Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCampbell Barton <ideasman42@gmail.com>2012-03-24 08:39:53 +0400
committerCampbell Barton <ideasman42@gmail.com>2012-03-24 08:39:53 +0400
commit7b99ae0ad3017e373be2a344e30d190b70ca66b4 (patch)
tree70f9fce84f93fd95ad29f1301fd97498c2a72084 /source/blender
parent99b95926bbacc8176037af931600caf984c42954 (diff)
convert spaces to tabs and some formatting.
Diffstat (limited to 'source/blender')
-rw-r--r--source/blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c2304
1 files changed, 1197 insertions, 1107 deletions
diff --git a/source/blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c b/source/blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c
index d3c6561ac34..d012815fff9 100644
--- a/source/blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c
+++ b/source/blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c
@@ -33,1025 +33,1112 @@
static bNodeSocketTemplate cmp_node_doubleedgemask_in[]= {
- { SOCK_FLOAT, 1, "Inner Mask", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f, PROP_NONE}, // inner mask socket definition
- { SOCK_FLOAT, 1, "Outer Mask", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f, PROP_NONE}, // outer mask socket definition
- { -1, 0, "" } // input socket array terminator
+ { SOCK_FLOAT, 1, "Inner Mask", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f, PROP_NONE}, // inner mask socket definition
+ { SOCK_FLOAT, 1, "Outer Mask", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f, PROP_NONE}, // outer mask socket definition
+ { -1, 0, "" } // input socket array terminator
};
static bNodeSocketTemplate cmp_node_doubleedgemask_out[]= {
- { SOCK_FLOAT, 0, "Mask"}, // output socket definition
- { -1, 0, "" } // output socket array terminator
+ { SOCK_FLOAT, 0, "Mask"}, // output socket definition
+ { -1, 0, "" } // output socket array terminator
};
static void do_adjacentKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
- int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
- /* Test the four corners */
- /* upper left corner */
- x=t-rw+1;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel underneath, or to the right, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- /* upper right corner */
- x=t;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel underneath, or to the left, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- /* lower left corner */
- x=0;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel above, or to the right, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- /* lower right corner */
- x=rw-1;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel above, or to the left, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
-
- /* Test the TOP row of pixels in buffer, except corners */
- for(x= t-1; x>=(t-rw)+2; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel to the right, or to the left, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
-
- /* Test the BOTTOM row of pixels in buffer, except corners */
- for(x= rw-2; x; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel to the right, or to the left, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
- /* Test the LEFT edge of pixels in buffer, except corners */
- for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel underneath, or above, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
-
- /* Test the RIGHT edge of pixels in buffer, except corners */
- for(x= t-rw; x>rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel underneath, or above, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
-
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel above, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel above, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+
+ /* Test the TOP row of pixels in buffer, except corners */
+ for (x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel to the right, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for (x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel to the right, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for (x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for (x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
}
static void do_adjacentBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
- int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
- /* Test the four corners */
- /* upper left corner */
- x=t-rw+1;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel underneath, or to the right, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* upper right corner */
- x=t;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel underneath, or to the left, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* lower left corner */
- x=0;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel above, or to the right, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty above or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* lower right corner */
- x=rw-1;
- // test if inner mask is filled
- if(limask[x]){
- // test if pixel above, or to the left, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* Test the TOP row of pixels in buffer, except corners */
- for(x= t-1; x>=(t-rw)+2; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel to the left, or to the right, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
-
- /* Test the BOTTOM row of pixels in buffer, except corners */
- for(x= rw-2; x; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel to the left, or to the right, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
- /* Test the LEFT edge of pixels in buffer, except corners */
- for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel underneath, or above, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
-
- /* Test the RIGHT edge of pixels in buffer, except corners */
- for(x= t-rw; x>rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if pixel underneath, or above, are empty in the inner mask,
- // but filled in the outer mask
- if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
-
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel above, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty above or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel above, or to the left, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* Test the TOP row of pixels in buffer, except corners */
+ for (x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel to the left, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for (x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel to the left, or to the right, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for (x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for (x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if pixel underneath, or above, are empty in the inner mask,
+ // but filled in the outer mask
+ if ((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
}
static void do_allKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
- int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
- /* Test the four corners */
- /* upper left corner */
- x=t-rw+1;
- // test if inner mask is filled
- if(limask[x]){
- // test if the inner mask is empty underneath or to the right
- if(!limask[x-rw] || !limask[x+1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- /* upper right corner */
- x=t;
- // test if inner mask is filled
- if(limask[x]){
- // test if the inner mask is empty underneath or to the left
- if(!limask[x-rw] || !limask[x-1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- /* lower left corner */
- x=0;
- // test if inner mask is filled
- if(limask[x]){
- // test if inner mask is empty above or to the right
- if(!limask[x+rw] || !limask[x+1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- /* lower right corner */
- x=rw-1;
- // test if inner mask is filled
- if(limask[x]){
- // test if inner mask is empty above or to the left
- if(!limask[x+rw] || !limask[x-1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
-
- /* Test the TOP row of pixels in buffer, except corners */
- for(x= t-1; x>=(t-rw)+2; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty to the left or to the right
- if(!limask[x-1] || !limask[x+1]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
-
- /* Test the BOTTOM row of pixels in buffer, except corners */
- for(x= rw-2; x; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty to the left or to the right
- if(!limask[x-1] || !limask[x+1]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
- /* Test the LEFT edge of pixels in buffer, except corners */
- for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty underneath or above
- if(!limask[x-rw] || !limask[x+rw]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
-
- /* Test the RIGHT edge of pixels in buffer, except corners */
- for(x= t-rw; x>rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty underneath or above
- if(!limask[x-rw] || !limask[x+rw]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- }
- }
-
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if the inner mask is empty underneath or to the right
+ if (!limask[x-rw] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if the inner mask is empty underneath or to the left
+ if (!limask[x-rw] || !limask[x-1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty above or to the right
+ if (!limask[x+rw] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty above or to the left
+ if (!limask[x+rw] || !limask[x-1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+
+ /* Test the TOP row of pixels in buffer, except corners */
+ for (x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if (!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for (x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if (!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for (x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty underneath or above
+ if (!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for (x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty underneath or above
+ if (!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
}
static void do_allBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize)
{
- int x;
- unsigned int isz=0; // inner edge size
- unsigned int osz=0; // outer edge size
- unsigned int gsz=0; // gradient fill area size
- /* Test the four corners */
- /* upper left corner */
- x=t-rw+1;
- // test if inner mask is filled
- if(limask[x]){
- // test if the inner mask is empty underneath or to the right
- if(!limask[x-rw] || !limask[x+1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* upper right corner */
- x=t;
- // test if inner mask is filled
- if(limask[x]){
- // test if the inner mask is empty underneath or to the left
- if(!limask[x-rw] || !limask[x-1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* lower left corner */
- x=0;
- // test if inner mask is filled
- if(limask[x]){
- // test if inner mask is empty above or to the right
- if(!limask[x+rw] || !limask[x+1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* lower right corner */
- x=rw-1;
- // test if inner mask is filled
- if(limask[x]){
- // test if inner mask is empty above or to the left
- if(!limask[x+rw] || !limask[x-1]){
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]){ // inner mask was empty, test if outer mask is filled
- if(!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- /* Test the TOP row of pixels in buffer, except corners */
- for(x= t-1; x>=(t-rw)+2; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty to the left or to the right
- if(!limask[x-1] || !limask[x+1]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
-
- /* Test the BOTTOM row of pixels in buffer, except corners */
- for(x= rw-2; x; x--) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty to the left or to the right
- if(!limask[x-1] || !limask[x+1]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
- /* Test the LEFT edge of pixels in buffer, except corners */
- for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty underneath or above
- if(!limask[x-rw] || !limask[x+rw]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
-
- /* Test the RIGHT edge of pixels in buffer, except corners */
- for(x= t-rw; x>rw; x-=rw) {
- // test if inner mask is filled
- if(limask[x]) {
- // test if inner mask is empty underneath or above
- if(!limask[x-rw] || !limask[x+rw]) {
- isz++; // increment inner edge size
- lres[x]=4; // flag pixel as inner edge
- } else {
- res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
- }
- } else if(lomask[x]) { // inner mask was empty, test if outer mask is filled
- if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
- osz++; // increment outer edge size
- lres[x]=3; // flag pixel as outer edge
- } else {
- gsz++; // increment the gradient pixel count
- lres[x]=2; // flag pixel as gradient
- }
- }
- }
-
- rsize[0]=isz; // fill in our return sizes for edges + fill
- rsize[1]=osz;
- rsize[2]=gsz;
+ int x;
+ unsigned int isz=0; // inner edge size
+ unsigned int osz=0; // outer edge size
+ unsigned int gsz=0; // gradient fill area size
+ /* Test the four corners */
+ /* upper left corner */
+ x=t-rw+1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if the inner mask is empty underneath or to the right
+ if (!limask[x-rw] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* upper right corner */
+ x=t;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if the inner mask is empty underneath or to the left
+ if (!limask[x-rw] || !limask[x-1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x-1]) { // test if outer mask is empty above or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower left corner */
+ x=0;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty above or to the right
+ if (!limask[x+rw] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x+rw] || !lomask[x+1]) { // test if outer mask is empty underneath or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* lower right corner */
+ x=rw-1;
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty above or to the left
+ if (!limask[x+rw] || !limask[x-1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x+rw] || !lomask[x-1]) { // test if outer mask is empty underneath or to the left
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ /* Test the TOP row of pixels in buffer, except corners */
+ for (x= t-1; x>=(t-rw)+2; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if (!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the BOTTOM row of pixels in buffer, except corners */
+ for (x= rw-2; x; x--) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty to the left or to the right
+ if (!limask[x-1] || !limask[x+1]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-1] || !lomask[x+1]) { // test if outer mask is empty to the left or to the right
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+ /* Test the LEFT edge of pixels in buffer, except corners */
+ for (x= t-(rw<<1)+1; x>=rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty underneath or above
+ if (!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ /* Test the RIGHT edge of pixels in buffer, except corners */
+ for (x= t-rw; x>rw; x-=rw) {
+ // test if inner mask is filled
+ if (limask[x]) {
+ // test if inner mask is empty underneath or above
+ if (!limask[x-rw] || !limask[x+rw]) {
+ isz++; // increment inner edge size
+ lres[x]=4; // flag pixel as inner edge
+ }
+ else {
+ res[x]=1.0f; // pixel is just part of inner mask, and it's not an edge
+ }
+ }
+ else if (lomask[x]) { // inner mask was empty, test if outer mask is filled
+ if (!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
+ osz++; // increment outer edge size
+ lres[x]=3; // flag pixel as outer edge
+ }
+ else {
+ gsz++; // increment the gradient pixel count
+ lres[x]=2; // flag pixel as gradient
+ }
+ }
+ }
+
+ rsize[0]=isz; // fill in our return sizes for edges + fill
+ rsize[1]=osz;
+ rsize[2]=gsz;
}
static void do_allEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz)
{
- int x; // x = pixel loop counter
- int a; // a = pixel loop counter
- int dx; // dx = delta x
- int pix_prevRow; // pix_prevRow = pixel one row behind the one we are testing in a loop
- int pix_nextRow; // pix_nextRow = pixel one row in front of the one we are testing in a loop
- int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
- int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
- /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
- for(x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
- a=x-2;
- pix_prevRow=a+rw;
- pix_nextRow=a-rw;
- pix_prevCol=a+1;
- pix_nextCol=a-1;
- while(a>dx-2) {
- if(!limask[a]) { // if the inner mask is empty
- if(lomask[a]) { // if the outer mask is full
- /*
- Next we test all 4 directions around the current pixel: next/prev/up/down
- The test ensures that the outer mask is empty and that the inner mask
- is also empty. If both conditions are true for any one of the 4 adjacent pixels
- then the current pixel is counted as being a true outer edge pixel.
- */
- if((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
- (!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
- (!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
- (!lomask[pix_prevRow] && !limask[pix_prevRow]))
+ int x; // x = pixel loop counter
+ int a; // a = pixel loop counter
+ int dx; // dx = delta x
+ int pix_prevRow; // pix_prevRow = pixel one row behind the one we are testing in a loop
+ int pix_nextRow; // pix_nextRow = pixel one row in front of the one we are testing in a loop
+ int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
+ int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
+ /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
+ for (x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
+ a=x-2;
+ pix_prevRow=a+rw;
+ pix_nextRow=a-rw;
+ pix_prevCol=a+1;
+ pix_nextCol=a-1;
+ while(a>dx-2) {
+ if (!limask[a]) { // if the inner mask is empty
+ if (lomask[a]) { // if the outer mask is full
+ /*
+ * Next we test all 4 directions around the current pixel: next/prev/up/down
+ * The test ensures that the outer mask is empty and that the inner mask
+ * is also empty. If both conditions are true for any one of the 4 adjacent pixels
+ * then the current pixel is counted as being a true outer edge pixel.
+ */
+ if ((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
+ (!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
+ (!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
+ (!lomask[pix_prevRow] && !limask[pix_prevRow]))
{
- in_osz++; // increment the outer boundary pixel count
- lres[a]=3; // flag pixel as part of outer edge
- } else { // it's not a boundary pixel, but it is a gradient pixel
- in_gsz++; // increment the gradient pixel count
- lres[a]=2; // flag pixel as gradient
- }
- }
-
- } else {
- if(!limask[pix_nextCol] || !limask[pix_prevCol] || !limask[pix_nextRow] || !limask[pix_prevRow]) {
- in_isz++; // increment the inner boundary pixel count
- lres[a]=4; // flag pixel as part of inner edge
- } else {
- res[a]=1.0f; // pixel is part of inner mask, but not at an edge
- }
- }
- a--;
- pix_prevRow--;
- pix_nextRow--;
- pix_prevCol--;
- pix_nextCol--;
- }
- }
-
- rsize[0]=in_isz; // fill in our return sizes for edges + fill
- rsize[1]=in_osz;
- rsize[2]=in_gsz;
+ in_osz++; // increment the outer boundary pixel count
+ lres[a]=3; // flag pixel as part of outer edge
+ }
+ else { // it's not a boundary pixel, but it is a gradient pixel
+ in_gsz++; // increment the gradient pixel count
+ lres[a]=2; // flag pixel as gradient
+ }
+ }
+
+ }
+ else {
+ if (!limask[pix_nextCol] || !limask[pix_prevCol] || !limask[pix_nextRow] || !limask[pix_prevRow]) {
+ in_isz++; // increment the inner boundary pixel count
+ lres[a]=4; // flag pixel as part of inner edge
+ }
+ else {
+ res[a]=1.0f; // pixel is part of inner mask, but not at an edge
+ }
+ }
+ a--;
+ pix_prevRow--;
+ pix_nextRow--;
+ pix_prevCol--;
+ pix_nextCol--;
+ }
+ }
+
+ rsize[0]=in_isz; // fill in our return sizes for edges + fill
+ rsize[1]=in_osz;
+ rsize[2]=in_gsz;
}
static void do_adjacentEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz)
{
- int x; // x = pixel loop counter
- int a; // a = pixel loop counter
- int dx; // dx = delta x
- int pix_prevRow; // pix_prevRow = pixel one row behind the one we are testing in a loop
- int pix_nextRow; // pix_nextRow = pixel one row in front of the one we are testing in a loop
- int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
- int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
- /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
- for(x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
- a=x-2;
- pix_prevRow=a+rw;
- pix_nextRow=a-rw;
- pix_prevCol=a+1;
- pix_nextCol=a-1;
- while(a>dx-2) {
- if(!limask[a]) { // if the inner mask is empty
- if(lomask[a]) { // if the outer mask is full
- /*
- Next we test all 4 directions around the current pixel: next/prev/up/down
- The test ensures that the outer mask is empty and that the inner mask
- is also empty. If both conditions are true for any one of the 4 adjacent pixels
- then the current pixel is counted as being a true outer edge pixel.
- */
- if((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
- (!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
- (!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
- (!lomask[pix_prevRow] && !limask[pix_prevRow]))
+ int x; // x = pixel loop counter
+ int a; // a = pixel loop counter
+ int dx; // dx = delta x
+ int pix_prevRow; // pix_prevRow = pixel one row behind the one we are testing in a loop
+ int pix_nextRow; // pix_nextRow = pixel one row in front of the one we are testing in a loop
+ int pix_prevCol; // pix_prevCol = pixel one column behind the one we are testing in a loop
+ int pix_nextCol; // pix_nextCol = pixel one column in front of the one we are testing in a loop
+ /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
+ for (x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
+ a=x-2;
+ pix_prevRow=a+rw;
+ pix_nextRow=a-rw;
+ pix_prevCol=a+1;
+ pix_nextCol=a-1;
+ while(a>dx-2) {
+ if (!limask[a]) { // if the inner mask is empty
+ if (lomask[a]) { // if the outer mask is full
+ /*
+ * Next we test all 4 directions around the current pixel: next/prev/up/down
+ * The test ensures that the outer mask is empty and that the inner mask
+ * is also empty. If both conditions are true for any one of the 4 adjacent pixels
+ * then the current pixel is counted as being a true outer edge pixel.
+ */
+ if ((!lomask[pix_nextCol] && !limask[pix_nextCol]) ||
+ (!lomask[pix_prevCol] && !limask[pix_prevCol]) ||
+ (!lomask[pix_nextRow] && !limask[pix_nextRow]) ||
+ (!lomask[pix_prevRow] && !limask[pix_prevRow]))
{
- in_osz++; // increment the outer boundary pixel count
- lres[a]=3; // flag pixel as part of outer edge
- } else { // it's not a boundary pixel, but it is a gradient pixel
- in_gsz++; // increment the gradient pixel count
- lres[a]=2; // flag pixel as gradient
- }
- }
-
- } else {
- if((!limask[pix_nextCol] && lomask[pix_nextCol]) ||
- (!limask[pix_prevCol] && lomask[pix_prevCol]) ||
- (!limask[pix_nextRow] && lomask[pix_nextRow]) ||
- (!limask[pix_prevRow] && lomask[pix_prevRow]))
+ in_osz++; // increment the outer boundary pixel count
+ lres[a]=3; // flag pixel as part of outer edge
+ }
+ else { // it's not a boundary pixel, but it is a gradient pixel
+ in_gsz++; // increment the gradient pixel count
+ lres[a]=2; // flag pixel as gradient
+ }
+ }
+
+ }
+ else {
+ if ((!limask[pix_nextCol] && lomask[pix_nextCol]) ||
+ (!limask[pix_prevCol] && lomask[pix_prevCol]) ||
+ (!limask[pix_nextRow] && lomask[pix_nextRow]) ||
+ (!limask[pix_prevRow] && lomask[pix_prevRow]))
{
- in_isz++; // increment the inner boundary pixel count
- lres[a]=4; // flag pixel as part of inner edge
- } else {
- res[a]=1.0f; // pixel is part of inner mask, but not at an edge
- }
- }
- a--;
- pix_prevRow--; // advance all four "surrounding" pixel pointers
- pix_nextRow--;
- pix_prevCol--;
- pix_nextCol--;
- }
- }
-
- rsize[0]=in_isz; // fill in our return sizes for edges + fill
- rsize[1]=in_osz;
- rsize[2]=in_gsz;
+ in_isz++; // increment the inner boundary pixel count
+ lres[a]=4; // flag pixel as part of inner edge
+ }
+ else {
+ res[a]=1.0f; // pixel is part of inner mask, but not at an edge
+ }
+ }
+ a--;
+ pix_prevRow--; // advance all four "surrounding" pixel pointers
+ pix_nextRow--;
+ pix_prevCol--;
+ pix_nextCol--;
+ }
+ }
+
+ rsize[0]=in_isz; // fill in our return sizes for edges + fill
+ rsize[1]=in_osz;
+ rsize[2]=in_gsz;
}
static void do_createEdgeLocationBuffer(unsigned int t, unsigned int rw, unsigned int *lres, float *res, unsigned short *gbuf, unsigned int *innerEdgeOffset, unsigned int *outerEdgeOffset, unsigned int isz, unsigned int gsz)
{
- int x; // x = pixel loop counter
- int a; // a = temporary pixel index buffer loop counter
- unsigned int ud; // ud = unscaled edge distance
- unsigned int dmin; // dmin = minimun edge distance
-
- unsigned int rsl; // long used for finding fast 1.0/sqrt
- unsigned int gradientFillOffset;
- unsigned int innerAccum=0; // for looping inner edge pixel indexes, represents current position from offset
- unsigned int outerAccum=0; // for looping outer edge pixel indexes, represents current position from offset
- unsigned int gradientAccum=0; // for looping gradient pixel indexes, represents current position from offset
- /*
- Here we compute the size of buffer needed to hold (row,col) coordinates
- for each pixel previously determined to be either gradient, inner edge,
- or outer edge.
-
- Allocation is done by requesting 4 bytes "sizeof(int)" per pixel, even
- though gbuf[] is declared as unsigned short* (2 bytes) because we don't
- store the pixel indexes, we only store x,y location of pixel in buffer.
-
- This does make the assumption that x and y can fit in 16 unsigned bits
- so if Blender starts doing renders greater than 65536 in either direction
- this will need to allocate gbuf[] as unsigned int* and allocate 8 bytes
- per flagged pixel.
-
- In general, the buffer on-screen:
-
- Example: 9 by 9 pixel block
-
- . = pixel non-white in both outer and inner mask
- o = pixel white in outer, but not inner mask, adjacent to "." pixel
- g = pixel white in outer, but not inner mask, not adjacent to "." pixel
- i = pixel white in inner mask, adjacent to "g" or "." pixel
- F = pixel white in inner mask, only adjacent to other pixels white in the inner mask
-
-
- ......... <----- pixel #80
- ..oooo...
- .oggggo..
- .oggiggo.
- .ogiFigo.
- .oggiggo.
- .oggggo..
- ..oooo...
- pixel #00 -----> .........
-
- gsz = 18 (18 "g" pixels above)
- isz = 4 (4 "i" pixels above)
- osz = 18 (18 "o" pixels above)
-
-
- The memory in gbuf[] after filling will look like this:
-
- gradientFillOffset (0 pixels) innerEdgeOffset (18 pixels) outerEdgeOffset (22 pixels)
- / / /
- / / /
- |X Y X Y X Y X Y > <X Y X Y > <X Y X Y X Y > <X Y X Y | <- (x,y)
- +--------------------------------> <----------------> <------------------------> <----------------+
- |0 2 4 6 8 10 12 14 > ... <68 70 72 74 > ... <80 82 84 86 88 90 > ... <152 154 156 158 | <- bytes
- +--------------------------------> <----------------> <------------------------> <----------------+
- |g0 g0 g1 g1 g2 g2 g3 g3 > <g17 g17 i0 i0 > <i2 i2 i3 i3 o0 o0 > <o16 o16 o17 o17 | <- pixel
- / / /
- / / /
- / / /
- +---------- gradientAccum (18) ---------+ +--- innerAccum (22) ---+ +--- outerAccum (40) ---+
-
-
- Ultimately we do need the pixel's memory buffer index to set the output
- pixel color, but it's faster to reconstruct the memory buffer location
- each iteration of the final gradient calculation than it is to deconstruct
- a memory location into x,y pairs each round.
-*/
-
-
- gradientFillOffset=0; // since there are likely "more" of these, put it first. :)
- *innerEdgeOffset=gradientFillOffset+gsz; // set start of inner edge indexes
- *outerEdgeOffset=(*innerEdgeOffset)+isz; // set start of outer edge indexes
- /* set the accumulators to correct positions */ // set up some accumulator variables for loops
- gradientAccum = gradientFillOffset; // each accumulator variable starts at its respective
- innerAccum = *innerEdgeOffset; // section's offset so when we start filling, each
- outerAccum = *outerEdgeOffset; // section fills up it's allocated space in gbuf
- //uses dmin=row, rsl=col
- for(x=0,dmin=0; x<t; x+=rw,dmin++) {
- for(rsl=0; rsl<rw; rsl++) {
- a=x+rsl;
- if(lres[a]==2) { // it is a gradient pixel flagged by 2
- ud=gradientAccum<<1; // double the index to reach correct unsigned short location
- gbuf[ud]=dmin; // insert pixel's row into gradient pixel location buffer
- gbuf[ud+1]=rsl; // insert pixel's column into gradient pixel location buffer
- gradientAccum++; // increment gradient index buffer pointer
- } else if(lres[a]==3) { // it is an outer edge pixel flagged by 3
- ud=outerAccum<<1; // double the index to reach correct unsigned short location
- gbuf[ud]=dmin; // insert pixel's row into outer edge pixel location buffer
- gbuf[ud+1]=rsl; // insert pixel's column into outer edge pixel location buffer
- outerAccum++; // increment outer edge index buffer pointer
- res[a]=0.0f; // set output pixel intensity now since it won't change later
- } else if(lres[a]==4) { // it is an inner edge pixel flagged by 4
- ud=innerAccum<<1; // double int index to reach correct unsigned short location
- gbuf[ud]=dmin; // insert pixel's row into inner edge pixel location buffer
- gbuf[ud+1]=rsl; // insert pixel's column into inner edge pixel location buffer
- innerAccum++; // increment inner edge index buffer pointer
- res[a]=1.0f; // set output pixel intensity now since it won't change later
- }
- }
- }
+ int x; // x = pixel loop counter
+ int a; // a = temporary pixel index buffer loop counter
+ unsigned int ud; // ud = unscaled edge distance
+ unsigned int dmin; // dmin = minimun edge distance
+
+ unsigned int rsl; // long used for finding fast 1.0/sqrt
+ unsigned int gradientFillOffset;
+ unsigned int innerAccum=0; // for looping inner edge pixel indexes, represents current position from offset
+ unsigned int outerAccum=0; // for looping outer edge pixel indexes, represents current position from offset
+ unsigned int gradientAccum=0; // for looping gradient pixel indexes, represents current position from offset
+ /*
+ * Here we compute the size of buffer needed to hold (row,col) coordinates
+ * for each pixel previously determined to be either gradient, inner edge,
+ * or outer edge.
+ *
+ * Allocation is done by requesting 4 bytes "sizeof(int)" per pixel, even
+ * though gbuf[] is declared as unsigned short* (2 bytes) because we don't
+ * store the pixel indexes, we only store x,y location of pixel in buffer.
+ *
+ * This does make the assumption that x and y can fit in 16 unsigned bits
+ * so if Blender starts doing renders greater than 65536 in either direction
+ * this will need to allocate gbuf[] as unsigned int* and allocate 8 bytes
+ * per flagged pixel.
+ *
+ * In general, the buffer on-screen:
+ *
+ * Example: 9 by 9 pixel block
+ *
+ * . = pixel non-white in both outer and inner mask
+ * o = pixel white in outer, but not inner mask, adjacent to "." pixel
+ * g = pixel white in outer, but not inner mask, not adjacent to "." pixel
+ * i = pixel white in inner mask, adjacent to "g" or "." pixel
+ * F = pixel white in inner mask, only adjacent to other pixels white in the inner mask
+ *
+ *
+ * ......... <----- pixel #80
+ * ..oooo...
+ * .oggggo..
+ * .oggiggo.
+ * .ogiFigo.
+ * .oggiggo.
+ * .oggggo..
+ * ..oooo...
+ * pixel #00 -----> .........
+ *
+ * gsz = 18 (18 "g" pixels above)
+ * isz = 4 (4 "i" pixels above)
+ * osz = 18 (18 "o" pixels above)
+ *
+ *
+ * The memory in gbuf[] after filling will look like this:
+ *
+ * gradientFillOffset (0 pixels) innerEdgeOffset (18 pixels) outerEdgeOffset (22 pixels)
+ * / / /
+ * / / /
+ * |X Y X Y X Y X Y > <X Y X Y > <X Y X Y X Y > <X Y X Y | <- (x,y)
+ * +--------------------------------> <----------------> <------------------------> <----------------+
+ * |0 2 4 6 8 10 12 14 > ... <68 70 72 74 > ... <80 82 84 86 88 90 > ... <152 154 156 158 | <- bytes
+ * +--------------------------------> <----------------> <------------------------> <----------------+
+ * |g0 g0 g1 g1 g2 g2 g3 g3 > <g17 g17 i0 i0 > <i2 i2 i3 i3 o0 o0 > <o16 o16 o17 o17 | <- pixel
+ * / / /
+ * / / /
+ * / / /
+ * +---------- gradientAccum (18) ---------+ +--- innerAccum (22) ---+ +--- outerAccum (40) ---+
+ *
+ *
+ * Ultimately we do need the pixel's memory buffer index to set the output
+ * pixel color, but it's faster to reconstruct the memory buffer location
+ * each iteration of the final gradient calculation than it is to deconstruct
+ * a memory location into x,y pairs each round.
+ */
+
+
+ gradientFillOffset=0; // since there are likely "more" of these, put it first. :)
+ *innerEdgeOffset=gradientFillOffset+gsz; // set start of inner edge indexes
+ *outerEdgeOffset=(*innerEdgeOffset)+isz; // set start of outer edge indexes
+ /* set the accumulators to correct positions */ // set up some accumulator variables for loops
+ gradientAccum = gradientFillOffset; // each accumulator variable starts at its respective
+ innerAccum = *innerEdgeOffset; // section's offset so when we start filling, each
+ outerAccum = *outerEdgeOffset; // section fills up it's allocated space in gbuf
+ //uses dmin=row, rsl=col
+ for (x=0,dmin=0; x<t; x+=rw,dmin++) {
+ for (rsl=0; rsl<rw; rsl++) {
+ a=x+rsl;
+ if (lres[a]==2) { // it is a gradient pixel flagged by 2
+ ud=gradientAccum<<1; // double the index to reach correct unsigned short location
+ gbuf[ud]=dmin; // insert pixel's row into gradient pixel location buffer
+ gbuf[ud+1]=rsl; // insert pixel's column into gradient pixel location buffer
+ gradientAccum++; // increment gradient index buffer pointer
+ }
+ else if (lres[a]==3) { // it is an outer edge pixel flagged by 3
+ ud=outerAccum<<1; // double the index to reach correct unsigned short location
+ gbuf[ud]=dmin; // insert pixel's row into outer edge pixel location buffer
+ gbuf[ud+1]=rsl; // insert pixel's column into outer edge pixel location buffer
+ outerAccum++; // increment outer edge index buffer pointer
+ res[a]=0.0f; // set output pixel intensity now since it won't change later
+ }
+ else if (lres[a]==4) { // it is an inner edge pixel flagged by 4
+ ud=innerAccum<<1; // double int index to reach correct unsigned short location
+ gbuf[ud]=dmin; // insert pixel's row into inner edge pixel location buffer
+ gbuf[ud+1]=rsl; // insert pixel's column into inner edge pixel location buffer
+ innerAccum++; // increment inner edge index buffer pointer
+ res[a]=1.0f; // set output pixel intensity now since it won't change later
+ }
+ }
+ }
}
static void do_fillGradientBuffer(unsigned int rw, float *res, unsigned short *gbuf, unsigned int isz, unsigned int osz, unsigned int gsz, unsigned int innerEdgeOffset, unsigned int outerEdgeOffset)
{
- int x; // x = pixel loop counter
- int a; // a = temporary pixel index buffer loop counter
- int fsz; // size of the frame
- unsigned int rsl; // long used for finding fast 1.0/sqrt
- float rsf; // float used for finding fast 1.0/sqrt
- const float rsopf = 1.5f; // constant float used for finding fast 1.0/sqrt
-
- unsigned int gradientFillOffset;
- unsigned int t;
- unsigned int ud; // ud = unscaled edge distance
- unsigned int dmin; // dmin = minimun edge distance
- float odist; // odist = current outer edge distance
- float idist; // idist = current inner edge distance
- int dx; // dx = X-delta (used for distance proportion calculation)
- int dy; // dy = Y-delta (used for distance proportion calculation)
-
- /*
- The general algorithm used to color each gradient pixel is:
-
- 1.) Loop through all gradient pixels.
- A.) For each gradient pixel:
- a.) Loop though all outside edge pixels, looking for closest one
- to the gradient pixel we are in.
- b.) Loop through all inside edge pixels, looking for closest one
- to the gradient pixel we are in.
- c.) Find proportion of distance from gradient pixel to inside edge
- pixel compared to sum of distance to inside edge and distance to
- outside edge.
-
- In an image where:
- . = blank (black) pixels, not covered by inner mask or outer mask
- + = desired gradient pixels, covered only by outer mask
- * = white full mask pixels, covered by at least inner mask
-
- ...............................
- ...............+++++++++++.....
- ...+O++++++..++++++++++++++....
- ..+++\++++++++++++++++++++.....
- .+++++G+++++++++*******+++.....
- .+++++|+++++++*********+++.....
- .++***I****************+++.....
- .++*******************+++......
- .+++*****************+++.......
- ..+++***************+++........
- ....+++**********+++...........
- ......++++++++++++.............
- ...............................
-
- O = outside edge pixel
- \
- G = gradient pixel
- |
- I = inside edge pixel
-
- __
- *note that IO does not need to be a straight line, in fact
- many cases can arise where straight lines do not work
- correctly.
-
- __ __ __
- d.) Pixel color is assigned as |GO| / ( |GI| + |GO| )
-
- The implementation does not compute distance, but the reciprocal of the
- distance. This is done to avoid having to compute a square root, as a
- reciprocal square root can be computed faster. Therefore, the code computes
- pixel color as |GI| / (|GI| + |GO|). Since these are reciprocals, GI serves the
- purpose of GO for the proportion calculation.
-
- For the purposes of the minimun distance comparisons, we only check
- the sums-of-squares against each other, since they are in the same
- mathematical sort-order as if we did go ahead and take square roots
-
- Loop through all gradient pixels.
- */
-
- for(x= gsz-1; x>=0; x--) {
- gradientFillOffset=x<<1;
- t=gbuf[gradientFillOffset]; // calculate column of pixel indexed by gbuf[x]
- fsz=gbuf[gradientFillOffset+1]; // calculate row of pixel indexed by gbuf[x]
- dmin=0xffffffff; // reset min distance to edge pixel
- for(a=outerEdgeOffset+osz-1; a>=outerEdgeOffset; a--) { // loop through all outer edge buffer pixels
- ud=a<<1;
- dy=t-gbuf[ud]; // set dx to gradient pixel column - outer edge pixel row
- dx=fsz-gbuf[ud+1]; // set dy to gradient pixel row - outer edge pixel column
- ud=dx*dx+dy*dy; // compute sum of squares
- if(ud<dmin) { // if our new sum of squares is less than the current minimum
- dmin=ud; // set a new minimum equal to the new lower value
- }
- }
- odist=(float)(dmin); // cast outer min to a float
- rsf=odist*0.5f; //
- rsl=*(unsigned int*)&odist; // use some peculiar properties of the way bits are stored
- rsl=0x5f3759df-(rsl>>1); // in floats vs. unsigned ints to compute an approximate
- odist=*(float*)&rsl; // reciprocal square root
- odist=odist*(rsopf-(rsf*odist*odist)); // -- ** this line can be iterated for more accuracy ** --
- dmin=0xffffffff; // reset min distance to edge pixel
- for(a= innerEdgeOffset+isz-1; a>=innerEdgeOffset; a--) { // loop through all inside edge pixels
- ud=a<<1;
- dy=t-gbuf[ud]; // compute delta in Y from gradient pixel to inside edge pixel
- dx=fsz-gbuf[ud+1]; // compute delta in X from gradient pixel to inside edge pixel
- ud=dx*dx+dy*dy; // compute sum of squares
- if(ud<dmin) { // if our new sum of squares is less than the current minimum we've found
- dmin=ud; // set a new minimum equal to the new lower value
- }
- }
- idist=(float)(dmin); // cast inner min to a float
- rsf=idist*0.5f; //
- rsl=*(unsigned int*)&idist; //
- rsl=0x5f3759df-(rsl>>1); // see notes above
- idist=*(float*)&rsl; //
- idist=idist*(rsopf-(rsf*idist*idist)); //
- /*
- Note once again that since we are using reciprocals of distance values our
- proportion is already the correct intensity, and does not need to be
- subracted from 1.0 like it would have if we used real distances.
- */
-
- /*
- Here we reconstruct the pixel's memory location in the CompBuf by
- Pixel Index = Pixel Column + ( Pixel Row * Row Width )
- */
- res[gbuf[gradientFillOffset+1]+(gbuf[gradientFillOffset]*rw)]=(idist/(idist+odist)); //set intensity
- }
+ int x; // x = pixel loop counter
+ int a; // a = temporary pixel index buffer loop counter
+ int fsz; // size of the frame
+ unsigned int rsl; // long used for finding fast 1.0/sqrt
+ float rsf; // float used for finding fast 1.0/sqrt
+ const float rsopf = 1.5f; // constant float used for finding fast 1.0/sqrt
+
+ unsigned int gradientFillOffset;
+ unsigned int t;
+ unsigned int ud; // ud = unscaled edge distance
+ unsigned int dmin; // dmin = minimun edge distance
+ float odist; // odist = current outer edge distance
+ float idist; // idist = current inner edge distance
+ int dx; // dx = X-delta (used for distance proportion calculation)
+ int dy; // dy = Y-delta (used for distance proportion calculation)
+ /*
+ * The general algorithm used to color each gradient pixel is:
+ *
+ * 1.) Loop through all gradient pixels.
+ * A.) For each gradient pixel:
+ * a.) Loop though all outside edge pixels, looking for closest one
+ * to the gradient pixel we are in.
+ * b.) Loop through all inside edge pixels, looking for closest one
+ * to the gradient pixel we are in.
+ * c.) Find proportion of distance from gradient pixel to inside edge
+ * pixel compared to sum of distance to inside edge and distance to
+ * outside edge.
+ *
+ * In an image where:
+ * . = blank (black) pixels, not covered by inner mask or outer mask
+ * + = desired gradient pixels, covered only by outer mask
+ * * = white full mask pixels, covered by at least inner mask
+ *
+ * ...............................
+ * ...............+++++++++++.....
+ * ...+O++++++..++++++++++++++....
+ * ..+++\++++++++++++++++++++.....
+ * .+++++G+++++++++*******+++.....
+ * .+++++|+++++++*********+++.....
+ * .++***I****************+++.....
+ * .++*******************+++......
+ * .+++*****************+++.......
+ * ..+++***************+++........
+ * ....+++**********+++...........
+ * ......++++++++++++.............
+ * ...............................
+ *
+ * O = outside edge pixel
+ * \
+ * G = gradient pixel
+ * |
+ * I = inside edge pixel
+ *
+ * __
+ * *note that IO does not need to be a straight line, in fact
+ * many cases can arise where straight lines do not work
+ * correctly.
+ *
+ * __ __ __
+ * d.) Pixel color is assigned as |GO| / ( |GI| + |GO| )
+ *
+ * The implementation does not compute distance, but the reciprocal of the
+ * distance. This is done to avoid having to compute a square root, as a
+ * reciprocal square root can be computed faster. Therefore, the code computes
+ * pixel color as |GI| / (|GI| + |GO|). Since these are reciprocals, GI serves the
+ * purpose of GO for the proportion calculation.
+ *
+ * For the purposes of the minimun distance comparisons, we only check
+ * the sums-of-squares against each other, since they are in the same
+ * mathematical sort-order as if we did go ahead and take square roots
+ *
+ * Loop through all gradient pixels.
+ */
+
+ for (x= gsz-1; x>=0; x--) {
+ gradientFillOffset=x<<1;
+ t=gbuf[gradientFillOffset]; // calculate column of pixel indexed by gbuf[x]
+ fsz=gbuf[gradientFillOffset+1]; // calculate row of pixel indexed by gbuf[x]
+ dmin=0xffffffff; // reset min distance to edge pixel
+ for (a=outerEdgeOffset+osz-1; a>=outerEdgeOffset; a--) { // loop through all outer edge buffer pixels
+ ud=a<<1;
+ dy=t-gbuf[ud]; // set dx to gradient pixel column - outer edge pixel row
+ dx=fsz-gbuf[ud+1]; // set dy to gradient pixel row - outer edge pixel column
+ ud=dx*dx+dy*dy; // compute sum of squares
+ if (ud<dmin) { // if our new sum of squares is less than the current minimum
+ dmin=ud; // set a new minimum equal to the new lower value
+ }
+ }
+ odist=(float)(dmin); // cast outer min to a float
+ rsf=odist*0.5f; //
+ rsl=*(unsigned int*)&odist; // use some peculiar properties of the way bits are stored
+ rsl=0x5f3759df-(rsl>>1); // in floats vs. unsigned ints to compute an approximate
+ odist=*(float*)&rsl; // reciprocal square root
+ odist=odist*(rsopf-(rsf*odist*odist)); // -- ** this line can be iterated for more accuracy ** --
+ dmin=0xffffffff; // reset min distance to edge pixel
+ for (a= innerEdgeOffset+isz-1; a>=innerEdgeOffset; a--) { // loop through all inside edge pixels
+ ud=a<<1;
+ dy=t-gbuf[ud]; // compute delta in Y from gradient pixel to inside edge pixel
+ dx=fsz-gbuf[ud+1]; // compute delta in X from gradient pixel to inside edge pixel
+ ud=dx*dx+dy*dy; // compute sum of squares
+ if (ud<dmin) { // if our new sum of squares is less than the current minimum we've found
+ dmin=ud; // set a new minimum equal to the new lower value
+ }
+ }
+ idist=(float)(dmin); // cast inner min to a float
+ rsf=idist*0.5f; //
+ rsl=*(unsigned int*)&idist; //
+ rsl=0x5f3759df-(rsl>>1); // see notes above
+ idist=*(float*)&rsl; //
+ idist=idist*(rsopf-(rsf*idist*idist)); //
+ /*
+ * Note once again that since we are using reciprocals of distance values our
+ * proportion is already the correct intensity, and does not need to be
+ * subracted from 1.0 like it would have if we used real distances.
+ */
+
+ /*
+ * Here we reconstruct the pixel's memory location in the CompBuf by
+ * Pixel Index = Pixel Column + ( Pixel Row * Row Width )
+ */
+ res[gbuf[gradientFillOffset+1]+(gbuf[gradientFillOffset]*rw)]=(idist/(idist+odist)); //set intensity
+ }
}
@@ -1059,136 +1146,139 @@ static void do_fillGradientBuffer(unsigned int rw, float *res, unsigned short *g
static void node_composit_exec_doubleedgemask(void *UNUSED(data), bNode *node, bNodeStack **in, bNodeStack **out)
{
- float *imask; // imask = pointer to inner mask pixel buffer
- float *omask; // omask = pointer to outer mask pixel buffer
- float *res; // res = pointer to output mask
-
- unsigned int *lres; // lres = unsigned int pointer to output pixel buffer (for bit operations)
- unsigned int *limask; // limask = unsigned int pointer to inner mask (for bit operations)
- unsigned int *lomask; // lomask = unsigned int pointer to outer mask (for bit operations)
-
- int rw; // rw = pixel row width
- int t; // t = total number of pixels in buffer - 1 (used for loop starts)
- int fsz; // size of the frame
-
- unsigned int isz=0; // size (in pixels) of inside edge pixel index buffer
- unsigned int osz=0; // size (in pixels) of outside edge pixel index buffer
- unsigned int gsz=0; // size (in pixels) of gradient pixel index buffer
- unsigned int rsize[3]; // size storage to pass to helper functions
- unsigned int innerEdgeOffset=0; // offset into final buffer where inner edge pixel indexes start
- unsigned int outerEdgeOffset=0; // offset into final buffer where outer edge pixel indexes start
-
- unsigned short *gbuf; // gradient/inner/outer pixel location index buffer
-
- CompBuf *cbuf; // pointer, will be set to inner mask data
- CompBuf *dbuf; // pointer, will be set to outer mask data
- CompBuf *stackbuf; // pointer, will get allocated as output buffer
-
- if(out[0]->hasoutput==0) { // if the node's output socket is not connected to anything...
- return; // do not execute any further, just exit the node immediately
- }
-
- if(in[0]->data && in[1]->data) { // if both input sockets have some data coming in...
- cbuf= in[0]->data; // get a pointer to the inner mask data
- dbuf= in[1]->data; // get a pointer to the outer mask data
- if(cbuf->type!=CB_VAL || dbuf->type!=CB_VAL) { // if either input socket has an incorrect data type coming in
- return; // exit the node immediately
- }
-
- t=(cbuf->x*cbuf->y)-1; // determine size of the frame
-
- stackbuf= alloc_compbuf(cbuf->x, cbuf->y, CB_VAL, 1); // allocate the output buffer
-
- imask= cbuf->rect; // set the inner mask
- omask= dbuf->rect; // set the outer mask
- res= stackbuf->rect; // set output pointer
- lres= (unsigned int*)res; // unsigned int pointer to output buffer (for bit level ops)
- limask=(unsigned int*)imask; // unsigned int pointer to input mask (for bit level ops)
- lomask=(unsigned int*)omask; // unsigned int pointer to output mask (for bit level ops)
- rw= cbuf->x; // width of a row of pixels
-
-
- /*
- The whole buffer is broken up into 4 parts. The four CORNERS, the FIRST and LAST rows, the
- LEFT and RIGHT edges (excluding the corner pixels), and all OTHER rows.
- This allows for quick computation of outer edge pixels where
- a screen edge pixel is marked to be gradient.
-
- The pixel type (gradient vs inner-edge vs outer-edge) tests change
- depending on the user selected "Inner Edge Mode" and the user selected
- "Buffer Edge Mode" on the node's GUI. There are 4 sets of basically the
- same algorithm:
-
- 1.) Inner Edge -> Adjacent Only
- Buffer Edge -> Keep Inside
-
- 2.) Inner Edge -> Adjacent Only
- Buffer Edge -> Bleed Out
-
- 3.) Inner Edge -> All
- Buffer Edge -> Keep Inside
-
- 4.) Inner Edge -> All
- Buffer Edge -> Bleed Out
-
- Each version has slightly different criteria for detecting an edge pixel.
- */
- if(node->custom2) { // if "adjacent only" inner edge mode is turned on
- if(node->custom1) { // if "keep inside" buffer edge mode is turned on
- do_adjacentKeepBorders(t,rw,limask,lomask,lres,res,rsize);
- }else{ // "bleed out" buffer edge mode is turned on
- do_adjacentBleedBorders(t,rw,limask,lomask,lres,res,rsize);
- }
- isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
- osz=rsize[1];
- gsz=rsize[2];
- // detect edges in all non-border pixels in the buffer
- do_adjacentEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
- }else{ // "all" inner edge mode is turned on
- if(node->custom1) { // if "keep inside" buffer edge mode is turned on
- do_allKeepBorders(t,rw,limask,lomask,lres,res,rsize);
- }else{ // "bleed out" buffer edge mode is turned on
- do_allBleedBorders(t,rw,limask,lomask,lres,res,rsize);
- }
- isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
- osz=rsize[1];
- gsz=rsize[2];
- // detect edges in all non-border pixels in the buffer
- do_allEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
- }
-
- isz=rsize[0]; // set edge and gradient buffer sizes once again...
- osz=rsize[1]; // the sizes in rsize[] may have been modified
- gsz=rsize[2]; // by the do_*EdgeDetection() function.
-
- // quick check for existance of edges in the buffer...
- // if we don't have any one of the three sizes, the other two make no difference visually,
- // so we can just pass the inner input buffer back as output.
- if(!gsz || !isz || !osz) {
- out[0]->data= stackbuf; // point the node output buffer to our filled buffer
- return;
- }
-
-
- fsz=gsz+isz+osz; // calculate size of pixel index buffer needed
- gbuf= MEM_mallocN(fsz*sizeof(int), "grd buf"); // allocate edge/gradient pixel index buffer
-
- do_createEdgeLocationBuffer(t,rw,lres,res,gbuf,&innerEdgeOffset,&outerEdgeOffset,isz,gsz);
- do_fillGradientBuffer(rw,res,gbuf,isz,osz,gsz,innerEdgeOffset,outerEdgeOffset);
-
- MEM_freeN(gbuf); // free the gradient index buffer
- out[0]->data= stackbuf; // point the node output buffer to our filled buffer
- }
+ float *imask; // imask = pointer to inner mask pixel buffer
+ float *omask; // omask = pointer to outer mask pixel buffer
+ float *res; // res = pointer to output mask
+
+ unsigned int *lres; // lres = unsigned int pointer to output pixel buffer (for bit operations)
+ unsigned int *limask; // limask = unsigned int pointer to inner mask (for bit operations)
+ unsigned int *lomask; // lomask = unsigned int pointer to outer mask (for bit operations)
+
+ int rw; // rw = pixel row width
+ int t; // t = total number of pixels in buffer - 1 (used for loop starts)
+ int fsz; // size of the frame
+
+ unsigned int isz=0; // size (in pixels) of inside edge pixel index buffer
+ unsigned int osz=0; // size (in pixels) of outside edge pixel index buffer
+ unsigned int gsz=0; // size (in pixels) of gradient pixel index buffer
+ unsigned int rsize[3]; // size storage to pass to helper functions
+ unsigned int innerEdgeOffset=0; // offset into final buffer where inner edge pixel indexes start
+ unsigned int outerEdgeOffset=0; // offset into final buffer where outer edge pixel indexes start
+
+ unsigned short *gbuf; // gradient/inner/outer pixel location index buffer
+
+ CompBuf *cbuf; // pointer, will be set to inner mask data
+ CompBuf *dbuf; // pointer, will be set to outer mask data
+ CompBuf *stackbuf; // pointer, will get allocated as output buffer
+
+ if (out[0]->hasoutput==0) { // if the node's output socket is not connected to anything...
+ return; // do not execute any further, just exit the node immediately
+ }
+
+ if (in[0]->data && in[1]->data) { // if both input sockets have some data coming in...
+ cbuf= in[0]->data; // get a pointer to the inner mask data
+ dbuf= in[1]->data; // get a pointer to the outer mask data
+ if (cbuf->type!=CB_VAL || dbuf->type!=CB_VAL) { // if either input socket has an incorrect data type coming in
+ return; // exit the node immediately
+ }
+
+ t=(cbuf->x*cbuf->y)-1; // determine size of the frame
+
+ stackbuf= alloc_compbuf(cbuf->x, cbuf->y, CB_VAL, 1); // allocate the output buffer
+
+ imask= cbuf->rect; // set the inner mask
+ omask= dbuf->rect; // set the outer mask
+ res= stackbuf->rect; // set output pointer
+ lres= (unsigned int*)res; // unsigned int pointer to output buffer (for bit level ops)
+ limask=(unsigned int*)imask; // unsigned int pointer to input mask (for bit level ops)
+ lomask=(unsigned int*)omask; // unsigned int pointer to output mask (for bit level ops)
+ rw= cbuf->x; // width of a row of pixels
+
+
+ /*
+ * The whole buffer is broken up into 4 parts. The four CORNERS, the FIRST and LAST rows, the
+ * LEFT and RIGHT edges (excluding the corner pixels), and all OTHER rows.
+ * This allows for quick computation of outer edge pixels where
+ * a screen edge pixel is marked to be gradient.
+ *
+ * The pixel type (gradient vs inner-edge vs outer-edge) tests change
+ * depending on the user selected "Inner Edge Mode" and the user selected
+ * "Buffer Edge Mode" on the node's GUI. There are 4 sets of basically the
+ * same algorithm:
+ *
+ * 1.) Inner Edge -> Adjacent Only
+ * Buffer Edge -> Keep Inside
+ *
+ * 2.) Inner Edge -> Adjacent Only
+ * Buffer Edge -> Bleed Out
+ *
+ * 3.) Inner Edge -> All
+ * Buffer Edge -> Keep Inside
+ *
+ * 4.) Inner Edge -> All
+ * Buffer Edge -> Bleed Out
+ *
+ * Each version has slightly different criteria for detecting an edge pixel.
+ */
+ if (node->custom2) { // if "adjacent only" inner edge mode is turned on
+ if (node->custom1) { // if "keep inside" buffer edge mode is turned on
+ do_adjacentKeepBorders(t,rw,limask,lomask,lres,res,rsize);
+ }
+ else { // "bleed out" buffer edge mode is turned on
+ do_adjacentBleedBorders(t,rw,limask,lomask,lres,res,rsize);
+ }
+ isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
+ osz=rsize[1];
+ gsz=rsize[2];
+ // detect edges in all non-border pixels in the buffer
+ do_adjacentEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
+ }
+ else { // "all" inner edge mode is turned on
+ if (node->custom1) { // if "keep inside" buffer edge mode is turned on
+ do_allKeepBorders(t,rw,limask,lomask,lres,res,rsize);
+ }
+ else { // "bleed out" buffer edge mode is turned on
+ do_allBleedBorders(t,rw,limask,lomask,lres,res,rsize);
+ }
+ isz=rsize[0]; // set up inner edge, outer edge, and gradient buffer sizes after border pass
+ osz=rsize[1];
+ gsz=rsize[2];
+ // detect edges in all non-border pixels in the buffer
+ do_allEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
+ }
+
+ isz=rsize[0]; // set edge and gradient buffer sizes once again...
+ osz=rsize[1]; // the sizes in rsize[] may have been modified
+ gsz=rsize[2]; // by the do_*EdgeDetection() function.
+
+ // quick check for existance of edges in the buffer...
+ // if we don't have any one of the three sizes, the other two make no difference visually,
+ // so we can just pass the inner input buffer back as output.
+ if (!gsz || !isz || !osz) {
+ out[0]->data= stackbuf; // point the node output buffer to our filled buffer
+ return;
+ }
+
+
+ fsz=gsz+isz+osz; // calculate size of pixel index buffer needed
+ gbuf= MEM_mallocN(fsz*sizeof(int), "grd buf"); // allocate edge/gradient pixel index buffer
+
+ do_createEdgeLocationBuffer(t,rw,lres,res,gbuf,&innerEdgeOffset,&outerEdgeOffset,isz,gsz);
+ do_fillGradientBuffer(rw,res,gbuf,isz,osz,gsz,innerEdgeOffset,outerEdgeOffset);
+
+ MEM_freeN(gbuf); // free the gradient index buffer
+ out[0]->data= stackbuf; // point the node output buffer to our filled buffer
+ }
}
void register_node_type_cmp_doubleedgemask(bNodeTreeType *ttype)
{
- static bNodeType ntype; // allocate a node type data structure
+ static bNodeType ntype; // allocate a node type data structure
- node_type_base(ttype, &ntype, CMP_NODE_DOUBLEEDGEMASK, "Double Edge Mask", NODE_CLASS_MATTE, NODE_OPTIONS);
- node_type_socket_templates(&ntype, cmp_node_doubleedgemask_in, cmp_node_doubleedgemask_out);
- node_type_size(&ntype, 210, 210, 210);
- node_type_exec(&ntype, node_composit_exec_doubleedgemask);
+ node_type_base(ttype, &ntype, CMP_NODE_DOUBLEEDGEMASK, "Double Edge Mask", NODE_CLASS_MATTE, NODE_OPTIONS);
+ node_type_socket_templates(&ntype, cmp_node_doubleedgemask_in, cmp_node_doubleedgemask_out);
+ node_type_size(&ntype, 210, 210, 210);
+ node_type_exec(&ntype, node_composit_exec_doubleedgemask);
- nodeRegisterType(ttype, &ntype);
+ nodeRegisterType(ttype, &ntype);
}