Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
path: root/source
diff options
context:
space:
mode:
authorSebastian Parborg <darkdefende@gmail.com>2021-04-13 20:18:48 +0300
committerSebastian Parborg <darkdefende@gmail.com>2021-04-13 20:18:48 +0300
commitd851fc3ad6770a5634db8ca41aaa1267c7155245 (patch)
tree43e3d44c6e16de9a35e301053f5d6014b8e98383 /source
parent5936ef986a279fd5ae374352763e166ee4d97b5b (diff)
Fix T77330, T81704: Spline IK doesn't preserve bone scale correctly
Previously, the bone position outside of "fit to curve length" mode was incorrect. It assumed that the curve was completely straight with no bends or turns. This would lead to bones being scaled down as their final position would be servery underestimated in some cases. The solution is to do a sphere -> curve intersection test to see where to put the bones while still preserving their length. As we are using the tessellated curve data this essentially boils down to us doing a sphere -> line intersection check. Reviewed By: Sybren Differential Revision: http://developer.blender.org/D10849
Diffstat (limited to 'source')
-rw-r--r--source/blender/blenkernel/intern/armature_update.c560
1 files changed, 356 insertions, 204 deletions
diff --git a/source/blender/blenkernel/intern/armature_update.c b/source/blender/blenkernel/intern/armature_update.c
index 475b64cb9b3..9130c378121 100644
--- a/source/blender/blenkernel/intern/armature_update.c
+++ b/source/blender/blenkernel/intern/armature_update.c
@@ -63,40 +63,40 @@ typedef struct tSplineIK_Tree {
bPoseChannel *root; /* bone that is the root node of the chain */
- bConstraint *con; /* constraint for this chain */
- bSplineIKConstraint *ikData; /* constraint settings for this chain */
+ bConstraint *con; /* constraint for this chain */
+ bSplineIKConstraint *ik_data; /* constraint settings for this chain */
} tSplineIK_Tree;
/* ----------- */
-/* Tag the bones in the chain formed by the given bone for IK */
+/* Tag the bones in the chain formed by the given bone for IK. */
static void splineik_init_tree_from_pchan(Scene *UNUSED(scene),
Object *UNUSED(ob),
bPoseChannel *pchan_tip)
{
- bPoseChannel *pchan, *pchanRoot = NULL;
- bPoseChannel *pchanChain[255];
+ bPoseChannel *pchan, *pchan_root = NULL;
+ bPoseChannel *pchan_chain[255];
bConstraint *con = NULL;
- bSplineIKConstraint *ikData = NULL;
- float boneLengths[255];
- float totLength = 0.0f;
+ bSplineIKConstraint *ik_data = NULL;
+ float bone_lengths[255];
+ float totlength = 0.0f;
int segcount = 0;
- /* find the SplineIK constraint */
+ /* Find the SplineIK constraint. */
for (con = pchan_tip->constraints.first; con; con = con->next) {
if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
- ikData = con->data;
+ ik_data = con->data;
- /* target can only be curve */
- if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE)) {
+ /* Target can only be a curve. */
+ if ((ik_data->tar == NULL) || (ik_data->tar->type != OB_CURVE)) {
continue;
}
- /* skip if disabled */
+ /* Skip if disabled. */
if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF))) {
continue;
}
- /* otherwise, constraint is ok... */
+ /* Otherwise, constraint is ok... */
break;
}
}
@@ -104,102 +104,102 @@ static void splineik_init_tree_from_pchan(Scene *UNUSED(scene),
return;
}
- /* find the root bone and the chain of bones from the root to the tip
+ /* Find the root bone and the chain of bones from the root to the tip.
* NOTE: this assumes that the bones are connected, but that may not be true... */
- for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen);
+ for (pchan = pchan_tip; pchan && (segcount < ik_data->chainlen);
pchan = pchan->parent, segcount++) {
- /* store this segment in the chain */
- pchanChain[segcount] = pchan;
+ /* Store this segment in the chain. */
+ pchan_chain[segcount] = pchan;
- /* if performing rebinding, calculate the length of the bone */
- boneLengths[segcount] = pchan->bone->length;
- totLength += boneLengths[segcount];
+ /* If performing rebinding, calculate the length of the bone. */
+ bone_lengths[segcount] = pchan->bone->length;
+ totlength += bone_lengths[segcount];
}
if (segcount == 0) {
return;
}
- pchanRoot = pchanChain[segcount - 1];
+ pchan_root = pchan_chain[segcount - 1];
- /* perform binding step if required */
- if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
+ /* Perform binding step if required. */
+ if ((ik_data->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
float segmentLen = (1.0f / (float)segcount);
- /* setup new empty array for the points list */
- if (ikData->points) {
- MEM_freeN(ikData->points);
+ /* Setup new empty array for the points list. */
+ if (ik_data->points) {
+ MEM_freeN(ik_data->points);
}
- ikData->numpoints = ikData->chainlen + 1;
- ikData->points = MEM_mallocN(sizeof(float) * ikData->numpoints, "Spline IK Binding");
+ ik_data->numpoints = ik_data->chainlen + 1;
+ ik_data->points = MEM_mallocN(sizeof(float) * ik_data->numpoints, "Spline IK Binding");
- /* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
- ikData->points[0] = 1.0f;
+ /* Bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint). */
+ ik_data->points[0] = 1.0f;
- /* perform binding of the joints to parametric positions along the curve based
- * proportion of the total length that each bone occupies
+ /* Perform binding of the joints to parametric positions along the curve based
+ * proportion of the total length that each bone occupies.
*/
for (int i = 0; i < segcount; i++) {
- /* 'head' joints, traveling towards the root of the chain
- * - 2 methods; the one chosen depends on whether we've got usable lengths
+ /* 'head' joints, traveling towards the root of the chain.
+ * - 2 methods; the one chosen depends on whether we've got usable lengths.
*/
- if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
- /* 1) equi-spaced joints */
- ikData->points[i + 1] = ikData->points[i] - segmentLen;
+ if ((ik_data->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totlength == 0.0f)) {
+ /* 1) Equi-spaced joints. */
+ ik_data->points[i + 1] = ik_data->points[i] - segmentLen;
}
else {
- /* 2) to find this point on the curve, we take a step from the previous joint
- * a distance given by the proportion that this bone takes
+ /* 2) To find this point on the curve, we take a step from the previous joint
+ * a distance given by the proportion that this bone takes.
*/
- ikData->points[i + 1] = ikData->points[i] - (boneLengths[i] / totLength);
+ ik_data->points[i + 1] = ik_data->points[i] - (bone_lengths[i] / totlength);
}
}
- /* spline has now been bound */
- ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
+ /* Spline has now been bound. */
+ ik_data->flag |= CONSTRAINT_SPLINEIK_BOUND;
}
- /* disallow negative values (happens with float precision) */
- CLAMP_MIN(ikData->points[segcount], 0.0f);
+ /* Disallow negative values (happens with float precision). */
+ CLAMP_MIN(ik_data->points[segcount], 0.0f);
- /* make a new Spline-IK chain, and store it in the IK chains */
+ /* Make a new Spline-IK chain, and store it in the IK chains. */
/* TODO: we should check if there is already an IK chain on this,
* since that would take precedence... */
{
- /* make new tree */
+ /* Make a new tree. */
tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
tree->type = CONSTRAINT_TYPE_SPLINEIK;
tree->chainlen = segcount;
- tree->totlength = totLength;
+ tree->totlength = totlength;
- /* copy over the array of links to bones in the chain (from tip to root) */
+ /* Copy over the array of links to bones in the chain (from tip to root). */
tree->chain = MEM_mallocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
- memcpy(tree->chain, pchanChain, sizeof(bPoseChannel *) * segcount);
+ memcpy(tree->chain, pchan_chain, sizeof(bPoseChannel *) * segcount);
- /* store reference to joint position array */
- tree->points = ikData->points;
+ /* Store reference to joint position array. */
+ tree->points = ik_data->points;
- /* store references to different parts of the chain */
- tree->root = pchanRoot;
+ /* Store references to different parts of the chain. */
+ tree->root = pchan_root;
tree->con = con;
- tree->ikData = ikData;
+ tree->ik_data = ik_data;
- /* AND! link the tree to the root */
- BLI_addtail(&pchanRoot->siktree, tree);
+ /* AND! Link the tree to the root. */
+ BLI_addtail(&pchan_root->siktree, tree);
}
- /* mark root channel having an IK tree */
- pchanRoot->flag |= POSE_IKSPLINE;
+ /* Mark root channel having an IK tree. */
+ pchan_root->flag |= POSE_IKSPLINE;
}
-/* Tag which bones are members of Spline IK chains */
+/* Tag which bones are members of Spline IK chains. */
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
{
bPoseChannel *pchan;
- /* find the tips of Spline IK chains,
- * which are simply the bones which have been tagged as such */
+ /* Find the tips of Spline IK chains,
+ * which are simply the bones which have been tagged as such. */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->constflag & PCHAN_HAS_SPLINEIK) {
splineik_init_tree_from_pchan(scene, ob, pchan);
@@ -213,21 +213,24 @@ typedef struct tSplineIk_EvalState {
float curve_position; /* Current position along the curve. */
float curve_scale; /* Global scale to apply to curve positions. */
float locrot_offset[4][4]; /* Bone rotation and location offset inherited from parent. */
+ float prev_tail_loc[3]; /* Tail location of the previous bone. */
+ float prev_tail_radius; /* Tail curve radius of the previous bone. */
+ int prev_tail_seg_idx; /* Curve segment the previous tail bone belongs to. */
} tSplineIk_EvalState;
/* Prepare data to evaluate spline IK. */
static bool splineik_evaluate_init(tSplineIK_Tree *tree, tSplineIk_EvalState *state)
{
- bSplineIKConstraint *ikData = tree->ikData;
+ bSplineIKConstraint *ik_data = tree->ik_data;
/* Make sure that the constraint targets are ok, to avoid crashes
* in case of a depsgraph bug or dependency cycle.
*/
- if (ikData->tar == NULL) {
+ if (ik_data->tar == NULL) {
return false;
}
- CurveCache *cache = ikData->tar->runtime.curve_cache;
+ CurveCache *cache = ik_data->tar->runtime.curve_cache;
if (ELEM(NULL, cache, cache->anim_path_accum_length)) {
return false;
@@ -237,97 +240,249 @@ static bool splineik_evaluate_init(tSplineIK_Tree *tree, tSplineIk_EvalState *st
state->curve_position = 0.0f;
state->curve_scale = 1.0f;
unit_m4(state->locrot_offset);
+ zero_v3(state->prev_tail_loc);
+ state->prev_tail_radius = 1.0f;
+ state->prev_tail_seg_idx = 0;
/* Apply corrections for sensitivity to scaling. */
- if ((ikData->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) && (tree->totlength != 0.0f)) {
- /* get the current length of the curve */
- /* NOTE: this is assumed to be correct even after the curve was resized */
- const float splineLen = BKE_anim_path_get_length(cache);
+ if ((ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) && (tree->totlength != 0.0f)) {
+ /* Get the current length of the curve. */
+ /* NOTE: This is assumed to be correct even after the curve was resized. */
+ const float spline_len = BKE_anim_path_get_length(cache);
- /* calculate the scale factor to multiply all the path values by so that the
- * bone chain retains its current length, such that
+ /* Calculate the scale factor to multiply all the path values by so that the
+ * bone chain retains its current length, such that:
* maxScale * splineLen = totLength
*/
- state->curve_scale = tree->totlength / splineLen;
+ state->curve_scale = tree->totlength / spline_len;
}
return true;
}
+static void apply_curve_transform(
+ bSplineIKConstraint *ik_data, Object *ob, float radius, float r_vec[3], float *r_radius)
+{
+ /* Apply the curve's object-mode transforms to the position
+ * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root).
+ */
+ if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0) {
+ mul_m4_v3(ik_data->tar->obmat, r_vec);
+ }
+
+ /* Convert the position to pose-space. */
+ mul_m4_v3(ob->imat, r_vec);
+
+ /* Set the new radius (it should be the average value). */
+ *r_radius = (radius + *r_radius) / 2;
+}
+
+/* This function positions the tail of the bone so that it preserves the length of it.
+ * The length of the bone can be seen as a sphere radius.
+ */
+static int position_tail_on_spline(bSplineIKConstraint *ik_data,
+ const float head_pos[3],
+ const float sphere_radius,
+ const int prev_seg_idx,
+ float r_tail_pos[3],
+ float *r_new_curve_pos,
+ float *r_radius)
+{
+ /* This is using the tesselated curve data.
+ * So we are working with piecewise linear curve segements.
+ * The same method is use in `BKE_where_on_path` to get curve location data.
+ */
+ const CurveCache *cache = ik_data->tar->runtime.curve_cache;
+ const BevList *bl = cache->bev.first;
+ BevPoint *bp = bl->bevpoints;
+ const float spline_len = BKE_anim_path_get_length(cache);
+ const float *seg_accum_len = cache->anim_path_accum_length;
+
+ int max_seg_idx = BKE_anim_path_get_array_size(cache) - 1;
+
+ /* Convert our initial intersection point guess to a point index.
+ * If the curve was a straight line, then pointEnd would be the correct location.
+ * So make it our first initial guess.
+ */
+ const float guessed_len = *r_new_curve_pos * spline_len;
+
+ BLI_assert(prev_seg_idx >= 0);
+
+ int cur_seg_idx = prev_seg_idx;
+ while (cur_seg_idx < max_seg_idx && guessed_len > seg_accum_len[cur_seg_idx]) {
+ cur_seg_idx++;
+ }
+
+ int bp_idx = cur_seg_idx + 1;
+
+ bp = bp + bp_idx;
+ bool is_cyclic = bl->poly >= 0;
+ BevPoint *prev_bp = bp - 1;
+
+ /* Go to the next tesselated curve point until we cross to outside of the sphere. */
+ while (len_v3v3(head_pos, bp->vec) < sphere_radius) {
+ if (bp_idx > max_seg_idx) {
+ /* We are outside the defined curve. We will now extrapolate the intersection point. */
+ break;
+ }
+ prev_bp = bp;
+ if (is_cyclic && bp_idx == max_seg_idx) {
+ /* Wrap around to the start point.
+ * Don't set the bp_idx to zero here as we use it to get the segment index later.
+ */
+ bp = bl->bevpoints;
+ }
+ else {
+ bp++;
+ }
+ bp_idx++;
+ }
+
+ float isect_1[3], isect_2[3];
+
+ /* Calculate the intersection point. */
+ isect_line_sphere_v3(prev_bp->vec, bp->vec, head_pos, sphere_radius, isect_1, isect_2);
+
+ /* Because of how `isect_line_sphere_v3` works, we know that `isect_1` contains the
+ * intersection point we want. And it will always intersect as we go from inside to outside
+ * of the sphere.
+ */
+ copy_v3_v3(r_tail_pos, isect_1);
+
+ cur_seg_idx = bp_idx - 2;
+ float prev_seg_len = 0;
+
+ if (cur_seg_idx < 0) {
+ cur_seg_idx = 0;
+ prev_seg_len = 0;
+ }
+ else {
+ prev_seg_len = seg_accum_len[cur_seg_idx];
+ }
+
+ /* Convert the point back into the 0-1 interpolation range. */
+ const float isect_seg_len = len_v3v3(prev_bp->vec, isect_1);
+ const float frac = isect_seg_len / len_v3v3(prev_bp->vec, bp->vec);
+ *r_new_curve_pos = (prev_seg_len + isect_seg_len) / spline_len;
+
+ if (*r_new_curve_pos > 1.0f) {
+ *r_radius = bp->radius;
+ }
+ else {
+ *r_radius = (1.0f - frac) * prev_bp->radius + frac * bp->radius;
+ }
+
+ return cur_seg_idx;
+}
+
/* Evaluate spline IK for a given bone. */
static void splineik_evaluate_bone(
tSplineIK_Tree *tree, Object *ob, bPoseChannel *pchan, int index, tSplineIk_EvalState *state)
{
- bSplineIKConstraint *ikData = tree->ikData;
- float origHead[3], origTail[3], poseHead[3], poseTail[3], basePoseMat[3][3], poseMat[3][3];
- float splineVec[3], scaleFac, radius = 1.0f;
- float tailBlendFac = 0.0f;
+ bSplineIKConstraint *ik_data = tree->ik_data;
+
+ if (pchan->bone->length == 0.0f) {
+ /* Only move the bone position with zero length bones. */
+ float bone_pos[4], dir[3], rad;
+ BKE_where_on_path(ik_data->tar, state->curve_position, bone_pos, dir, NULL, &rad, NULL);
+
+ apply_curve_transform(ik_data, ob, rad, bone_pos, &rad);
+
+ copy_v3_v3(pchan->pose_mat[3], bone_pos);
+ copy_v3_v3(pchan->pose_head, bone_pos);
+ copy_v3_v3(pchan->pose_tail, bone_pos);
+ pchan->flag |= POSE_DONE;
+ return;
+ }
- mul_v3_m4v3(poseHead, state->locrot_offset, pchan->pose_head);
- mul_v3_m4v3(poseTail, state->locrot_offset, pchan->pose_tail);
+ float orig_head[3], orig_tail[3], pose_head[3], pose_tail[3];
+ float base_pose_mat[3][3], pose_mat[3][3];
+ float spline_vec[3], scale_fac, radius = 1.0f;
+ float tail_blend_fac = 0.0f;
- copy_v3_v3(origHead, poseHead);
+ mul_v3_m4v3(pose_head, state->locrot_offset, pchan->pose_head);
+ mul_v3_m4v3(pose_tail, state->locrot_offset, pchan->pose_tail);
- /* first, adjust the point positions on the curve */
+ copy_v3_v3(orig_head, pose_head);
+
+ /* First, adjust the point positions on the curve. */
float curveLen = tree->points[index] - tree->points[index + 1];
- float pointStart = state->curve_position;
- float poseScale = len_v3v3(poseHead, poseTail) / pchan->bone->length;
- float baseScale = 1.0f;
+ float bone_len = len_v3v3(pose_head, pose_tail);
+ float point_start = state->curve_position;
+ float pose_scale = bone_len / pchan->bone->length;
+ float base_scale = 1.0f;
- if (ikData->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
+ if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
/* Carry over the bone Y scale to the curve range. */
- baseScale = poseScale;
+ base_scale = pose_scale;
}
- float pointEnd = pointStart + curveLen * baseScale * state->curve_scale;
+ float point_end = point_start + curveLen * base_scale * state->curve_scale;
- state->curve_position = pointEnd;
+ state->curve_position = point_end;
- /* step 1: determine the positions for the endpoints of the bone */
- if (pointStart < 1.0f) {
+ /* Step 1: determine the positions for the endpoints of the bone. */
+ if (point_start < 1.0f) {
float vec[4], dir[3], rad;
+ radius = 0.0f;
- /* determine if the bone should still be affected by SplineIK */
- if (pointEnd >= 1.0f) {
- /* blending factor depends on the amount of the bone still left on the chain */
- tailBlendFac = (1.0f - pointStart) / (pointEnd - pointStart);
+ /* Calculate head position. */
+ if (point_start == 0.0f) {
+ /* Start of the path. We have no previous tail position to copy. */
+ BKE_where_on_path(ik_data->tar, point_start, vec, dir, NULL, &rad, NULL);
}
else {
- tailBlendFac = 1.0f;
+ copy_v3_v3(vec, state->prev_tail_loc);
+ rad = state->prev_tail_radius;
}
- /* tail endpoint */
- if (BKE_where_on_path(ikData->tar, pointEnd, vec, dir, NULL, &rad, NULL)) {
- /* apply curve's object-mode transforms to the position
- * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
- */
- if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0) {
- mul_m4_v3(ikData->tar->obmat, vec);
+ radius = rad;
+ copy_v3_v3(pose_head, vec);
+ apply_curve_transform(ik_data, ob, rad, pose_head, &radius);
+
+ /* Calculate tail position. */
+ if (ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) {
+ float sphere_radius;
+
+ if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
+ sphere_radius = bone_len;
+ }
+ else {
+ /* Don't take bone scale into account. */
+ sphere_radius = pchan->bone->length;
}
- /* convert the position to pose-space, then store it */
- mul_m4_v3(ob->imat, vec);
- copy_v3_v3(poseTail, vec);
+ /* Calculate the tail position with sphere curve intersection. */
+ state->prev_tail_seg_idx = position_tail_on_spline(
+ ik_data, vec, sphere_radius, state->prev_tail_seg_idx, pose_tail, &point_end, &rad);
- /* set the new radius */
- radius = rad;
- }
+ state->prev_tail_radius = rad;
+ copy_v3_v3(state->prev_tail_loc, pose_tail);
- /* head endpoint */
- if (BKE_where_on_path(ikData->tar, pointStart, vec, dir, NULL, &rad, NULL)) {
- /* apply curve's object-mode transforms to the position
- * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
- */
- if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0) {
- mul_m4_v3(ikData->tar->obmat, vec);
+ apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
+ state->curve_position = point_end;
+ }
+ else {
+ /* Scale to fit curve end position. */
+ if (BKE_where_on_path(ik_data->tar, point_end, vec, dir, NULL, &rad, NULL)) {
+ state->prev_tail_radius = rad;
+ copy_v3_v3(state->prev_tail_loc, vec);
+ copy_v3_v3(pose_tail, vec);
+ apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
}
+ }
- /* store the position, and convert it to pose space */
- mul_m4_v3(ob->imat, vec);
- copy_v3_v3(poseHead, vec);
-
- /* set the new radius (it should be the average value) */
- radius = (radius + rad) / 2;
+ /* Determine if the bone should still be affected by SplineIK.
+ * This makes it so that the bone slowly becomes poseable again the further it rolls off the
+ * curve. When the whole bone has rolled off the curve, the IK contraint will not influence it
+ * anymore.
+ */
+ if (point_end >= 1.0f) {
+ /* Blending factor depends on the amount of the bone still left on the chain. */
+ tail_blend_fac = (1.0f - point_start) / (point_end - point_start);
+ }
+ else {
+ tail_blend_fac = 1.0f;
}
}
@@ -335,11 +490,8 @@ static void splineik_evaluate_bone(
* - splineVec: the vector direction that the spline applies on the bone.
* - scaleFac: the factor that the bone length is scaled by to get the desired amount.
*/
- sub_v3_v3v3(splineVec, poseTail, poseHead);
- scaleFac = len_v3(splineVec) / pchan->bone->length;
-
- /* Extrapolate the full length of the bone as it rolls off the end of the curve. */
- scaleFac = (tailBlendFac < 1e-5f) ? baseScale : scaleFac / tailBlendFac;
+ sub_v3_v3v3(spline_vec, pose_tail, pose_head);
+ scale_fac = len_v3(spline_vec) / pchan->bone->length;
/* Step 3: compute the shortest rotation needed
* to map from the bone rotation to the current axis.
@@ -350,83 +502,83 @@ static void splineik_evaluate_bone(
float dmat[3][3], rmat[3][3];
float raxis[3], rangle;
- /* compute the raw rotation matrix from the bone's current matrix by extracting only the
- * orientation-relevant axes, and normalizing them
+ /* Compute the raw rotation matrix from the bone's current matrix by extracting only the
+ * orientation-relevant axes, and normalizing them.
*/
- mul_m3_m4m4(basePoseMat, state->locrot_offset, pchan->pose_mat);
- normalize_m3_m3(rmat, basePoseMat);
+ mul_m3_m4m4(base_pose_mat, state->locrot_offset, pchan->pose_mat);
+ normalize_m3_m3(rmat, base_pose_mat);
/* Also, normalize the orientation imposed by the bone,
* now that we've extracted the scale factor. */
- normalize_v3(splineVec);
+ normalize_v3(spline_vec);
- /* calculate smallest axis-angle rotation necessary for getting from the
- * current orientation of the bone, to the spline-imposed direction
+ /* Calculate smallest axis-angle rotation necessary for getting from the
+ * current orientation of the bone, to the spline-imposed direction.
*/
- cross_v3_v3v3(raxis, rmat[1], splineVec);
+ cross_v3_v3v3(raxis, rmat[1], spline_vec);
- rangle = dot_v3v3(rmat[1], splineVec);
+ rangle = dot_v3v3(rmat[1], spline_vec);
CLAMP(rangle, -1.0f, 1.0f);
rangle = acosf(rangle);
- /* multiply the magnitude of the angle by the influence of the constraint to
- * control the influence of the SplineIK effect
+ /* Multiply the magnitude of the angle by the influence of the constraint to
+ * control the influence of the SplineIK effect.
*/
- rangle *= tree->con->enforce * tailBlendFac;
+ rangle *= tree->con->enforce * tail_blend_fac;
- /* construct rotation matrix from the axis-angle rotation found above
- * - this call takes care to make sure that the axis provided is a unit vector first
+ /* Construct rotation matrix from the axis-angle rotation found above.
+ * - This call takes care to make sure that the axis provided is a unit vector first.
*/
axis_angle_to_mat3(dmat, raxis, rangle);
/* Combine these rotations so that the y-axis of the bone is now aligned as the
* spline dictates, while still maintaining roll control from the existing bone animation. */
- mul_m3_m3m3(poseMat, dmat, rmat);
+ mul_m3_m3m3(pose_mat, dmat, rmat);
- /* attempt to reduce shearing, though I doubt this'll really help too much now... */
- normalize_m3(poseMat);
+ /* Attempt to reduce shearing, though I doubt this'll really help too much now... */
+ normalize_m3(pose_mat);
- mul_m3_m3m3(basePoseMat, dmat, basePoseMat);
+ mul_m3_m3m3(base_pose_mat, dmat, base_pose_mat);
- /* apply rotation to the accumulated parent transform */
+ /* Apply rotation to the accumulated parent transform. */
mul_m4_m3m4(state->locrot_offset, dmat, state->locrot_offset);
}
- /* step 4: set the scaling factors for the axes */
+ /* Step 4: Set the scaling factors for the axes. */
/* Always multiply the y-axis by the scaling factor to get the correct length. */
- mul_v3_fl(poseMat[1], scaleFac);
+ mul_v3_fl(pose_mat[1], scale_fac);
/* After that, apply x/z scaling modes. */
- if (ikData->xzScaleMode != CONSTRAINT_SPLINEIK_XZS_NONE) {
+ if (ik_data->xzScaleMode != CONSTRAINT_SPLINEIK_XZS_NONE) {
/* First, apply the original scale if enabled. */
- if (ikData->xzScaleMode == CONSTRAINT_SPLINEIK_XZS_ORIGINAL ||
- (ikData->flag & CONSTRAINT_SPLINEIK_USE_ORIGINAL_SCALE) != 0) {
+ if (ik_data->xzScaleMode == CONSTRAINT_SPLINEIK_XZS_ORIGINAL ||
+ (ik_data->flag & CONSTRAINT_SPLINEIK_USE_ORIGINAL_SCALE) != 0) {
float scale;
- /* x-axis scale */
+ /* X-axis scale. */
scale = len_v3(pchan->pose_mat[0]);
- mul_v3_fl(poseMat[0], scale);
- /* z-axis scale */
+ mul_v3_fl(pose_mat[0], scale);
+ /* Z-axis scale. */
scale = len_v3(pchan->pose_mat[2]);
- mul_v3_fl(poseMat[2], scale);
+ mul_v3_fl(pose_mat[2], scale);
/* Adjust the scale factor used for volume preservation
* to consider the pre-IK scaling as the initial volume. */
- scaleFac /= poseScale;
+ scale_fac /= pose_scale;
}
/* Apply volume preservation. */
- switch (ikData->xzScaleMode) {
+ switch (ik_data->xzScaleMode) {
case CONSTRAINT_SPLINEIK_XZS_INVERSE: {
- /* old 'volume preservation' method using the inverse scale */
+ /* Old 'volume preservation' method using the inverse scale. */
float scale;
- /* calculate volume preservation factor which is
- * basically the inverse of the y-scaling factor
+ /* Calculate volume preservation factor which is
+ * basically the inverse of the y-scaling factor.
*/
- if (fabsf(scaleFac) != 0.0f) {
- scale = 1.0f / fabsf(scaleFac);
+ if (fabsf(scale_fac) != 0.0f) {
+ scale = 1.0f / fabsf(scale_fac);
/* We need to clamp this within sensible values. */
/* NOTE: these should be fine for now, but should get sanitized in future. */
@@ -436,56 +588,56 @@ static void splineik_evaluate_bone(
scale = 1.0f;
}
- /* apply the scaling */
- mul_v3_fl(poseMat[0], scale);
- mul_v3_fl(poseMat[2], scale);
+ /* Apply the scaling. */
+ mul_v3_fl(pose_mat[0], scale);
+ mul_v3_fl(pose_mat[2], scale);
break;
}
case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC: {
- /* improved volume preservation based on the Stretch To constraint */
+ /* Improved volume preservation based on the Stretch To constraint. */
float final_scale;
- /* as the basis for volume preservation, we use the inverse scale factor... */
- if (fabsf(scaleFac) != 0.0f) {
- /* NOTE: The method here is taken wholesale from the Stretch To constraint */
- float bulge = powf(1.0f / fabsf(scaleFac), ikData->bulge);
+ /* As the basis for volume preservation, we use the inverse scale factor... */
+ if (fabsf(scale_fac) != 0.0f) {
+ /* NOTE: The method here is taken wholesale from the Stretch To constraint. */
+ float bulge = powf(1.0f / fabsf(scale_fac), ik_data->bulge);
if (bulge > 1.0f) {
- if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
- float bulge_max = max_ff(ikData->bulge_max, 1.0f);
+ if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
+ float bulge_max = max_ff(ik_data->bulge_max, 1.0f);
float hard = min_ff(bulge, bulge_max);
float range = bulge_max - 1.0f;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / (float)M_PI_2;
- bulge = interpf(soft, hard, ikData->bulge_smooth);
+ bulge = interpf(soft, hard, ik_data->bulge_smooth);
}
}
if (bulge < 1.0f) {
- if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
- float bulge_min = CLAMPIS(ikData->bulge_min, 0.0f, 1.0f);
+ if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
+ float bulge_min = CLAMPIS(ik_data->bulge_min, 0.0f, 1.0f);
float hard = max_ff(bulge, bulge_min);
float range = 1.0f - bulge_min;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / (float)M_PI_2;
- bulge = interpf(soft, hard, ikData->bulge_smooth);
+ bulge = interpf(soft, hard, ik_data->bulge_smooth);
}
}
- /* compute scale factor for xz axes from this value */
+ /* Compute scale factor for xz axes from this value. */
final_scale = sqrtf(bulge);
}
else {
- /* no scaling, so scale factor is simple */
+ /* No scaling, so scale factor is simple. */
final_scale = 1.0f;
}
/* Apply the scaling (assuming normalized scale). */
- mul_v3_fl(poseMat[0], final_scale);
- mul_v3_fl(poseMat[2], final_scale);
+ mul_v3_fl(pose_mat[0], final_scale);
+ mul_v3_fl(pose_mat[2], final_scale);
break;
}
}
@@ -494,49 +646,49 @@ static void splineik_evaluate_bone(
/* Finally, multiply the x and z scaling by the radius of the curve too,
* to allow automatic scales to get tweaked still.
*/
- if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
- mul_v3_fl(poseMat[0], radius);
- mul_v3_fl(poseMat[2], radius);
+ if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
+ mul_v3_fl(pose_mat[0], radius);
+ mul_v3_fl(pose_mat[2], radius);
}
/* Blend the scaling of the matrix according to the influence. */
- sub_m3_m3m3(poseMat, poseMat, basePoseMat);
- madd_m3_m3m3fl(poseMat, basePoseMat, poseMat, tree->con->enforce * tailBlendFac);
+ sub_m3_m3m3(pose_mat, pose_mat, base_pose_mat);
+ madd_m3_m3m3fl(pose_mat, base_pose_mat, pose_mat, tree->con->enforce * tail_blend_fac);
- /* step 5: set the location of the bone in the matrix */
- if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
- /* when the 'no-root' option is affected, the chain can retain
- * the shape but be moved elsewhere
+ /* Step 5: Set the location of the bone in the matrix. */
+ if (ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
+ /* When the 'no-root' option is affected, the chain can retain
+ * the shape but be moved elsewhere.
*/
- copy_v3_v3(poseHead, origHead);
+ copy_v3_v3(pose_head, orig_head);
}
else if (tree->con->enforce < 1.0f) {
- /* when the influence is too low
- * - blend the positions for the 'root' bone
- * - stick to the parent for any other
+ /* When the influence is too low:
+ * - Blend the positions for the 'root' bone.
+ * - Stick to the parent for any other.
*/
if (index < tree->chainlen - 1) {
- copy_v3_v3(poseHead, origHead);
+ copy_v3_v3(pose_head, orig_head);
}
else {
- interp_v3_v3v3(poseHead, origHead, poseHead, tree->con->enforce);
+ interp_v3_v3v3(pose_head, orig_head, pose_head, tree->con->enforce);
}
}
- /* finally, store the new transform */
- copy_m4_m3(pchan->pose_mat, poseMat);
- copy_v3_v3(pchan->pose_mat[3], poseHead);
- copy_v3_v3(pchan->pose_head, poseHead);
+ /* Finally, store the new transform. */
+ copy_m4_m3(pchan->pose_mat, pose_mat);
+ copy_v3_v3(pchan->pose_mat[3], pose_head);
+ copy_v3_v3(pchan->pose_head, pose_head);
- mul_v3_mat3_m4v3(origTail, state->locrot_offset, pchan->pose_tail);
+ mul_v3_mat3_m4v3(orig_tail, state->locrot_offset, pchan->pose_tail);
- /* recalculate tail, as it's now outdated after the head gets adjusted above! */
+ /* Recalculate tail, as it's now outdated after the head gets adjusted above! */
BKE_pose_where_is_bone_tail(pchan);
- /* update the offset in the accumulated parent transform */
- sub_v3_v3v3(state->locrot_offset[3], pchan->pose_tail, origTail);
+ /* Update the offset in the accumulated parent transform. */
+ sub_v3_v3v3(state->locrot_offset[3], pchan->pose_tail, orig_tail);
- /* done! */
+ /* Done! */
pchan->flag |= POSE_DONE;
}
@@ -559,8 +711,8 @@ static void splineik_execute_tree(
if (splineik_evaluate_init(tree, &state)) {
/* Walk over each bone in the chain, calculating the effects of spline IK
- * - the chain is traversed in the opposite order to storage order (i.e. parent to children)
- * so that dependencies are correct
+ * - the chain is traversed in the opposite order to storage order
+ * (i.e. parent to children) so that dependencies are correct
*/
for (int i = tree->chainlen - 1; i >= 0; i--) {
bPoseChannel *pchan = tree->chain[i];