y<yo;y++) {
+ for(x=0;x<xo;x++) {
+ float check = check_zone(x,y,xo,yo,seq,facf0);
+ if (check) {
+ if (rt1) {
+ rt[0] = (int)(rt1[0]*check)+ (int)(rt2[0]*(1-check));
+ rt[1] = (int)(rt1[1]*check)+ (int)(rt2[1]*(1-check));
+ rt[2] = (int)(rt1[2]*check)+ (int)(rt2[2]*(1-check));
+ rt[3] = (int)(rt1[3]*check)+ (int)(rt2[3]*(1-check));
+ } else {
+ rt[0] = 0;
+ rt[1] = 0;
+ rt[2] = 0;
+ rt[3] = 255;
+ }
+ } else {
+ if (rt2) {
+ rt[0] = rt2[0];
+ rt[1] = rt2[1];
+ rt[2] = rt2[2];
+ rt[3] = rt2[3];
+ } else {
+ rt[0] = 0;
+ rt[1] = 0;
+ rt[2] = 0;
+ rt[3] = 255;
+ }
+ }
+
+ rt+=4;
+ if(rt1 !=NULL){
+ rt1+=4;
+ }
+ if(rt2 !=NULL){
+ rt2+=4;
+ }
+ }
+ }
+}
+
+static void do_wipe_effect_float(Sequence *seq, float facf0, float facf1,
+ int x, int y,
+ float *rect1,
+ float *rect2, float *out)
+{
+ int xo, yo;
+ float *rt1, *rt2, *rt;
+ rt1 = rect1;
+ rt2 = rect2;
+ rt = out;
+
+ xo = x;
+ yo = y;
+ for(y=0;y<yo;y++) {
+ for(x=0;x<xo;x++) {
+ float check = check_zone(x,y,xo,yo,seq,facf0);
+ if (check) {
+ if (rt1) {
+ rt[0] = rt1[0]*check+ rt2[0]*(1-check);
+ rt[1] = rt1[1]*check+ rt2[1]*(1-check);
+ rt[2] = rt1[2]*check+ rt2[2]*(1-check);
+ rt[3] = rt1[3]*check+ rt2[3]*(1-check);
+ } else {
+ rt[0] = 0;
+ rt[1] = 0;
+ rt[2] = 0;
+ rt[3] = 1.0;
+ }
+ } else {
+ if (rt2) {
+ rt[0] = rt2[0];
+ rt[1] = rt2[1];
+ rt[2] = rt2[2];
+ rt[3] = rt2[3];
+ } else {
+ rt[0] = 0;
+ rt[1] = 0;
+ rt[2] = 0;
+ rt[3] = 1.0;
+ }
+ }
+
+ rt+=4;
+ if(rt1 !=NULL){
+ rt1+=4;
+ }
+ if(rt2 !=NULL){
+ rt2+=4;
+ }
+ }
+ }
+}
+
+static void do_wipe_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_wipe_effect_float(seq,
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_wipe_effect_byte(seq,
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+/* **********************************************************************
+ GLOW
+ ********************************************************************** */
+
+static void RVBlurBitmap2_byte ( unsigned char* map, int width,int height,
+ float blur,
+ int quality)
+/* MUUUCCH better than the previous blur. */
+/* We do the blurring in two passes which is a whole lot faster. */
+/* I changed the math arount to implement an actual Gaussian */
+/* distribution. */
+/* */
+/* Watch out though, it tends to misbehaven with large blur values on */
+/* a small bitmap. Avoid avoid avoid. */
+/*=============================== */
+{
+ unsigned char* temp=NULL,*swap;
+ float *filter=NULL;
+ int x,y,i,fx,fy;
+ int index, ix, halfWidth;
+ float fval, k, curColor[3], curColor2[3], weight=0;
+
+ /* If we're not really blurring, bail out */
+ if (blur<=0)
+ return;
+
+ /* Allocate memory for the tempmap and the blur filter matrix */
+ temp= MEM_mallocN( (width*height*4), "blurbitmaptemp");
+ if (!temp)
+ return;
+
+ /* Allocate memory for the filter elements */
+ halfWidth = ((quality+1)*blur);
+ filter = (float *)MEM_mallocN(sizeof(float)*halfWidth*2, "blurbitmapfilter");
+ if (!filter){
+ MEM_freeN (temp);
+ return;
+ }
+
+ /* Apparently we're calculating a bell curve */
+ /* based on the standard deviation (or radius) */
+ /* This code is based on an example */
+ /* posted to comp.graphics.algorithms by */
+ /* Blancmange (bmange@airdmhor.gen.nz) */
+
+ k = -1.0/(2.0*3.14159*blur*blur);
+ fval=0;
+ for (ix = 0;ix< halfWidth;ix++){
+ weight = (float)exp(k*(ix*ix));
+ filter[halfWidth - ix] = weight;
+ filter[halfWidth + ix] = weight;
+ }
+ filter[0] = weight;
+
+ /* Normalize the array */
+ fval=0;
+ for (ix = 0;ix< halfWidth*2;ix++)
+ fval+=filter[ix];
+
+ for (ix = 0;ix< halfWidth*2;ix++)
+ filter[ix]/=fval;
+
+ /* Blur the rows */
+ for (y=0;y<height;y++){
+ /* Do the left & right strips */
+ for (x=0;x<halfWidth;x++){
+ index=(x+y*width)*4;
+ fx=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ curColor2[0]=curColor2[1]=curColor2[2]=0;
+
+ for (i=x-halfWidth;i<x+halfWidth;i++){
+ if ((i>=0)&&(i<width)){
+ curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
+ curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
+ curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
+
+ curColor2[0]+=map[(width-1-i+y*width)*4+GlowR] *
+ filter[fx];
+ curColor2[1]+=map[(width-1-i+y*width)*4+GlowG] *
+ filter[fx];
+ curColor2[2]+=map[(width-1-i+y*width)*4+GlowB] *
+ filter[fx];
+ }
+ fx++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+
+ temp[((width-1-x+y*width)*4)+GlowR]=curColor2[0];
+ temp[((width-1-x+y*width)*4)+GlowG]=curColor2[1];
+ temp[((width-1-x+y*width)*4)+GlowB]=curColor2[2];
+
+ }
+ /* Do the main body */
+ for (x=halfWidth;x<width-halfWidth;x++){
+ index=(x+y*width)*4;
+ fx=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ for (i=x-halfWidth;i<x+halfWidth;i++){
+ curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
+ curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
+ curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
+ fx++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+ }
+ }
+
+ /* Swap buffers */
+ swap=temp;temp=map;map=swap;
+
+
+ /* Blur the columns */
+ for (x=0;x<width;x++){
+ /* Do the top & bottom strips */
+ for (y=0;y<halfWidth;y++){
+ index=(x+y*width)*4;
+ fy=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ curColor2[0]=curColor2[1]=curColor2[2]=0;
+ for (i=y-halfWidth;i<y+halfWidth;i++){
+ if ((i>=0)&&(i<height)){
+ /* Bottom */
+ curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
+ curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
+ curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
+
+ /* Top */
+ curColor2[0]+=map[(x+(height-1-i)*width) *
+ 4+GlowR]*filter[fy];
+ curColor2[1]+=map[(x+(height-1-i)*width) *
+ 4+GlowG]*filter[fy];
+ curColor2[2]+=map[(x+(height-1-i)*width) *
+ 4+GlowB]*filter[fy];
+ }
+ fy++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+ temp[((x+(height-1-y)*width)*4)+GlowR]=curColor2[0];
+ temp[((x+(height-1-y)*width)*4)+GlowG]=curColor2[1];
+ temp[((x+(height-1-y)*width)*4)+GlowB]=curColor2[2];
+ }
+ /* Do the main body */
+ for (y=halfWidth;y<height-halfWidth;y++){
+ index=(x+y*width)*4;
+ fy=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ for (i=y-halfWidth;i<y+halfWidth;i++){
+ curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
+ curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
+ curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
+ fy++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+ }
+ }
+
+
+ /* Swap buffers */
+ swap=temp;temp=map;map=swap;
+
+ /* Tidy up */
+ MEM_freeN (filter);
+ MEM_freeN (temp);
+}
+
+static void RVBlurBitmap2_float ( float* map, int width,int height,
+ float blur,
+ int quality)
+/* MUUUCCH better than the previous blur. */
+/* We do the blurring in two passes which is a whole lot faster. */
+/* I changed the math arount to implement an actual Gaussian */
+/* distribution. */
+/* */
+/* Watch out though, it tends to misbehaven with large blur values on */
+/* a small bitmap. Avoid avoid avoid. */
+/*=============================== */
+{
+ float* temp=NULL,*swap;
+ float *filter=NULL;
+ int x,y,i,fx,fy;
+ int index, ix, halfWidth;
+ float fval, k, curColor[3], curColor2[3], weight=0;
+
+ /* If we're not really blurring, bail out */
+ if (blur<=0)
+ return;
+
+ /* Allocate memory for the tempmap and the blur filter matrix */
+ temp= MEM_mallocN( (width*height*4*sizeof(float)), "blurbitmaptemp");
+ if (!temp)
+ return;
+
+ /* Allocate memory for the filter elements */
+ halfWidth = ((quality+1)*blur);
+ filter = (float *)MEM_mallocN(sizeof(float)*halfWidth*2, "blurbitmapfilter");
+ if (!filter){
+ MEM_freeN (temp);
+ return;
+ }
+
+ /* Apparently we're calculating a bell curve */
+ /* based on the standard deviation (or radius) */
+ /* This code is based on an example */
+ /* posted to comp.graphics.algorithms by */
+ /* Blancmange (bmange@airdmhor.gen.nz) */
+
+ k = -1.0/(2.0*3.14159*blur*blur);
+ fval=0;
+ for (ix = 0;ix< halfWidth;ix++){
+ weight = (float)exp(k*(ix*ix));
+ filter[halfWidth - ix] = weight;
+ filter[halfWidth + ix] = weight;
+ }
+ filter[0] = weight;
+
+ /* Normalize the array */
+ fval=0;
+ for (ix = 0;ix< halfWidth*2;ix++)
+ fval+=filter[ix];
+
+ for (ix = 0;ix< halfWidth*2;ix++)
+ filter[ix]/=fval;
+
+ /* Blur the rows */
+ for (y=0;y<height;y++){
+ /* Do the left & right strips */
+ for (x=0;x<halfWidth;x++){
+ index=(x+y*width)*4;
+ fx=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ curColor2[0]=curColor2[1]=curColor2[2]=0;
+
+ for (i=x-halfWidth;i<x+halfWidth;i++){
+ if ((i>=0)&&(i<width)){
+ curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
+ curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
+ curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
+
+ curColor2[0]+=map[(width-1-i+y*width)*4+GlowR] *
+ filter[fx];
+ curColor2[1]+=map[(width-1-i+y*width)*4+GlowG] *
+ filter[fx];
+ curColor2[2]+=map[(width-1-i+y*width)*4+GlowB] *
+ filter[fx];
+ }
+ fx++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+
+ temp[((width-1-x+y*width)*4)+GlowR]=curColor2[0];
+ temp[((width-1-x+y*width)*4)+GlowG]=curColor2[1];
+ temp[((width-1-x+y*width)*4)+GlowB]=curColor2[2];
+
+ }
+ /* Do the main body */
+ for (x=halfWidth;x<width-halfWidth;x++){
+ index=(x+y*width)*4;
+ fx=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ for (i=x-halfWidth;i<x+halfWidth;i++){
+ curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
+ curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
+ curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
+ fx++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+ }
+ }
+
+ /* Swap buffers */
+ swap=temp;temp=map;map=swap;
+
+
+ /* Blur the columns */
+ for (x=0;x<width;x++){
+ /* Do the top & bottom strips */
+ for (y=0;y<halfWidth;y++){
+ index=(x+y*width)*4;
+ fy=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ curColor2[0]=curColor2[1]=curColor2[2]=0;
+ for (i=y-halfWidth;i<y+halfWidth;i++){
+ if ((i>=0)&&(i<height)){
+ /* Bottom */
+ curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
+ curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
+ curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
+
+ /* Top */
+ curColor2[0]+=map[(x+(height-1-i)*width) *
+ 4+GlowR]*filter[fy];
+ curColor2[1]+=map[(x+(height-1-i)*width) *
+ 4+GlowG]*filter[fy];
+ curColor2[2]+=map[(x+(height-1-i)*width) *
+ 4+GlowB]*filter[fy];
+ }
+ fy++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+ temp[((x+(height-1-y)*width)*4)+GlowR]=curColor2[0];
+ temp[((x+(height-1-y)*width)*4)+GlowG]=curColor2[1];
+ temp[((x+(height-1-y)*width)*4)+GlowB]=curColor2[2];
+ }
+ /* Do the main body */
+ for (y=halfWidth;y<height-halfWidth;y++){
+ index=(x+y*width)*4;
+ fy=0;
+ curColor[0]=curColor[1]=curColor[2]=0;
+ for (i=y-halfWidth;i<y+halfWidth;i++){
+ curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
+ curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
+ curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
+ fy++;
+ }
+ temp[index+GlowR]=curColor[0];
+ temp[index+GlowG]=curColor[1];
+ temp[index+GlowB]=curColor[2];
+ }
+ }
+
+
+ /* Swap buffers */
+ swap=temp;temp=map;map=swap;
+
+ /* Tidy up */
+ MEM_freeN (filter);
+ MEM_freeN (temp);
+}
+
+
+/* Adds two bitmaps and puts the results into a third map. */
+/* C must have been previously allocated but it may be A or B. */
+/* We clamp values to 255 to prevent weirdness */
+/*=============================== */
+static void RVAddBitmaps_byte (unsigned char* a, unsigned char* b, unsigned char* c, int width, int height)
+{
+ int x,y,index;
+
+ for (y=0;y<height;y++){
+ for (x=0;x<width;x++){
+ index=(x+y*width)*4;
+ c[index+GlowR]=MIN2(255,a[index+GlowR]+b[index+GlowR]);
+ c[index+GlowG]=MIN2(255,a[index+GlowG]+b[index+GlowG]);
+ c[index+GlowB]=MIN2(255,a[index+GlowB]+b[index+GlowB]);
+ c[index+GlowA]=MIN2(255,a[index+GlowA]+b[index+GlowA]);
+ }
+ }
+}
+
+static void RVAddBitmaps_float (float* a, float* b, float* c,
+ int width, int height)
+{
+ int x,y,index;
+
+ for (y=0;y<height;y++){
+ for (x=0;x<width;x++){
+ index=(x+y*width)*4;
+ c[index+GlowR]=MIN2(1.0,a[index+GlowR]+b[index+GlowR]);
+ c[index+GlowG]=MIN2(1.0,a[index+GlowG]+b[index+GlowG]);
+ c[index+GlowB]=MIN2(1.0,a[index+GlowB]+b[index+GlowB]);
+ c[index+GlowA]=MIN2(1.0,a[index+GlowA]+b[index+GlowA]);
+ }
+ }
+}
+
+/* For each pixel whose total luminance exceeds the threshold, */
+/* Multiply it's value by BOOST and add it to the output map */
+static void RVIsolateHighlights_byte (unsigned char* in, unsigned char* out,
+ int width, int height, int threshold,
+ float boost, float clamp)
+{
+ int x,y,index;
+ int intensity;
+
+
+ for(y=0;y< height;y++) {
+ for (x=0;x< width;x++) {
+ index= (x+y*width)*4;
+
+ /* Isolate the intensity */
+ intensity=(in[index+GlowR]+in[index+GlowG]+in[index+GlowB]-threshold);
+ if (intensity>0){
+ out[index+GlowR]=MIN2(255*clamp, (in[index+GlowR]*boost*intensity)/255);
+ out[index+GlowG]=MIN2(255*clamp, (in[index+GlowG]*boost*intensity)/255);
+ out[index+GlowB]=MIN2(255*clamp, (in[index+GlowB]*boost*intensity)/255);
+ out[index+GlowA]=MIN2(255*clamp, (in[index+GlowA]*boost*intensity)/255);
+ }
+ else{
+ out[index+GlowR]=0;
+ out[index+GlowG]=0;
+ out[index+GlowB]=0;
+ out[index+GlowA]=0;
+ }
+ }
+ }
+}
+
+static void RVIsolateHighlights_float (float* in, float* out,
+ int width, int height, int threshold,
+ float boost, float clamp)
+{
+ int x,y,index;
+ float intensity;
+
+
+ for(y=0;y< height;y++) {
+ for (x=0;x< width;x++) {
+ index= (x+y*width)*4;
+
+ /* Isolate the intensity */
+ intensity=(in[index+GlowR]+in[index+GlowG]+in[index+GlowB]-threshold);
+ if (intensity>0){
+ out[index+GlowR]=MIN2(clamp, (in[index+GlowR]*boost*intensity));
+ out[index+GlowG]=MIN2(clamp, (in[index+GlowG]*boost*intensity));
+ out[index+GlowB]=MIN2(clamp, (in[index+GlowB]*boost*intensity));
+ out[index+GlowA]=MIN2(clamp, (in[index+GlowA]*boost*intensity));
+ }
+ else{
+ out[index+GlowR]=0;
+ out[index+GlowG]=0;
+ out[index+GlowB]=0;
+ out[index+GlowA]=0;
+ }
+ }
+ }
+}
+
+static void init_glow_effect(Sequence *seq)
+{
+ GlowVars *glow;
+
+ if(seq->effectdata)MEM_freeN(seq->effectdata);
+ seq->effectdata = MEM_callocN(sizeof(struct GlowVars), "glowvars");
+
+ glow = (GlowVars *)seq->effectdata;
+ glow->fMini = 0.25;
+ glow->fClamp = 1.0;
+ glow->fBoost = 0.5;
+ glow->dDist = 3.0;
+ glow->dQuality = 3;
+ glow->bNoComp = 0;
+}
+
+static void free_glow_effect(Sequence *seq)
+{
+ if(seq->effectdata)MEM_freeN(seq->effectdata);
+ seq->effectdata = 0;
+}
+
+static void copy_glow_effect(Sequence *dst, Sequence *src)
+{
+ dst->effectdata = MEM_dupallocN(src->effectdata);
+}
+
+//void do_glow_effect(Cast *cast, float facf0, float facf1, int xo, int yo, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *outbuf, ImBuf *use)
+static void do_glow_effect_byte(Sequence *seq, float facf0, float facf1,
+ int x, int y, char *rect1,
+ char *rect2, char *out)
+{
+ unsigned char *outbuf=(unsigned char *)out;
+ unsigned char *inbuf=(unsigned char *)rect1;
+ GlowVars *glow = (GlowVars *)seq->effectdata;
+
+ RVIsolateHighlights_byte(inbuf, outbuf , x, y, glow->fMini*765, glow->fBoost, glow->fClamp);
+ RVBlurBitmap2_byte (outbuf, x, y, glow->dDist,glow->dQuality);
+ if (!glow->bNoComp)
+ RVAddBitmaps_byte (inbuf , outbuf, outbuf, x, y);
+}
+
+static void do_glow_effect_float(Sequence *seq, float facf0, float facf1,
+ int x, int y,
+ float *rect1, float *rect2, float *out)
+{
+ float *outbuf = out;
+ float *inbuf = rect1;
+ GlowVars *glow = (GlowVars *)seq->effectdata;
+
+ RVIsolateHighlights_float(inbuf, outbuf , x, y, glow->fMini*765, glow->fBoost, glow->fClamp);
+ RVBlurBitmap2_float (outbuf, x, y, glow->dDist,glow->dQuality);
+ if (!glow->bNoComp)
+ RVAddBitmaps_float (inbuf , outbuf, outbuf, x, y);
+}
+
+static void do_glow_effect(Sequence * seq,int cfra,
+ float facf0, float facf1, int x, int y,
+ struct ImBuf *ibuf1, struct ImBuf *ibuf2,
+ struct ImBuf *ibuf3, struct ImBuf *out)
+{
+ if (out->rect_float) {
+ do_glow_effect_float(seq,
+ facf0, facf1, x, y,
+ ibuf1->rect_float, ibuf2->rect_float,
+ out->rect_float);
+ } else {
+ do_glow_effect_byte(seq,
+ facf0, facf1, x, y,
+ (char*) ibuf1->rect, (char*) ibuf2->rect,
+ (char*) out->rect);
+ }
+}
+
+
+/* **********************************************************************
+ sequence effect factory
+ ********************************************************************** */
+
+
+static void init_noop(struct Sequence *seq)
+{
+
+}
+
+static void load_noop(struct Sequence *seq)
+{
+
+}
+
+static void init_plugin_noop(struct Sequence *seq, const char * fname)
+{
+
+}
+
+static void free_noop(struct Sequence *seq)
+{
+
+}
+
+static int early_out_noop(struct Sequence *seq,
+ float facf0, float facf1)
+{
+ return 0;
+}
+
+static int early_out_fade(struct Sequence *seq,
+ float facf0, float facf1)
+{
+ if (facf0 == 0.0 && facf1 == 0.0) {
+ return 1;
+ } else if (facf0 == 1.0 && facf1 == 1.0) {
+ return 2;
+ }
+ return 0;
+}
+
+static void get_default_fac_noop(struct Sequence *seq, int cfra,
+ float * facf0, float * facf1)
+{
+ *facf0 = *facf1 = 1.0;
+}
+
+static void get_default_fac_fade(struct Sequence *seq, int cfra,
+ float * facf0, float * facf1)
+{
+ *facf0 = (float)(cfra - seq->startdisp);
+ *facf1 = (float)(*facf0 + 0.5);
+ *facf0 /= seq->len;
+ *facf1 /= seq->len;
+}
+
+static void do_overdrop_effect(struct Sequence * seq, int cfra,
+ float fac, float facf,
+ int x, int y, struct ImBuf * ibuf1,
+ struct ImBuf * ibuf2,
+ struct ImBuf * ibuf3,
+ struct ImBuf * out)
+{
+ do_drop_effect(seq, cfra, fac, facf, x, y,
+ ibuf1, ibuf2, ibuf3, out);
+ do_alphaover_effect(seq, cfra, fac, facf, x, y,
+ ibuf1, ibuf2, ibuf3, out);
+}
+
+struct SeqEffectHandle get_sequence_effect(Sequence * seq)
+{
+ struct SeqEffectHandle rval;
+ int sequence_type = seq->type;
+
+ rval.init = init_noop;
+ rval.init_plugin = init_plugin_noop;
+ rval.load = load_noop;
+ rval.free = free_noop;
+ rval.early_out = early_out_noop;
+ rval.get_default_fac = get_default_fac_noop;
+ rval.execute = 0;
+
+ switch (sequence_type) {
+ case SEQ_CROSS:
+ rval.execute = do_cross_effect;
+ rval.early_out = early_out_fade;
+ rval.get_default_fac = get_default_fac_fade;
+ break;
+ case SEQ_GAMCROSS:
+ rval.init = init_gammacross;
+ rval.load = load_gammacross;
+ rval.free = free_gammacross;
+ rval.early_out = early_out_fade;
+ rval.get_default_fac = get_default_fac_fade;
+ rval.execute = do_gammacross_effect;
+ break;
+ case SEQ_ADD:
+ rval.execute = do_add_effect;
+ break;
+ case SEQ_SUB:
+ rval.execute = do_sub_effect;
+ break;
+ case SEQ_MUL:
+ rval.execute = do_mul_effect;
+ break;
+ case SEQ_ALPHAOVER:
+ rval.init = init_alpha_over_or_under;
+ rval.execute = do_alphaover_effect;
+ break;
+ case SEQ_OVERDROP:
+ rval.execute = do_overdrop_effect;
+ break;
+ case SEQ_ALPHAUNDER:
+ rval.init = init_alpha_over_or_under;
+ rval.execute = do_alphaunder_effect;
+ break;
+ case SEQ_WIPE:
+ rval.init = init_wipe_effect;
+ rval.free = free_wipe_effect;
+ rval.copy = copy_wipe_effect;
+ rval.early_out = early_out_fade;
+ rval.get_default_fac = get_default_fac_fade;
+ rval.execute = do_wipe_effect;
+ break;
+ case SEQ_GLOW:
+ rval.init = init_glow_effect;
+ rval.free = free_glow_effect;
+ rval.copy = copy_glow_effect;
+ rval.execute = do_glow_effect;
+ break;
+ case SEQ_PLUGIN:
+ rval.init_plugin = init_plugin;
+ rval.load = load_plugin;
+ rval.free = free_plugin;
+ rval.copy = copy_plugin;
+ rval.execute = do_plugin_effect;
+ rval.early_out = do_plugin_early_out;
+ rval.get_default_fac = get_default_fac_fade;
+ break;
+ }
+
+ if (seq->flag & SEQ_EFFECT_NOT_LOADED) {
+ rval.load(seq);
+ seq->flag &= ~SEQ_EFFECT_NOT_LOADED;
+ }
+
+ return rval;
+}