Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHoward Trickey <howard.trickey@gmail.com>2014-01-06 19:52:31 +0400
committerHoward Trickey <howard.trickey@gmail.com>2014-01-06 19:52:31 +0400
commite0a4a4afc31e101bac6238ac4e0785935610a862 (patch)
tree3c3b720fbafdfddfd45ab29468c0a350eaa4339a /source/blender
parent4b30b22ecfd58cd57aa3dec478d644f0dc28e189 (diff)
Bevel: change 'adj' pattern to use subdivision.
This gets rid of a hacky way of setting the mesh coordinates at corners, which created overlaps in some cases. Also, special case a cube-like corner with all edges beveled, to snap to a sphere, giving more expected curvature in that case.
Diffstat (limited to 'source/blender')
-rw-r--r--source/blender/bmesh/tools/bmesh_bevel.c885
1 files changed, 710 insertions, 175 deletions
diff --git a/source/blender/bmesh/tools/bmesh_bevel.c b/source/blender/bmesh/tools/bmesh_bevel.c
index b10f162f2b0..35c3d10bde9 100644
--- a/source/blender/bmesh/tools/bmesh_bevel.c
+++ b/source/blender/bmesh/tools/bmesh_bevel.c
@@ -47,8 +47,12 @@
#include "./intern/bmesh_private.h"
+/* use new way of doing ADJ pattern */
+#define USE_ADJ_SUBDIV
+
#define BEVEL_EPSILON_D 1e-6
#define BEVEL_EPSILON 1e-6f
+#define BEVEL_EPSILON_SQ 1e-12f
/* happens far too often, uncomment for development */
// #define BEVEL_ASSERT_PROJECT
@@ -84,6 +88,15 @@ typedef struct EdgeHalf {
// int _pad;
} EdgeHalf;
+/* Profile specification.
+ * For now, only have round profiles so only need midpoint.
+ * The start and end points of the profile are stored separately.
+ * TODO: generalize to superellipse profiles.
+ */
+typedef struct Profile {
+ float midco[3]; /* mid control point for profile */
+} Profile;
+
/* An element in a cyclic boundary of a Vertex Mesh (VMesh) */
typedef struct BoundVert {
struct BoundVert *next, *prev; /* in CCW order */
@@ -92,6 +105,7 @@ typedef struct BoundVert {
EdgeHalf *elast;
EdgeHalf *ebev; /* beveled edge whose left side is attached here, if any */
int index; /* used for vmesh indexing */
+ Profile profile; /* edge profile between this and next BoundVert */
bool any_seam; /* are any of the edges attached here seams? */
// int _pad;
} BoundVert;
@@ -753,7 +767,7 @@ static void offset_in_two_planes(BevelParams *bp, EdgeHalf *e1, EdgeHalf *e2, Ed
}
else if (iret == 2) {
/* lines are not coplanar and don't meet; meetco and isect2 are nearest to first and second lines */
- if (len_v3v3(meetco, isect2) > 100.0f * BEVEL_EPSILON) {
+ if (len_squared_v3v3(meetco, isect2) > 100.0f * BEVEL_EPSILON_SQ) {
/* offset lines don't meet so can't preserve widths */
offset_on_edge_between(bp, e1, e2, emid, v, meetco);
}
@@ -806,6 +820,37 @@ static void project_to_edge(BMEdge *e, const float co_a[3], const float co_b[3],
}
}
+/* If there is a bndv->ebev edge, find the mid control point if necessary.
+ * It is the closest point on the beveled edge to the line segment between
+ * bndv and bndv->next. */
+static void set_profile_params(BoundVert *bndv)
+{
+ EdgeHalf *e;
+
+ e = bndv->ebev;
+ if (e) {
+ project_to_edge(e->e, bndv->nv.co, bndv->next->nv.co,
+ bndv->profile.midco);
+ }
+}
+
+/* project co along the direction of edir to the plane containing
+ * e1 and e2 (which share a vert) */
+static void project_to_edges_plane(float co[3], EdgeHalf *edir, EdgeHalf *e1, EdgeHalf *e2)
+{
+ float dir[3], co2[3], d1[3], d2[3], no[3], snap[3];
+
+ sub_v3_v3v3(dir, edir->e->v1->co, edir->e->v2->co);
+ sub_v3_v3v3(d1, e1->e->v1->co, e1->e->v2->co);
+ sub_v3_v3v3(d2, e2->e->v1->co, e2->e->v2->co);
+ cross_v3_v3v3(no, d1, d2);
+ if (len_squared_v3(no) < BEVEL_EPSILON_SQ)
+ return; /* e1 and e2 parallel so plane undefined -- don't snap */
+ add_v3_v3v3(co2, co, dir);
+ if (isect_line_plane_v3(snap, co, co2, e1->e->v1->co, no))
+ copy_v3_v3(co, snap);
+}
+
/* return 1 if a and b are in CCW order on the normal side of f,
* and -1 if they are reversed, and 0 if there is no shared face f */
static int bev_ccw_test(BMEdge *a, BMEdge *b, BMFace *f)
@@ -823,7 +868,7 @@ static int bev_ccw_test(BMEdge *a, BMEdge *b, BMFace *f)
/* Fill matrix r_mat so that a point in the sheared parallelogram with corners
* va, vmid, vb (and the 4th that is implied by it being a parallelogram)
- * is transformed to the unit square by multiplication with r_mat.
+ * is the result of transforming the unit square by multiplication with r_mat.
* If it can't be done because the parallelogram is degenerate, return FALSE
* else return TRUE.
* Method:
@@ -875,10 +920,55 @@ static int make_unit_square_map(const float va[3], const float vmid[3], const fl
return FALSE;
}
+/* Like make_unit_square_map, but this one makes a matrix that transforms the
+ * (1,1,1) corner of a unit cube into an arbitrary corner with corner vert d
+ * and verts around it a, b, c (in ccw order, viewed from d normal dir).
+ * The matrix mat is calculated to map:
+ * (1,0,0) -> va
+ * (0,1,0) -> vb
+ * (0,0,1) -> vc
+ * (1,1,1) -> vd
+ * We want M to make M*A=B where A has the left side above, as columns
+ * and B has the right side as columns - both extended into homogeneous coords.
+ * So M = B*(Ainverse). Doing Ainverse by hand gives the code below.
+ * The cols of M are 1/2{va-vb+vc-vd}, 1/2{-va+vb-vc+vd}, 1/2{-va-vb+vc+vd},
+ * and 1/2{va+vb+vc-vd}
+ * and Blender matrices have cols at m[i][*].
+ */
+static void make_unit_cube_map(const float va[3], const float vb[3], const float vc[3],
+ const float vd[3], float r_mat[4][4])
+{
+ copy_v3_v3(r_mat[0], va);
+ sub_v3_v3(r_mat[0], vb);
+ sub_v3_v3(r_mat[0], vc);
+ add_v3_v3(r_mat[0], vd);
+ mul_v3_fl(r_mat[0], 0.5f);
+ r_mat[0][3] = 0.0f;
+ copy_v3_v3(r_mat[1], vb);
+ sub_v3_v3(r_mat[1], va);
+ sub_v3_v3(r_mat[1], vc);
+ add_v3_v3(r_mat[1], vd);
+ mul_v3_fl(r_mat[1], 0.5f);
+ r_mat[1][3] = 0.0f;
+ copy_v3_v3(r_mat[2], vc);
+ sub_v3_v3(r_mat[2], va);
+ sub_v3_v3(r_mat[2], vb);
+ add_v3_v3(r_mat[2], vd);
+ mul_v3_fl(r_mat[2], 0.5f);
+ r_mat[2][3] = 0.0f;
+ copy_v3_v3(r_mat[3], va);
+ add_v3_v3(r_mat[3], vb);
+ add_v3_v3(r_mat[3], vc);
+ sub_v3_v3(r_mat[3], vd);
+ mul_v3_fl(r_mat[3], 0.5f);
+ r_mat[3][3] = 1.0f;
+}
+
+#ifndef USE_ADJ_SUBDIV
/*
* Find the point (/n) of the way around the round profile for e,
* where start point is va, midarc point is vmid, and end point is vb.
- * Return the answer in profileco.
+ * Return the answer in r_co.
* If va -- vmid -- vb is approximately a straight line, just
* interpolate along the line.
*/
@@ -903,7 +993,37 @@ static void get_point_on_round_edge(EdgeHalf *e, int k,
interp_v3_v3v3(r_co, va, vb, (float)k / (float)n);
}
}
+#endif
+
+/* Find the point on given profile at parameter u which goes from 0 to 2 as
+ * the profile is moved from va to vb. */
+static void get_profile_point(const Profile *pro, const float va[3], const float vb[3], float u, float r_co[3])
+ {
+ float p[3], angle;
+ float m[4][4];
+ if (u <= 0.0f)
+ copy_v3_v3(r_co, va);
+ else if (u >= 2.0f)
+ copy_v3_v3(r_co, vb);
+ else if (!make_unit_square_map(va, pro->midco, vb, m)) {
+ interp_v3_v3v3(r_co, va, vb, u / 2.0f);
+ }
+ else {
+ angle = u * (float)M_PI / 4.0f; /* angle from y axis */
+ p[0] = sinf(angle);
+ p[1] = cosf(angle);
+ p[2] = 0.0f;
+ mul_v3_m4v3(r_co, m, p);
+ }
+}
+
+BLI_INLINE void get_bndv_profile_point(const BoundVert *bndv, const float u, float r_co[3])
+{
+ get_profile_point(&bndv->profile, bndv->nv.co, bndv->next->nv.co, u, r_co);
+}
+
+#ifndef USE_ADJ_SUBDIV
/* Calculate a snapped point to the transformed profile of edge e, extended as
* in a cylinder-like surface in the direction of e.
* co is the point to snap and is modified in place.
@@ -940,6 +1060,47 @@ static void snap_to_edge_profile(EdgeHalf *e, const float va[3], const float vb[
copy_v3_v3(co, p);
}
}
+#endif
+
+/* Snapping a direction co to a unit radius sphere is just normalizing co.
+ * TODO: generalize to superellipsoid */
+static void snap_to_sphere(float co[3])
+{
+ normalize_v3(co);
+}
+
+static void snap_to_profile(BoundVert *bndv, EdgeHalf *e, float co[3])
+{
+ float va[3], vb[3], edir[3], va0[3], vb0[3], vmid0[3];
+ float plane[4], m[4][4], minv[4][4], p[3], snap[3];
+
+ copy_v3_v3(va, bndv->nv.co);
+ copy_v3_v3(vb, bndv->next->nv.co);
+
+ sub_v3_v3v3(edir, e->e->v1->co, e->e->v2->co);
+
+ plane_from_point_normal_v3(plane, co, edir);
+ closest_to_plane_v3(va0, plane, va);
+ closest_to_plane_v3(vb0, plane, vb);
+ closest_to_plane_v3(vmid0, plane, bndv->profile.midco);
+ if (make_unit_square_map(va0, vmid0, vb0, m)) {
+ /* Transform co and project it onto sphere */
+ if (!invert_m4_m4(minv, m)) {
+ /* shouldn't happen */
+ BLI_assert(!"failed inverse during profile snap");
+ return;
+ }
+ mul_v3_m4v3(p, minv, co);
+ snap_to_sphere(p);
+ mul_v3_m4v3(snap, m, p);
+ copy_v3_v3(co, snap);
+ }
+ else {
+ /* planar case: just snap to line va--vb */
+ closest_to_line_segment_v3(p, co, va, vb);
+ copy_v3_v3(co, p);
+ }
+}
/* Set the any_seam property for a BevVert and all its BoundVerts */
static void set_bound_vert_seams(BevVert *bv)
@@ -1043,6 +1204,7 @@ static void build_boundary(BevelParams *bp, BevVert *bv, bool construct)
else {
adjust_bound_vert(e->next->leftv, co);
}
+ set_profile_params(vm->boundstart);
return;
}
@@ -1144,6 +1306,18 @@ static void build_boundary(BevelParams *bp, BevVert *bv, bool construct)
}
} while ((e = e->next) != efirst);
+ v = vm->boundstart;
+ do {
+ set_profile_params(v);
+ } while ((v = v->next) != vm->boundstart);
+
+ if (bv->selcount == 1 && bv->edgecount == 3) {
+ /* special case: snap profile to third face */
+ v = vm->boundstart;
+ BLI_assert(v->ebev != NULL);
+ project_to_edges_plane(v->profile.midco, v->ebev, v->efirst, v->next->elast);
+ }
+
if (construct) {
set_bound_vert_seams(bv);
@@ -1171,7 +1345,11 @@ static void build_boundary(BevelParams *bp, BevVert *bv, bool construct)
}
}
else {
+#ifdef USE_ADJ_SUBDIV
+ vm->mesh_kind = M_ADJ_SUBDIV;
+#else
vm->mesh_kind = M_ADJ;
+#endif
}
}
}
@@ -1252,29 +1430,13 @@ static void adjust_offsets(BevelParams *bp)
BLI_gsqueue_free(q);
}
-/*
- * Given that the boundary is built and the boundary BMVerts have been made,
- * calculate the positions of the interior mesh points for the M_ADJ pattern,
- * then make the BMVerts and the new faces. */
-static void bevel_build_rings(BMesh *bm, BevVert *bv)
+/* Do the edges at bv form a "pipe"?
+ * Current definition: at least three beveled edges,
+ * two in line, and sharing a face. */
+static EdgeHalf *pipe_test(BevVert *bv)
{
- int k, ring, i, n, ns, ns2, nn, odd;
- VMesh *vm = bv->vmesh;
- BoundVert *v, *vprev, *vnext;
- NewVert *nv, *nvprev, *nvnext;
EdgeHalf *e1, *e2, *epipe;
- BMVert *bmv, *bmv1, *bmv2, *bmv3, *bmv4;
- BMFace *f, *f2, *f23;
- float co[3], coa[3], cob[3], midco[3];
- float va_pipe[3], vb_pipe[3];
- n = vm->count;
- ns = vm->seg;
- ns2 = ns / 2;
- odd = (ns % 2) != 0;
- BLI_assert(n > 2 && ns > 1);
-
- /* special case: two beveled edges are in line and share a face, making a "pipe" */
epipe = NULL;
if (bv->selcount > 2) {
for (e1 = &bv->edges[0]; epipe == NULL && e1 != &bv->edges[bv->edgecount]; e1++) {
@@ -1295,6 +1457,33 @@ static void bevel_build_rings(BMesh *bm, BevVert *bv)
}
}
}
+ return epipe;
+}
+
+#ifndef USE_ADJ_SUBDIV
+/*
+ * Given that the boundary is built and the boundary BMVerts have been made,
+ * calculate the positions of the interior mesh points for the M_ADJ pattern,
+ * then make the BMVerts and the new faces. */
+static void bevel_build_rings(BMesh *bm, BevVert *bv)
+{
+ int k, ring, i, n, ns, ns2, nn, odd;
+ VMesh *vm = bv->vmesh;
+ BoundVert *v, *vprev, *vnext;
+ NewVert *nv, *nvprev, *nvnext;
+ EdgeHalf *epipe;
+ BMVert *bmv, *bmv1, *bmv2, *bmv3, *bmv4;
+ BMFace *f, *f2, *f23;
+ float co[3], coa[3], cob[3], midco[3];
+ float va_pipe[3], vb_pipe[3];
+
+ n = vm->count;
+ ns = vm->seg;
+ ns2 = ns / 2;
+ odd = (ns % 2) != 0;
+ BLI_assert(n > 2 && ns > 1);
+
+ epipe = pipe_test(bv);
/* Make initial rings, going between points on neighbors.
* After this loop, will have coords for all (i, r, k) where
@@ -1624,6 +1813,7 @@ static void bevel_build_rings(BMesh *bm, BevVert *bv)
BLI_array_free(vv);
}
}
+#endif
static VMesh *new_adj_subdiv_vmesh(MemArena *mem_arena, int count, int seg, BoundVert *bounds)
{
@@ -1718,126 +1908,44 @@ static void vmesh_center(VMesh *vm, float r_cent[3])
}
}
-/* Do one step of quadratic subdivision (Doo-Sabin), with special rules at boundaries.
- * For now, this is written assuming vm0->nseg is odd.
- * See Hwang-Chuang 2003 paper: "N-sided hole filling and vertex blending using subdivision surfaces" */
-static VMesh *quadratic_subdiv(MemArena *mem_arena, VMesh *vm0)
+static void avg4(float co[3], const NewVert *v0, const NewVert *v1,
+ const NewVert *v2, const NewVert *v3)
{
- int n, ns0, ns20, ns1 /*, ns21 */;
- int i, j, k, j1, k1;
- VMesh *vm1;
- float co[3], co1[3], co2[3], co3[3], co4[3];
- float co11[3], co21[3], co31[3], co41[3];
- float denom;
- const float wcorner[4] = {0.25f, 0.25f, 0.25f, 0.25f};
- const float wboundary[4] = {0.375f, 0.375f, 0.125f, 0.125f}; /* {3, 3, 1, 1}/8 */
- const float winterior[4] = {0.5625f, 0.1875f, 0.1875f, 0.0625f}; /* {9, 3, 3, 1}/16 */
-
- n = vm0->count;
- ns0 = vm0->seg;
- ns20 = ns0 / 2;
- BLI_assert(ns0 % 2 == 1);
-
- ns1 = 2 * ns0 - 1;
- // ns21 = ns1 / 2; /* UNUSED */
- vm1 = new_adj_subdiv_vmesh(mem_arena, n, ns1, vm0->boundstart);
-
- for (i = 0; i < n; i ++) {
- /* For handle vm0 polys with lower left corner at (i,j,k) for
- * j in [0, ns20], k in [0, ns20]; then the center ngon.
- * but only fill in data for canonical verts of v1. */
- for (j = 0; j <= ns20; j++) {
- for (k = 0; k <= ns20; k++) {
- if (j == ns20 && k == ns20)
- continue; /* center ngon is special */
- copy_v3_v3(co1, mesh_vert_canon(vm0, i, j, k)->co);
- copy_v3_v3(co2, mesh_vert_canon(vm0, i, j, k + 1)->co);
- copy_v3_v3(co3, mesh_vert_canon(vm0, i, j + 1, k + 1)->co);
- copy_v3_v3(co4, mesh_vert_canon(vm0, i, j + 1, k)->co);
- if (j == 0 && k == 0) {
- /* corner */
- copy_v3_v3(co11, co1);
- interp_v3_v3v3(co21, co1, co2, 0.5f);
- interp_v3_v3v3v3v3(co31, co1, co2, co3, co4, wcorner);
- interp_v3_v3v3(co41, co1, co4, 0.5f);
- }
- else if (j == 0) {
- /* ring 0 boundary */
- interp_v3_v3v3(co11, co1, co2, 0.25f);
- interp_v3_v3v3(co21, co1, co2, 0.75f);
- interp_v3_v3v3v3v3(co31, co2, co3, co1, co4, wboundary);
- interp_v3_v3v3v3v3(co41, co1, co4, co2, co3, wboundary);
- }
- else if (k == 0) {
- /* ring-starts boundary */
- interp_v3_v3v3(co11, co1, co4, 0.25f);
- interp_v3_v3v3v3v3(co21, co1, co2, co3, co4, wboundary);
- interp_v3_v3v3v3v3(co31, co3, co4, co1, co2, wboundary);
- interp_v3_v3v3(co41, co1, co4, 0.75f);
- }
- else {
- /* interior */
- interp_v3_v3v3v3v3(co11, co1, co2, co4, co3, winterior);
- interp_v3_v3v3v3v3(co21, co2, co1, co3, co4, winterior);
- interp_v3_v3v3v3v3(co31, co3, co2, co4, co1, winterior);
- interp_v3_v3v3v3v3(co41, co4, co1, co3, co2, winterior);
- }
- j1 = 2 * j;
- k1 = 2 * k;
- if (is_canon(vm1, i, j1, k1))
- copy_v3_v3(mesh_vert(vm1, i, j1, k1)->co, co11);
- if (is_canon(vm1, i, j1, k1 + 1))
- copy_v3_v3(mesh_vert(vm1, i, j1, k1 + 1)->co, co21);
- if (is_canon(vm1, i, j1 + 1, k1 + 1))
- copy_v3_v3(mesh_vert(vm1, i, j1 + 1, k1 + 1)->co, co31);
- if (is_canon(vm1, i, j1 + 1, k1))
- copy_v3_v3(mesh_vert(vm1, i, j1 + 1, k1)->co, co41);
- }
- }
-
- /* center ngon */
- denom = 8.0f * (float) n;
- zero_v3(co);
- for (j = 0; j < n; j++) {
- copy_v3_v3(co1, mesh_vert(vm0, j, ns20, ns20)->co);
- if (i == j)
- madd_v3_v3fl(co, co1, (4.0f * (float) n + 2.0f) / denom);
- else if ((i + 1) % n == j || (i + n - 1) % n == j)
- madd_v3_v3fl(co, co1, ((float) n + 2.0f) / denom);
- else
- madd_v3_v3fl(co, co1, 2.0f / denom);
- }
- copy_v3_v3(mesh_vert(vm1, i, 2 * ns20, 2 * ns20)->co, co);
- }
-
- vmesh_copy_equiv_verts(vm1);
- return vm1;
+ add_v3_v3v3(co, v0->co, v1->co);
+ add_v3_v3(co, v2->co);
+ add_v3_v3(co, v3->co);
+ mul_v3_fl(co, 0.25f);
}
-/* After a step of quadratic_subdiv, adjust the ring 1 verts to be on the planes of their respective faces,
- * so that the cross-tangents will match on further subdivision. */
-static void fix_vmesh_tangents(VMesh *vm, BevVert *bv)
+/* gamma needed for smooth Catmull-Clark, Sabin modification */
+static float sabin_gamma(int n)
{
- int i, n;
- NewVert *v;
- BoundVert *bndv;
- float co[3];
-
- n = vm->count;
- bndv = vm->boundstart;
- do {
- i = bndv->index;
-
- /* (i, 1, 1) snap to edge line */
- v = mesh_vert(vm, i, 1, 1);
- closest_to_line_v3(co, v->co, bndv->nv.co, bv->v->co);
- copy_v3_v3(v->co, co);
- copy_v3_v3(mesh_vert(vm, (i + n -1) % n, 1, vm->seg - 1)->co, co);
+ double ans, k, k2, k4, k6, x, y;
- /* Also want (i, 1, k) snapped to plane of adjacent face for
- * 1 < k < ns - 1, but current initial cage and subdiv rules
- * ensure this, so nothing to do */
- } while ((bndv = bndv->next) != vm->boundstart);
+ /* precalculated for common cases of n */
+ if (n < 3)
+ return 0.0f;
+ else if (n == 3)
+ ans = 0.065247584f;
+ else if (n == 4)
+ ans = 0.25f;
+ else if (n == 5)
+ ans = 0.401983447f;
+ else if (n == 6)
+ ans = 0.523423277f;
+ else {
+ k = cos(M_PI / (double)n);
+ /* need x, real root of x^3 + (4k^2 - 3)x - 2k = 0.
+ * answer calculated via Wolfram Alpha */
+ k2 = k * k;
+ k4 = k2 * k2;
+ k6 = k4 * k2;
+ y = pow(1.73205080756888 * sqrt(64.0 * k6 - 144.0 * k4 + 135.0 * k2 - 27.0) + 9.0 * k,
+ 1.0/3.0);
+ x = 0.480749856769136 * y - (0.231120424783545 * (12.0 * k2 - 9.0)) / y;
+ ans = (k * x + 2.0 * k2 - 1.0) / (x * x * (k * x + 1.0));
+ }
+ return (float)ans;
}
/* Fill frac with fractions of way along ring 0 for vertex i, for use with interp_range function */
@@ -1858,6 +1966,27 @@ static void fill_vmesh_fracs(VMesh *vm, float *frac, int i)
}
}
+/* Like fill_vmesh_fracs but want fractions for profile points of bndv, with ns segments */
+static void fill_profile_fracs(BoundVert *bndv, float *frac, int ns)
+{
+ int k;
+ float co[3], nextco[3];
+ float total = 0.0f;
+
+ frac[0] = 0.0f;
+ copy_v3_v3(co, bndv->nv.co);
+ for (k = 0; k < ns; k++) {
+ get_bndv_profile_point(bndv, 2.0f * (float) (k + 1) / (float) ns, nextco);
+ total += len_v3v3(co, nextco);
+ frac[k + 1] = total;
+ copy_v3_v3(co, nextco);
+ }
+ if (total > BEVEL_EPSILON) {
+ for (k = 1; k <= ns; k++)
+ frac[k] /= total;
+ }
+}
+
/* Return i such that frac[i] <= f <= frac[i + 1], where frac[n] == 1.0
* and put fraction of rest of way between frac[i] and frac[i + 1] into r_rest */
static int interp_range(const float *frac, int n, const float f, float *r_rest)
@@ -1880,30 +2009,34 @@ static int interp_range(const float *frac, int n, const float f, float *r_rest)
return n;
}
-/* Interpolate given vmesh to make one with target nseg and evenly spaced border vertices */
+/* Interpolate given vmesh to make one with target nseg border vertices on the profiles */
static VMesh *interp_vmesh(MemArena *mem_arena, VMesh *vm0, int nseg)
{
int n, ns0, nseg2, odd, i, j, k, j0, k0;
- float *prev_frac, *frac, f, restj, restk;
+ float *prev_frac, *frac, *new_frac, f, restj, restk;
float quad[4][3], co[3], center[3];
VMesh *vm1;
+ BoundVert *bndv;
n = vm0->count;
ns0 = vm0->seg;
nseg2 = nseg / 2;
odd = nseg % 2;
vm1 = new_adj_subdiv_vmesh(mem_arena, n, nseg, vm0->boundstart);
- prev_frac = (float *)BLI_memarena_alloc(mem_arena, (ns0 + 1 ) *sizeof(float));
- frac = (float *)BLI_memarena_alloc(mem_arena, (ns0 + 1 ) *sizeof(float));
+ prev_frac = (float *)BLI_memarena_alloc(mem_arena, (ns0 + 1) * sizeof(float));
+ frac = (float *)BLI_memarena_alloc(mem_arena, (ns0 + 1) * sizeof(float));
+ new_frac = (float *)BLI_memarena_alloc(mem_arena, (nseg + 1) * sizeof(float));
fill_vmesh_fracs(vm0, prev_frac, n - 1);
- fill_vmesh_fracs(vm0, frac, 0);
+ bndv = vm0->boundstart;
for (i = 0; i < n; i++) {
+ fill_vmesh_fracs(vm0, frac, i);
+ fill_profile_fracs(bndv, new_frac, nseg);
for (j = 0; j <= nseg2 -1 + odd; j++) {
for (k = 0; k <= nseg2; k++) {
- f = (float) k / (float) nseg;
+ f = new_frac[k];
k0 = interp_range(frac, ns0, f, &restk);
- f = 1.0f - (float) j / (float) nseg;
+ f = 1.0f - new_frac[j];
j0 = interp_range(prev_frac, ns0, f, &restj);
if (restj < BEVEL_EPSILON) {
j0 = ns0 - j0;
@@ -1927,6 +2060,8 @@ static VMesh *interp_vmesh(MemArena *mem_arena, VMesh *vm0, int nseg)
copy_v3_v3(mesh_vert(vm1, i, j, k)->co, co);
}
}
+ bndv = bndv->next;
+ memcpy(prev_frac, frac, (ns0 + 1) * sizeof(float));
}
if (!odd) {
vmesh_center(vm0, center);
@@ -1936,48 +2071,413 @@ static VMesh *interp_vmesh(MemArena *mem_arena, VMesh *vm0, int nseg)
return vm1;
}
+/* Do one step of cubic subdivision (Catmull-Clark), with special rules at boundaries.
+ * For now, this is written assuming vm0->nseg is even and > 0.
+ * We are allowed to modify vm0, as it will not be used after this call.
+ * See Levin 1999 paper: "Filling an N-sided hole using combined subdivision schemes". */
+static VMesh *cubic_subdiv(MemArena *mem_arena, VMesh *vm0)
+{
+ int n, ns0, ns20, ns1;
+ int i, j, k, inext;
+ float co[3], co1[3], co2[3], acc[3];
+ float beta, gamma, u;
+ VMesh *vm1;
+ BoundVert *bndv;
+
+ n = vm0->count;
+ ns0 = vm0->seg;
+ ns20 = ns0 / 2;
+ BLI_assert(ns0 % 2 == 0);
+ ns1 = 2 * ns0;
+ vm1 = new_adj_subdiv_vmesh(mem_arena, n, ns1, vm0->boundstart);
+
+ /* First we adjust the boundary vertices of the input mesh, storing in output mesh */
+ for (i = 0; i < n; i++) {
+ copy_v3_v3(mesh_vert(vm1, i, 0, 0)->co, mesh_vert(vm0, i, 0, 0)->co);
+ for (k = 1; k < ns0; k++) {
+ /* smooth boundary rule */
+ copy_v3_v3(co, mesh_vert(vm0, i, 0, k)->co);
+ copy_v3_v3(co1, mesh_vert(vm0, i, 0, k - 1)->co);
+ copy_v3_v3(co2, mesh_vert(vm0, i, 0, k + 1)->co);
+
+ add_v3_v3v3(acc, co1, co2);
+ madd_v3_v3fl(acc, co, -2.0f);
+ madd_v3_v3fl(co, acc, -1.0f/6.0f);
+
+ copy_v3_v3(mesh_vert_canon(vm1, i, 0, 2 * k)->co, co);
+ }
+ }
+ /* now do odd ones in output mesh, based on even ones */
+ bndv = vm1->boundstart;
+ for (i = 0; i < n; i++) {
+ for (k = 1; k < ns1; k += 2) {
+ get_bndv_profile_point(bndv, 2.0f * (float) k / (float) ns1, co);
+ copy_v3_v3(co1, mesh_vert_canon(vm1, i, 0, k - 1)->co);
+ copy_v3_v3(co2, mesh_vert_canon(vm1, i, 0, k + 1)->co);
+
+ add_v3_v3v3(acc, co1, co2);
+ madd_v3_v3fl(acc, co, -2.0f);
+ madd_v3_v3fl(co, acc, -1.0f/6.0f);
+
+ copy_v3_v3(mesh_vert_canon(vm1, i, 0, k)->co, co);
+ }
+ bndv = bndv->next;
+ }
+ vmesh_copy_equiv_verts(vm1);
+
+ /* Copy adjusted verts back into vm0 */
+ for (i = 0; i < n; i++) {
+ for (k = 0; k < ns0; k++) {
+ copy_v3_v3(mesh_vert(vm0, i, 0, k)->co,
+ mesh_vert(vm1, i, 0, 2 * k)->co);
+ }
+ }
+
+ vmesh_copy_equiv_verts(vm0);
+
+ /* Now we do the internal vertices, using standard Catmull-Clark
+ * and assuming all boundary vertices have valence 4 */
+
+ /* The new face vertices */
+ for (i = 0; i < n; i++) {
+ for (j = 0; j < ns20; j++) {
+ for (k = 0; k < ns20; k++) {
+ /* face up and right from (j, k) */
+ avg4(co, mesh_vert(vm0, i, j, k),
+ mesh_vert(vm0, i, j, k + 1),
+ mesh_vert(vm0, i, j + 1, k),
+ mesh_vert(vm0, i, j + 1, k + 1));
+ copy_v3_v3(mesh_vert(vm1, i, 2 * j + 1, 2 * k + 1)->co, co);
+ }
+ }
+ }
+
+ /* The new vertical edge vertices */
+ for (i = 0; i < n; i++) {
+ for (j = 0; j < ns20; j++) {
+ for (k = 1; k <= ns20; k++) {
+ /* vertical edge between (j, k) and (j+1, k) */
+ avg4(co, mesh_vert(vm0, i, j, k),
+ mesh_vert(vm0, i, j + 1, k),
+ mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k - 1),
+ mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k + 1));
+ copy_v3_v3(mesh_vert(vm1, i, 2 * j + 1, 2 * k)->co, co);
+ }
+ }
+ }
+
+ /* The new horizontal edge vertices */
+ for (i = 0; i < n; i++) {
+ for (j = 1; j < ns20; j++) {
+ for (k = 0; k < ns20; k++) {
+ /* horizontal edge between (j, k) and (j, k+1) */
+ avg4(co, mesh_vert(vm0, i, j, k),
+ mesh_vert(vm0, i, j, k + 1),
+ mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k + 1),
+ mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k + 1));
+ copy_v3_v3(mesh_vert(vm1, i, 2 * j, 2 * k + 1)->co, co);
+ }
+ }
+ }
+
+ /* The new vertices, not on border */
+ gamma = 0.25f;
+ beta = -gamma;
+ for (i = 0; i < n; i++) {
+ for (j = 1; j < ns20; j++) {
+ for (k = 1; k <= ns20; k++) {
+ /* co1 = centroid of adjacent new edge verts */
+ avg4(co1, mesh_vert_canon(vm1, i, 2 * j, 2 * k - 1),
+ mesh_vert_canon(vm1, i, 2 * j, 2 * k + 1),
+ mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k),
+ mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k));
+ /* co2 = centroid of adjacent new face verts */
+ avg4(co2, mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k - 1),
+ mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k - 1),
+ mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k + 1),
+ mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k + 1));
+ /* combine with original vert with alpha, beta, gamma factors */
+ copy_v3_v3(co, co1); /* alpha = 1.0 */
+ madd_v3_v3fl(co, co2, beta);
+ madd_v3_v3fl(co, mesh_vert(vm0, i, j, k)->co, gamma);
+ copy_v3_v3(mesh_vert(vm1, i, 2 * j, 2 * k)->co, co);
+ }
+ }
+ }
+
+ vmesh_copy_equiv_verts(vm1);
+
+ /* The center vertex is special */
+ gamma = sabin_gamma(n);
+ beta = -gamma;
+ /* accumulate edge verts in co1, face verts in co2 */
+ zero_v3(co1);
+ zero_v3(co2);
+ for (i = 0; i < n; i++) {
+ add_v3_v3(co1, mesh_vert(vm1, i, ns0, ns0 - 1)->co);
+ add_v3_v3(co2, mesh_vert(vm1, i, ns0 - 1, ns0 - 1)->co);
+ add_v3_v3(co2, mesh_vert(vm1, i, ns0 - 1, ns0 + 1)->co);
+ }
+ copy_v3_v3(co, co1);
+ mul_v3_fl(co, 1.0f / (float)n);
+ madd_v3_v3fl(co, co2, beta / (2.0f *(float)n));
+ madd_v3_v3fl(co, mesh_vert(vm0, 0, ns20, ns20)->co, gamma);
+ for (i = 0; i < n; i++)
+ copy_v3_v3(mesh_vert(vm1, i, ns0, ns0)->co, co);
+
+ /* Final step: sample the boundary vertices at even parameter spacing */
+ bndv = vm1->boundstart;
+ for (i = 0; i < n; i++) {
+ inext = (i + 1) % n;
+ for (k = 0; k <= ns1; k++) {
+ u = 2.0f * (float)k / (float)ns1;
+ get_bndv_profile_point(bndv, u, co);
+ copy_v3_v3(mesh_vert(vm1, i, 0, k)->co, co);
+ if (k >= ns0 && k < ns1) {
+ copy_v3_v3(mesh_vert(vm1, inext, ns1 - k, 0)->co, co);
+ }
+ }
+ bndv = bndv->next;
+ }
+
+ return vm1;
+}
+
+/* Make a VMesh with nseg segments that covers the unit radius sphere octant
+ * with center at (0,0,0).
+ * This has BoundVerts at (1,0,0), (0,1,0) and (0,0,1), with quarter circle arcs
+ * on the faces for the orthogonal planes through the origin.
+ */
+static VMesh *make_cube_corner_adj_vmesh(MemArena *mem_arena, int nseg)
+{
+ VMesh *vm0, *vm1;
+ BoundVert *bndv;
+ int i, j, k, ns2;
+ float co[3], coa[3], cob[3], coc[3];
+ float w;
+
+ /* initial mesh has 3 sides, 2 segments */
+ vm0 = new_adj_subdiv_vmesh(mem_arena, 3, 2, NULL);
+ vm0->count = 0; // reset, so following loop will end up with correct count
+ for (i = 0; i < 3; i++) {
+ zero_v3(co);
+ co[i] = 1.0f;
+ add_new_bound_vert(mem_arena, vm0, co);
+ }
+ bndv = vm0->boundstart;
+ for (i = 0; i < 3; i++) {
+ /* Get point, 1/2 of the way around profile, on arc between this and next */
+ copy_v3_v3(coa, bndv->nv.co);
+ copy_v3_v3(cob, bndv->next->nv.co);
+ coc[i] = 1.0f;
+ coc[(i + 1) % 3] = 1.0f;
+ coc[(i + 2) % 3] = 0.0f;
+ copy_v3_v3(bndv->profile.midco, coc);
+ copy_v3_v3(mesh_vert(vm0, i, 0, 0)->co, coa);
+ get_profile_point(&bndv->profile, coa, cob, 1.0f, co);
+ copy_v3_v3(mesh_vert(vm0, i, 0, 1)->co, co);
+
+ bndv = bndv->next;
+ }
+ /* center vertex */
+ w = 0.57735027f; /* 1/sqrt(3) */
+ co[0] = w;
+ co[1] = w;
+ co[2] = w;
+ if (nseg > 2) {
+ mul_v3_fl(co, 1.4f);
+ }
+ copy_v3_v3(mesh_vert(vm0, 0, 1, 1)->co, co);
+
+ vmesh_copy_equiv_verts(vm0);
+
+ vm1 = vm0;
+ while (vm1->seg < nseg) {
+ vm1 = cubic_subdiv(mem_arena, vm1);
+ }
+ if (vm1->seg != nseg)
+ vm1 = interp_vmesh(mem_arena, vm1, nseg);
+
+ /* Now snap each vertex to the superellipsoid */
+ ns2 = nseg / 2;
+ for (i = 0; i < 3; i++) {
+ for (j = 0; j <= ns2; j++) {
+ for (k = 0; k <= nseg; k++) {
+ snap_to_sphere(mesh_vert(vm1, i, j, k)->co);
+ }
+ }
+ }
+ return vm1;
+}
+
+/* Is this a good candidate for using tri_corner_adj_vmesh? */
+static bool tri_corner_test(BevVert *bv)
+{
+ float ang, totang, angdiff;
+ EdgeHalf *e;
+ int i;
+
+ if (bv->edgecount != 3 || bv->selcount != 3)
+ return false;
+ totang = 0.0f;
+ for (i = 0; i < 3; i++) {
+ e = &bv->edges[i];
+ ang = BM_edge_calc_face_angle_signed_ex(e->e, 0.0f);
+ if (ang <= (float) M_PI_4 || ang >= 3.0f * (float) M_PI_4)
+ return false;
+ totang += ang;
+ }
+ angdiff = fabsf(totang - 3.0f * (float)M_PI_2);
+ if (angdiff > (float)M_PI_4)
+ return false;
+ return true;
+}
+
+static VMesh *tri_corner_adj_vmesh(BevelParams *bp, BevVert *bv)
+{
+ int i, j, k, ns, ns2;
+ float co0[3], co1[3], co2[3];
+ float mat[4][4], v[4];
+ VMesh *vm;
+ BoundVert *bndv;
+
+ BLI_assert(bv->edgecount == 3 && bv->selcount == 3);
+ bndv = bv->vmesh->boundstart;
+ copy_v3_v3(co0, bndv->nv.co);
+ bndv = bndv->next;
+ copy_v3_v3(co1, bndv->nv.co);
+ bndv = bndv->next;
+ copy_v3_v3(co2, bndv->nv.co);
+ make_unit_cube_map(co0, co1, co2, bv->v->co, mat);
+ ns = bp->seg;
+ ns2 = ns / 2;
+ vm = make_cube_corner_adj_vmesh(bp->mem_arena, bp->seg);
+ for (i = 0; i < 3; i++) {
+ for (j = 0; j <= ns2; j++) {
+ for (k = 0; k <= ns; k++) {
+ copy_v3_v3(v, mesh_vert(vm, i, j, k)->co);
+ v[3] = 1.0f;
+ mul_m4_v4(mat, v);
+ copy_v3_v3(mesh_vert(vm, i, j, k)->co, v);
+ }
+ }
+ }
+
+ return vm;
+}
+
+static VMesh *adj_vmesh(BevelParams *bp, BevVert *bv)
+{
+ int n, ns, i;
+ VMesh *vm0, *vm1;
+ float co[3], coa[3], cob[3], dir[3];
+ BoundVert *bndv;
+ MemArena *mem_arena = bp->mem_arena;
+ float fac, fullness;
+
+ /* First construct an initial control mesh, with nseg==2 */
+ n = bv->vmesh->count;
+ ns = bv->vmesh->seg;
+ vm0 = new_adj_subdiv_vmesh(mem_arena, n, 2, bv->vmesh->boundstart);
+
+ bndv = vm0->boundstart;
+ zero_v3(co);
+ for (i = 0; i < n; i++) {
+ /* Boundaries just divide input polygon edges into 2 even segments */
+ copy_v3_v3(mesh_vert(vm0, i, 0, 0)->co, bndv->nv.co);
+ get_bndv_profile_point(bndv, 1.0f, mesh_vert(vm0, i, 0, 1)->co);
+ add_v3_v3(co, bndv->nv.co);
+ bndv = bndv->next;
+ }
+ /* To place center vertex:
+ * coa is original vertex
+ * co is centroid of boundary corners
+ * cob is reflection of coa in across co.
+ * Calculate 'fullness' = fraction of way
+ * from co to coa (if positive) or to cob (if negative).
+ */
+ copy_v3_v3(coa, bv->v->co);
+ mul_v3_fl(co, 1.0f / (float)n);
+ sub_v3_v3v3(cob, co, coa);
+ add_v3_v3(cob, co);
+ if (bp->vertex_only)
+ fac = 0.25f;
+ else
+ fac = 0.5f;
+ fullness = 1.0f - fac / 2.0f;
+ sub_v3_v3v3(dir, coa, co);
+ if (len_squared_v3(dir) > BEVEL_EPSILON_SQ)
+ madd_v3_v3fl(co, dir, fullness);
+ copy_v3_v3(mesh_vert(vm0, 0, 1, 1)->co, co);
+ vmesh_copy_equiv_verts(vm0);
+
+ vm1 = vm0;
+ do {
+ vm1 = cubic_subdiv(mem_arena, vm1);
+ } while (vm1->seg < ns);
+ if (vm1->seg != ns)
+ vm1 = interp_vmesh(mem_arena, vm1, ns);
+ return vm1;
+}
+
+static VMesh *pipe_adj_vmesh(BevelParams *bp, BevVert *bv, EdgeHalf *epipe)
+{
+ int i, j, k, n, ns, ns2;
+ VMesh *vm;
+ BoundVert *bndv;
+
+ vm = adj_vmesh(bp, bv);
+
+ /* Now snap all interior coordinates to be on the epipe profile */
+ n = bv->vmesh->count;
+ ns = bv->vmesh->seg;
+ ns2 = ns / 2;
+ bndv = vm->boundstart;
+ for (i = 0; i < n; i++) {
+ if (bndv->ebev == epipe)
+ break;
+ bndv = bndv->next;
+ }
+ for (i = 0; i < n; i++) {
+ for (j = 1; j <= ns2; j++) {
+ for (k = 0; k <= ns2; k++) {
+ if (!is_canon(vm, i, j, k))
+ continue;
+ snap_to_profile(bndv, epipe, mesh_vert(vm, i, j, k)->co);
+ }
+ }
+ }
+
+ return vm;
+}
+
/*
* Given that the boundary is built and the boundary BMVerts have been made,
* calculate the positions of the interior mesh points for the M_ADJ_SUBDIV pattern,
- * then make the BMVerts and the new faces. */
+ * using cubic subdivision, then make the BMVerts and the new faces. */
static void bevel_build_rings_subdiv(BevelParams *bp, BMesh *bm, BevVert *bv)
{
- int n, ns, ns2, odd, i, j, k;
- VMesh *vm0, *vm1, *vm;
- float coa[3], cob[3], coc[3];
+ int n, ns, ns2, odd, i, j, k, ring;
+ VMesh *vm1, *vm;
BoundVert *v;
BMVert *bmv1, *bmv2, *bmv3, *bmv4;
BMFace *f, *f2, *f23;
- MemArena *mem_arena = bp->mem_arena;
- const float fullness = 0.5f;
+ EdgeHalf *epipe;
- n = bv->edgecount;
+ n = bv->vmesh->count;
ns = bv->vmesh->seg;
ns2 = ns / 2;
odd = ns % 2;
BLI_assert(n >= 3 && ns > 1);
- /* First construct an initial control mesh, with nseg==3 */
- vm0 = new_adj_subdiv_vmesh(mem_arena, n, 3, bv->vmesh->boundstart);
+ epipe = pipe_test(bv);
- for (i = 0; i < n; i++) {
- /* Boundaries just divide input polygon edges into 3 even segments */
- copy_v3_v3(coa, mesh_vert(bv->vmesh, i, 0, 0)->co);
- copy_v3_v3(cob, mesh_vert(bv->vmesh, (i + 1) % n, 0, 0)->co);
- copy_v3_v3(coc, mesh_vert(bv->vmesh, (i + n -1) % n, 0, 0)->co);
- copy_v3_v3(mesh_vert(vm0, i, 0, 0)->co, coa);
- interp_v3_v3v3(mesh_vert(vm0, i, 0, 1)->co, coa, cob, 1.0f / 3.0f);
- interp_v3_v3v3(mesh_vert(vm0, i, 1, 0)->co, coa, coc, 1.0f / 3.0f);
- interp_v3_v3v3(mesh_vert(vm0, i, 1, 1)->co, coa, bv->v->co, fullness);
- }
- vmesh_copy_equiv_verts(vm0);
-
- vm1 = vm0;
- do {
- vm1 = quadratic_subdiv(mem_arena, vm1);
- fix_vmesh_tangents(vm1, bv);
- } while (vm1->seg <= ns);
- vm1 = interp_vmesh(mem_arena, vm1, ns);
+ if (epipe)
+ vm1 = pipe_adj_vmesh(bp, bv, epipe);
+ else if (tri_corner_test(bv))
+ vm1 = tri_corner_adj_vmesh(bp, bv);
+ else
+ vm1 = adj_vmesh(bp, bv);
/* copy final vmesh into bv->vmesh, make BMVerts and BMFaces */
vm = bv->vmesh;
@@ -2020,6 +2520,26 @@ static void bevel_build_rings_subdiv(BevelParams *bp, BMesh *bm, BevVert *bv)
}
} while ((v = v->next) != vm->boundstart);
+ /* Fix UVs along center lines if even number of segments */
+ if (!odd) {
+ v = vm->boundstart;
+ do {
+ i = v->index;
+ f = boundvert_rep_face(v);
+ f2 = boundvert_rep_face(v->next);
+ if (!v->any_seam) {
+ for (ring = 1; ring < ns2; ring++) {
+ BMVert *v_uv = mesh_vert(vm, i, ring, ns2)->v;
+ if (v_uv) {
+ bev_merge_uvs(bm, v_uv);
+ }
+ }
+ }
+ } while ((v = v->next) != vm->boundstart);
+ if (!bv->any_seam)
+ bev_merge_uvs(bm, mesh_vert(vm, 0, ns2, ns2)->v);
+ }
+
/* center ngon */
if (odd) {
BMVert **vv = NULL;
@@ -2161,7 +2681,6 @@ static void build_vmesh(BevelParams *bp, BMesh *bm, BevVert *bv)
BoundVert *v, *weld1, *weld2;
int n, ns, ns2, i, k, weld;
float *va, *vb, co[3];
- float midco[3];
n = vm->count;
ns = vm->seg;
@@ -2188,12 +2707,24 @@ static void build_vmesh(BevelParams *bp, BMesh *bm, BevVert *bv)
}
} while ((v = v->next) != vm->boundstart);
- /* copy other ends to (i, 0, ns) for all i, and fill in profiles for beveled edges */
+ /* copy other ends to (i, 0, ns) for all i, and fill in profiles for edges */
v = vm->boundstart;
do {
i = v->index;
copy_mesh_vert(vm, i, 0, ns, v->next->index, 0, 0);
+#ifdef USE_ADJ_SUBDIV
+ for (k = 1; k < ns; k++) {
+ if (v->ebev && vm->mesh_kind != M_ADJ_SUBDIV) {
+ get_bndv_profile_point(v, 2.0f * (float)k / (float) ns, co);
+ copy_v3_v3(mesh_vert(vm, i, 0, k)->co, co);
+ if (!weld)
+ create_mesh_bmvert(bm, vm, i, 0, k, bv->v);
+ }
+ }
+#else
if (v->ebev) {
+ float midco[3];
+
va = mesh_vert(vm, i, 0, 0)->co;
vb = mesh_vert(vm, i, 0, ns)->co;
if (bv->edgecount == 3 && bv->selcount == 1) {
@@ -2210,6 +2741,7 @@ static void build_vmesh(BevelParams *bp, BMesh *bm, BevVert *bv)
create_mesh_bmvert(bm, vm, i, 0, k, bv->v);
}
}
+#endif
} while ((v = v->next) != vm->boundstart);
if (weld) {
@@ -2233,8 +2765,10 @@ static void build_vmesh(BevelParams *bp, BMesh *bm, BevVert *bv)
bevel_build_poly(bm, bv);
break;
case M_ADJ:
+#ifndef USE_ADJ_SUBDIV
bevel_build_rings(bm, bv);
break;
+#endif
case M_ADJ_SUBDIV:
bevel_build_rings_subdiv(bp, bm, bv);
break;
@@ -2754,7 +3288,8 @@ static float bevel_limit_offset(BMesh *bm, BevelParams *bp)
*
* \warning all tagged edges _must_ be manifold.
*/
-void BM_mesh_bevel(BMesh *bm, const float offset, const int offset_type, const float segments,
+void BM_mesh_bevel(BMesh *bm, const float offset, const int offset_type,
+ const float segments,
const bool vertex_only, const bool use_weights, const bool limit_offset,
const struct MDeformVert *dvert, const int vertex_group)
{