Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--intern/cycles/blender/blender_shader.cpp9
-rw-r--r--intern/cycles/kernel/CMakeLists.txt2
-rw-r--r--intern/cycles/kernel/closure/bsdf.h29
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet_multi.h472
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h220
-rw-r--r--intern/cycles/kernel/closure/bsdf_util.h4
-rw-r--r--intern/cycles/kernel/kernel_bake.h15
-rw-r--r--intern/cycles/kernel/kernel_emission.h2
-rw-r--r--intern/cycles/kernel/kernel_path.h4
-rw-r--r--intern/cycles/kernel/kernel_path_branched.h2
-rw-r--r--intern/cycles/kernel/kernel_shader.h17
-rw-r--r--intern/cycles/kernel/kernel_shadow.h4
-rw-r--r--intern/cycles/kernel/kernel_subsurface.h2
-rw-r--r--intern/cycles/kernel/kernel_types.h62
-rw-r--r--intern/cycles/kernel/osl/osl_closures.cpp130
-rw-r--r--intern/cycles/kernel/osl/osl_closures.h6
-rw-r--r--intern/cycles/kernel/osl/osl_shader.cpp8
-rw-r--r--intern/cycles/kernel/shaders/node_anisotropic_bsdf.osl2
-rw-r--r--intern/cycles/kernel/shaders/node_glass_bsdf.osl2
-rw-r--r--intern/cycles/kernel/shaders/node_glossy_bsdf.osl2
-rw-r--r--intern/cycles/kernel/shaders/stdosl.h3
-rw-r--r--intern/cycles/kernel/split/kernel_shader_eval.h2
-rw-r--r--intern/cycles/kernel/svm/svm_closure.h47
-rw-r--r--intern/cycles/kernel/svm/svm_types.h3
-rw-r--r--intern/cycles/render/nodes.cpp12
-rw-r--r--intern/cycles/util/util_math.h14
-rw-r--r--source/blender/makesdna/DNA_node_types.h3
-rw-r--r--source/blender/makesrna/intern/rna_nodetree.c21
-rw-r--r--source/blender/nodes/NOD_static_types.h2
29 files changed, 1045 insertions, 56 deletions
diff --git a/intern/cycles/blender/blender_shader.cpp b/intern/cycles/blender/blender_shader.cpp
index 78a28b7feed..7ca23f23cb4 100644
--- a/intern/cycles/blender/blender_shader.cpp
+++ b/intern/cycles/blender/blender_shader.cpp
@@ -393,6 +393,9 @@ static ShaderNode *add_node(Scene *scene,
case BL::ShaderNodeBsdfAnisotropic::distribution_GGX:
aniso->distribution = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
break;
+ case BL::ShaderNodeBsdfAnisotropic::distribution_MULTI_GGX:
+ aniso->distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID;
+ break;
case BL::ShaderNodeBsdfAnisotropic::distribution_ASHIKHMIN_SHIRLEY:
aniso->distribution = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID;
break;
@@ -439,6 +442,9 @@ static ShaderNode *add_node(Scene *scene,
case BL::ShaderNodeBsdfGlossy::distribution_ASHIKHMIN_SHIRLEY:
glossy->distribution = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID;
break;
+ case BL::ShaderNodeBsdfGlossy::distribution_MULTI_GGX:
+ glossy->distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
+ break;
}
node = glossy;
}
@@ -455,6 +461,9 @@ static ShaderNode *add_node(Scene *scene,
case BL::ShaderNodeBsdfGlass::distribution_GGX:
glass->distribution = CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID;
break;
+ case BL::ShaderNodeBsdfGlass::distribution_MULTI_GGX:
+ glass->distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
+ break;
}
node = glass;
}
diff --git a/intern/cycles/kernel/CMakeLists.txt b/intern/cycles/kernel/CMakeLists.txt
index ddf12435336..f0adbc03e22 100644
--- a/intern/cycles/kernel/CMakeLists.txt
+++ b/intern/cycles/kernel/CMakeLists.txt
@@ -76,6 +76,8 @@ set(SRC_CLOSURE_HEADERS
closure/bsdf_diffuse.h
closure/bsdf_diffuse_ramp.h
closure/bsdf_microfacet.h
+ closure/bsdf_microfacet_multi.h
+ closure/bsdf_microfacet_multi_impl.h
closure/bsdf_oren_nayar.h
closure/bsdf_phong_ramp.h
closure/bsdf_reflection.h
diff --git a/intern/cycles/kernel/closure/bsdf.h b/intern/cycles/kernel/closure/bsdf.h
index f0add804c32..f318a61f3a3 100644
--- a/intern/cycles/kernel/closure/bsdf.h
+++ b/intern/cycles/kernel/closure/bsdf.h
@@ -20,6 +20,7 @@
#include "../closure/bsdf_phong_ramp.h"
#include "../closure/bsdf_diffuse_ramp.h"
#include "../closure/bsdf_microfacet.h"
+#include "../closure/bsdf_microfacet_multi.h"
#include "../closure/bsdf_reflection.h"
#include "../closure/bsdf_refraction.h"
#include "../closure/bsdf_transparent.h"
@@ -35,7 +36,7 @@
CCL_NAMESPACE_BEGIN
-ccl_device int bsdf_sample(KernelGlobals *kg, const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, differential3 *domega_in, float *pdf)
+ccl_device int bsdf_sample(KernelGlobals *kg, ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, differential3 *domega_in, float *pdf)
{
int label;
@@ -85,6 +86,14 @@ ccl_device int bsdf_sample(KernelGlobals *kg, const ShaderData *sd, const Shader
label = bsdf_microfacet_ggx_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
+ label = bsdf_microfacet_multi_ggx_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &ccl_fetch(sd, lcg_state));
+ break;
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
+ label = bsdf_microfacet_multi_ggx_glass_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &ccl_fetch(sd, lcg_state));
+ break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
@@ -130,7 +139,7 @@ ccl_device int bsdf_sample(KernelGlobals *kg, const ShaderData *sd, const Shader
return label;
}
-ccl_device float3 bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const ShaderClosure *sc, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_eval(KernelGlobals *kg, ShaderData *sd, const ShaderClosure *sc, const float3 omega_in, float *pdf)
{
float3 eval;
@@ -172,6 +181,12 @@ ccl_device float3 bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const Shade
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
break;
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
+ eval = bsdf_microfacet_multi_ggx_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ break;
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
+ eval = bsdf_microfacet_multi_ggx_glass_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
@@ -234,6 +249,12 @@ ccl_device float3 bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const Shade
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
break;
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
+ eval = bsdf_microfacet_multi_ggx_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ break;
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
+ eval = bsdf_microfacet_multi_ggx_glass_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
@@ -286,6 +307,10 @@ ccl_device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
#ifdef __SVM__
switch(sc->type) {
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
+ bsdf_microfacet_multi_ggx_blur(sc, roughness);
+ break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet_multi.h b/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
new file mode 100644
index 00000000000..21fbfa9b025
--- /dev/null
+++ b/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
@@ -0,0 +1,472 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Most of the code is based on the supplemental implementations from https://eheitzresearch.wordpress.com/240-2/. */
+
+/* === GGX Microfacet distribution functions === */
+
+/* Isotropic GGX microfacet distribution */
+ccl_device_inline float D_ggx(float3 wm, float alpha)
+{
+ wm.z *= wm.z;
+ alpha *= alpha;
+ float tmp = (1.0f - wm.z) + alpha * wm.z;
+ return alpha / max(M_PI_F * tmp*tmp, 1e-7f);
+}
+
+/* Anisotropic GGX microfacet distribution */
+ccl_device_inline float D_ggx_aniso(const float3 wm, const float2 alpha)
+{
+ float slope_x = -wm.x/alpha.x;
+ float slope_y = -wm.y/alpha.y;
+ float tmp = wm.z*wm.z + slope_x*slope_x + slope_y*slope_y;
+
+ return 1.0f / max(M_PI_F * tmp*tmp * alpha.x*alpha.y, 1e-7f);
+}
+
+/* Sample slope distribution (based on page 14 of the supplemental implementation). */
+ccl_device_inline float2 mf_sampleP22_11(const float cosI, const float2 randU)
+{
+ if(cosI > 0.9999f) {
+ const float r = sqrtf(randU.x / (1.0f - randU.x));
+ const float phi = M_2PI_F * randU.y;
+ return make_float2(r*cosf(phi), r*sinf(phi));
+ }
+
+ const float sinI = sqrtf(1.0f - cosI*cosI);
+ const float tanI = sinI/cosI;
+ const float projA = 0.5f * (cosI + 1.0f);
+ if(projA < 0.0001f)
+ return make_float2(0.0f, 0.0f);
+ const float A = 2.0f*randU.x*projA / cosI - 1.0f;
+ float tmp = A*A-1.0f;
+ if(fabsf(tmp) < 1e-7f)
+ return make_float2(0.0f, 0.0f);
+ tmp = 1.0f / tmp;
+ const float D = safe_sqrtf(tanI*tanI*tmp*tmp - (A*A-tanI*tanI)*tmp);
+
+ const float slopeX2 = tanI*tmp + D;
+ const float slopeX = (A < 0.0f || slopeX2 > 1.0f/tanI)? (tanI*tmp - D) : slopeX2;
+
+ float U2;
+ if(randU.y >= 0.5f)
+ U2 = 2.0f*(randU.y - 0.5f);
+ else
+ U2 = 2.0f*(0.5f - randU.y);
+ const float z = (U2*(U2*(U2*0.27385f-0.73369f)+0.46341f)) / (U2*(U2*(U2*0.093073f+0.309420f)-1.0f)+0.597999f);
+ const float slopeY = z * sqrtf(1.0f + slopeX*slopeX);
+
+ if(randU.y >= 0.5f)
+ return make_float2(slopeX, slopeY);
+ else
+ return make_float2(slopeX, -slopeY);
+}
+
+/* Visible normal sampling for the GGX distribution (based on page 7 of the supplemental implementation). */
+ccl_device_inline float3 mf_sample_vndf(const float3 wi, const float2 alpha, const float2 randU)
+{
+ const float3 wi_11 = normalize(make_float3(alpha.x*wi.x, alpha.y*wi.y, wi.z));
+ const float2 slope_11 = mf_sampleP22_11(wi_11.z, randU);
+
+ const float2 cossin_phi = normalize(make_float2(wi_11.x, wi_11.y));
+ const float slope_x = alpha.x*(cossin_phi.x * slope_11.x - cossin_phi.y * slope_11.y);
+ const float slope_y = alpha.y*(cossin_phi.y * slope_11.x + cossin_phi.x * slope_11.y);
+
+ kernel_assert(isfinite(slope_x));
+ return normalize(make_float3(-slope_x, -slope_y, 1.0f));
+}
+
+/* === Phase functions: Glossy, Diffuse and Glass === */
+
+/* Phase function for reflective materials, either without a fresnel term (for compatibility) or with the conductive fresnel term. */
+ccl_device_inline float3 mf_sample_phase_glossy(const float3 wi, float3 *n, float3 *k, float3 *weight, const float3 wm)
+{
+ if(n && k)
+ *weight *= fresnel_conductor(dot(wi, wm), *n, *k);
+
+ return -wi + 2.0f * wm * dot(wi, wm);
+}
+
+ccl_device_inline float3 mf_eval_phase_glossy(const float3 w, const float lambda, const float3 wo, const float2 alpha, float3 *n, float3 *k)
+{
+ if(w.z > 0.9999f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ const float3 wh = normalize(wo - w);
+ if(wh.z < 0.0f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ float pArea = (w.z < -0.9999f)? 1.0f: lambda*w.z;
+
+ const float dotW_WH = dot(-w, wh);
+ if(dotW_WH < 0.0f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ float phase = max(0.0f, dotW_WH) * 0.25f / (pArea * dotW_WH);
+ if(alpha.x == alpha.y)
+ phase *= D_ggx(wh, alpha.x);
+ else
+ phase *= D_ggx_aniso(wh, alpha);
+
+ if(n && k) {
+ /* Apply conductive fresnel term. */
+ return phase * fresnel_conductor(dotW_WH, *n, *k);
+ }
+
+ return make_float3(phase, phase, phase);
+}
+
+/* Phase function for rough lambertian diffuse surfaces. */
+ccl_device_inline float3 mf_sample_phase_diffuse(const float3 wm, const float randu, const float randv)
+{
+ float3 tm, bm;
+ make_orthonormals(wm, &tm, &bm);
+
+ float2 disk = concentric_sample_disk(randu, randv);
+ return disk.x*tm + disk.y*bm + safe_sqrtf(1.0f - disk.x*disk.x - disk.y*disk.y)*wm;
+}
+
+ccl_device_inline float3 mf_eval_phase_diffuse(const float3 w, const float3 wm)
+{
+ const float v = max(0.0f, dot(w, wm)) * M_1_PI_F;
+ return make_float3(v, v, v);
+}
+
+/* Phase function for dielectric transmissive materials, including both reflection and refraction according to the dielectric fresnel term. */
+ccl_device_inline float3 mf_sample_phase_glass(const float3 wi, const float eta, const float3 wm, const float randV, bool *outside)
+{
+ float cosI = dot(wi, wm);
+ float f = fresnel_dielectric_cos(cosI, eta);
+ if(randV < f) {
+ *outside = true;
+ return -wi + 2.0f * wm * cosI;
+ }
+ *outside = false;
+ float inv_eta = 1.0f/eta;
+ float cosT = -safe_sqrtf(1.0f - (1.0f - cosI*cosI) * inv_eta*inv_eta);
+ return normalize(wm*(cosI*inv_eta + cosT) - wi*inv_eta);
+}
+
+ccl_device_inline float3 mf_eval_phase_glass(const float3 w, const float lambda, const float3 wo, const bool wo_outside, const float2 alpha, const float eta)
+{
+ if(w.z > 0.9999f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ float pArea = (w.z < -0.9999f)? 1.0f: lambda*w.z;
+ float v;
+ if(wo_outside) {
+ const float3 wh = normalize(wo - w);
+ if(wh.z < 0.0f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ const float dotW_WH = dot(-w, wh);
+ v = fresnel_dielectric_cos(dotW_WH, eta) * max(0.0f, dotW_WH) * D_ggx(wh, alpha.x) * 0.25f / (pArea * dotW_WH);
+ }
+ else {
+ float3 wh = normalize(wo*eta - w);
+ if(wh.z < 0.0f)
+ wh = -wh;
+ const float dotW_WH = dot(-w, wh), dotWO_WH = dot(wo, wh);
+ if(dotW_WH < 0.0f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ float temp = dotW_WH + eta*dotWO_WH;
+ v = (1.0f - fresnel_dielectric_cos(dotW_WH, eta)) * max(0.0f, dotW_WH) * max(0.0f, -dotWO_WH) * D_ggx(wh, alpha.x) / (pArea * temp * temp);
+ }
+
+ return make_float3(v, v, v);
+}
+
+/* === Utility functions for the random walks === */
+
+/* Smith Lambda function for GGX (based on page 12 of the supplemental implementation). */
+ccl_device_inline float mf_lambda(const float3 w, const float2 alpha)
+{
+ if(w.z > 0.9999f)
+ return 0.0f;
+ else if(w.z < -0.9999f)
+ return -1.0f;
+
+ const float inv_wz2 = 1.0f / (w.z*w.z);
+ const float2 wa = make_float2(w.x, w.y)*alpha;
+ float v = sqrtf(1.0f + dot(wa, wa) * inv_wz2);
+ if(w.z <= 0.0f)
+ v = -v;
+
+ return 0.5f*(v - 1.0f);
+}
+
+/* Height distribution CDF (based on page 4 of the supplemental implementation). */
+ccl_device_inline float mf_invC1(const float h)
+{
+ return 2.0f * saturate(h) - 1.0f;
+}
+
+ccl_device_inline float mf_C1(const float h)
+{
+ return saturate(0.5f * (h + 1.0f));
+}
+
+/* Masking function (based on page 16 of the supplemental implementation). */
+ccl_device_inline float mf_G1(const float3 w, const float C1, const float lambda)
+{
+ if(w.z > 0.9999f)
+ return 1.0f;
+ if(w.z < 1e-5f)
+ return 0.0f;
+ return powf(C1, lambda);
+}
+
+/* Sampling from the visible height distribution (based on page 17 of the supplemental implementation). */
+ccl_device_inline bool mf_sample_height(const float3 w, float *h, float *C1, float *G1, float *lambda, const float U)
+{
+ if(w.z > 0.9999f)
+ return false;
+ if(w.z < -0.9999f) {
+ *C1 *= U;
+ *h = mf_invC1(*C1);
+ *G1 = mf_G1(w, *C1, *lambda);
+ }
+ else if(fabsf(w.z) >= 0.0001f) {
+ if(U > 1.0f - *G1)
+ return false;
+ if(*lambda >= 0.0f) {
+ *C1 = 1.0f;
+ }
+ else {
+ *C1 *= powf(1.0f-U, -1.0f / *lambda);
+ }
+ *h = mf_invC1(*C1);
+ *G1 = mf_G1(w, *C1, *lambda);
+ }
+ return true;
+}
+
+/* === PDF approximations for the different phase functions. ===
+ * As explained in bsdf_microfacet_multi_impl.h, using approximations with MIS still produces an unbiased result. */
+
+/* Approximation for the albedo of the single-scattering GGX distribution,
+ * the missing energy is then approximated as a diffuse reflection for the PDF. */
+ccl_device_inline float mf_ggx_albedo(float r)
+{
+ float albedo = 0.806495f*expf(-1.98712f*r*r) + 0.199531f;
+ albedo -= ((((((1.76741f*r - 8.43891f)*r + 15.784f)*r - 14.398f)*r + 6.45221f)*r - 1.19722f)*r + 0.027803f)*r + 0.00568739f;
+ return saturate(albedo);
+}
+
+ccl_device_inline float mf_ggx_pdf(const float3 wi, const float3 wo, const float alpha)
+{
+ return 0.25f * D_ggx(normalize(wi+wo), alpha) / ((1.0f + mf_lambda(wi, make_float2(alpha, alpha))) * wi.z) + (1.0f - mf_ggx_albedo(alpha)) * wo.z;
+}
+
+ccl_device_inline float mf_ggx_aniso_pdf(const float3 wi, const float3 wo, const float2 alpha)
+{
+ return 0.25f * D_ggx_aniso(normalize(wi+wo), alpha) / ((1.0f + mf_lambda(wi, alpha)) * wi.z) + (1.0f - mf_ggx_albedo(sqrtf(alpha.x*alpha.y))) * wo.z;
+}
+
+ccl_device_inline float mf_diffuse_pdf(const float3 wo)
+{
+ return M_1_PI_F * wo.z;
+}
+
+ccl_device_inline float mf_glass_pdf(const float3 wi, const float3 wo, const float alpha, const float eta)
+{
+ float3 wh;
+ float fresnel;
+ if(wi.z*wo.z > 0.0f) {
+ wh = normalize(wi + wo);
+ fresnel = fresnel_dielectric_cos(dot(wi, wh), eta);
+ }
+ else {
+ wh = normalize(wi + wo*eta);
+ fresnel = 1.0f - fresnel_dielectric_cos(dot(wi, wh), eta);
+ }
+ if(wh.z < 0.0f)
+ wh = -wh;
+ float3 r_wi = (wi.z < 0.0f)? -wi: wi;
+ return fresnel * max(0.0f, dot(r_wi, wh)) * D_ggx(wh, alpha) / ((1.0f + mf_lambda(r_wi, make_float2(alpha, alpha))) * r_wi.z) + fabsf(wo.z);
+}
+
+/* === Actual random walk implementations, one version of mf_eval and mf_sample per phase function. === */
+
+#define MF_NAME_JOIN(x,y) x ## _ ## y
+#define MF_NAME_EVAL(x,y) MF_NAME_JOIN(x,y)
+#define MF_FUNCTION_FULL_NAME(prefix) MF_NAME_EVAL(prefix, MF_PHASE_FUNCTION)
+
+#define MF_PHASE_FUNCTION glass
+#define MF_MULTI_GLASS
+#include "bsdf_microfacet_multi_impl.h"
+
+/* The diffuse phase function is not implemented as a node yet. */
+#if 0
+#define MF_PHASE_FUNCTION diffuse
+#define MF_MULTI_DIFFUSE
+#include "bsdf_microfacet_multi_impl.h"
+#endif
+
+#define MF_PHASE_FUNCTION glossy
+#define MF_MULTI_GLOSSY
+#include "bsdf_microfacet_multi_impl.h"
+
+ccl_device void bsdf_microfacet_multi_ggx_blur(ShaderClosure *sc, float roughness)
+{
+ sc->data0 = fmaxf(roughness, sc->data0); /* alpha_x */
+ sc->data1 = fmaxf(roughness, sc->data1); /* alpha_y */
+}
+
+/* === Closure implementations === */
+
+/* Multiscattering GGX Glossy closure */
+
+ccl_device int bsdf_microfacet_multi_ggx_common_setup(ShaderClosure *sc)
+{
+ sc->data0 = clamp(sc->data0, 1e-4f, 1.0f); /* alpha */
+ sc->data1 = clamp(sc->data1, 1e-4f, 1.0f);
+ sc->custom1 = saturate(sc->custom1); /* color */
+ sc->custom2 = saturate(sc->custom2);
+ sc->custom3 = saturate(sc->custom3);
+
+ sc->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
+
+ return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM;
+}
+
+ccl_device int bsdf_microfacet_multi_ggx_aniso_setup(ShaderClosure *sc)
+{
+ if(sc->T == make_float3(0.0f, 0.0f, 0.0f))
+ sc->T = make_float3(1.0f, 0.0f, 0.0f);
+
+ return bsdf_microfacet_multi_ggx_common_setup(sc);
+}
+
+ccl_device int bsdf_microfacet_multi_ggx_setup(ShaderClosure *sc)
+{
+ sc->data1 = sc->data0;
+
+ return bsdf_microfacet_multi_ggx_common_setup(sc);
+}
+
+ccl_device float3 bsdf_microfacet_multi_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
+ *pdf = 0.0f;
+ return make_float3(0.0f, 0.0f, 0.0f);
+}
+
+ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
+ bool is_aniso = (sc->data0 != sc->data1);
+ float3 X, Y, Z;
+ Z = sc->N;
+ if(is_aniso)
+ make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ else
+ make_orthonormals(Z, &X, &Y);
+
+ float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
+ float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
+
+ if(is_aniso)
+ *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(sc->data0, sc->data1));
+ else
+ *pdf = mf_ggx_pdf(localI, localO, sc->data0);
+ return mf_eval_glossy(localI, localO, true, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, NULL, NULL);
+}
+
+ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, uint *lcg_state)
+{
+ bool is_aniso = (sc->data0 != sc->data1);
+ float3 X, Y, Z;
+ Z = sc->N;
+ if(is_aniso)
+ make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ else
+ make_orthonormals(Z, &X, &Y);
+
+ float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
+ float3 localO;
+
+ *eval = mf_sample_glossy(localI, &localO, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, NULL, NULL);
+ if(is_aniso)
+ *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(sc->data0, sc->data1));
+ else
+ *pdf = mf_ggx_pdf(localI, localO, sc->data0);
+ *eval *= *pdf;
+
+ *omega_in = X*localO.x + Y*localO.y + Z*localO.z;
+ return LABEL_REFLECT|LABEL_GLOSSY;
+}
+
+/* Multiscattering GGX Glass closure */
+
+ccl_device int bsdf_microfacet_multi_ggx_glass_setup(ShaderClosure *sc)
+{
+ sc->data0 = clamp(sc->data0, 1e-4f, 1.0f); /* alpha */
+ sc->data1 = sc->data0;
+ sc->data2 = max(0.0f, sc->data2); /* ior */
+ sc->custom1 = saturate(sc->custom1); /* color */
+ sc->custom2 = saturate(sc->custom2);
+ sc->custom3 = saturate(sc->custom3);
+
+ sc->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
+
+ return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM;
+}
+
+ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
+ float3 X, Y, Z;
+ Z = sc->N;
+ make_orthonormals(Z, &X, &Y);
+
+ float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
+ float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
+
+ *pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
+ return mf_eval_glass(localI, localO, false, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
+}
+
+ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
+ float3 X, Y, Z;
+ Z = sc->N;
+ make_orthonormals(Z, &X, &Y);
+
+ float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
+ float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
+
+ *pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
+ return mf_eval_glass(localI, localO, true, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
+}
+
+ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, uint *lcg_state)
+{
+ float3 X, Y, Z;
+ Z = sc->N;
+ make_orthonormals(Z, &X, &Y);
+
+ float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
+ float3 localO;
+
+ *eval = mf_sample_glass(localI, &localO, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
+ *pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
+ *eval *= *pdf;
+
+ *omega_in = X*localO.x + Y*localO.y + Z*localO.z;
+ if(localO.z*localI.z > 0.0f)
+ return LABEL_REFLECT|LABEL_GLOSSY;
+ else
+ return LABEL_TRANSMIT|LABEL_GLOSSY;
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h b/intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h
new file mode 100644
index 00000000000..52cb4d242d5
--- /dev/null
+++ b/intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h
@@ -0,0 +1,220 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Evaluate the BSDF from wi to wo.
+ * Evaluation is split into the analytical single-scattering BSDF and the multi-scattering BSDF,
+ * which is evaluated stochastically through a random walk. At each bounce (except for the first one),
+ * the amount of reflection from here towards wo is evaluated before bouncing again.
+ *
+ * Because of the random walk, the evaluation is not deterministic, but its expected value is equal to
+ * the correct BSDF, which is enough for Monte-Carlo rendering. The PDF also can't be determined
+ * analytically, so the single-scattering PDF plus a diffuse term to account for the multi-scattered
+ * energy is used. In combination with MIS, that is enough to produce an unbiased result, although
+ * the balance heuristic isn't necessarily optimal anymore.
+ */
+ccl_device float3 MF_FUNCTION_FULL_NAME(mf_eval)(float3 wi, float3 wo, const bool wo_outside, const float3 color, const float alpha_x, const float alpha_y, uint* lcg_state
+#ifdef MF_MULTI_GLASS
+ , const float eta
+#elif defined(MF_MULTI_GLOSSY)
+ , float3 *n, float3 *k
+#endif
+)
+{
+ /* Evaluating for a shallower incoming direction produces less noise, and the properties of the BSDF guarantee reciprocity. */
+ bool swapped = false;
+#ifdef MF_MULTI_GLASS
+ if(wi.z*wo.z < 0.0f) {
+ /* Glass transmission is a special case and requires the directions to change hemisphere. */
+ if(-wo.z < wi.z) {
+ swapped = true;
+ float3 tmp = -wo;
+ wo = -wi;
+ wi = tmp;
+ }
+ }
+ else
+#endif
+ if(wo.z < wi.z) {
+ swapped = true;
+ float3 tmp = wo;
+ wo = wi;
+ wi = tmp;
+ }
+
+ if(wi.z < 1e-5f || (wo.z < 1e-5f && wo_outside) || (wo.z > -1e-5f && !wo_outside))
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ const float2 alpha = make_float2(alpha_x, alpha_y);
+
+ float lambda_r = mf_lambda(-wi, alpha);
+ float shadowing_lambda = mf_lambda(wo_outside? wo: -wo, alpha);
+
+ /* Analytically compute single scattering for lower noise. */
+ float3 eval;
+#ifdef MF_MULTI_GLASS
+ eval = mf_eval_phase_glass(-wi, lambda_r, wo, wo_outside, alpha, eta);
+ if(wo_outside)
+ eval *= -lambda_r / (shadowing_lambda - lambda_r);
+ else
+ eval *= -lambda_r * beta(-lambda_r, shadowing_lambda+1.0f);
+#elif defined(MF_MULTI_DIFFUSE)
+ /* Diffuse has no special closed form for the single scattering bounce */
+ eval = make_float3(0.0f, 0.0f, 0.0f);
+#else /* MF_MULTI_GLOSSY */
+ const float3 wh = normalize(wi+wo);
+ const float G2 = 1.0f / (1.0f - (lambda_r + 1.0f) + shadowing_lambda);
+ float val = G2 * 0.25f / wi.z;
+ if(alpha.x == alpha.y)
+ val *= D_ggx(wh, alpha.x);
+ else
+ val *= D_ggx_aniso(wh, alpha);
+ if(n && k) {
+ eval = fresnel_conductor(dot(wh, wi), *n, *k) * val;
+ }
+ else {
+ eval = make_float3(val, val, val);
+ }
+#endif
+
+ float3 wr = -wi;
+ float hr = 1.0f;
+ float C1_r = 1.0f;
+ float G1_r = 0.0f;
+ bool outside = true;
+ float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
+
+ for(int order = 0; order < 10; order++) {
+ /* Sample microfacet height and normal */
+ if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, lcg_step_float(lcg_state)))
+ break;
+ float3 wm = mf_sample_vndf(-wr, alpha, make_float2(lcg_step_float(lcg_state), lcg_step_float(lcg_state)));
+
+#ifdef MF_MULTI_DIFFUSE
+ if(order == 0) {
+ /* Compute single-scattering for diffuse. */
+ const float G2_G1 = -lambda_r / (shadowing_lambda - lambda_r);
+ eval += throughput * G2_G1 * mf_eval_phase_diffuse(wo, wm);
+ }
+#endif
+ if(order > 0) {
+ /* Evaluate amount of scattering towards wo on this microfacet. */
+ float3 phase;
+#ifdef MF_MULTI_GLASS
+ if(outside)
+ phase = mf_eval_phase_glass(wr, lambda_r, wo, wo_outside, alpha, eta);
+ else
+ phase = mf_eval_phase_glass(wr, lambda_r, -wo, !wo_outside, alpha, 1.0f/eta);
+#elif defined(MF_MULTI_DIFFUSE)
+ phase = mf_eval_phase_diffuse(wo, wm);
+#else /* MF_MULTI_GLOSSY */
+ phase = mf_eval_phase_glossy(wr, lambda_r, wo, alpha, n, k) * throughput;
+#endif
+ eval += throughput * phase * mf_G1(wo_outside? wo: -wo, mf_C1((outside == wo_outside)? hr: -hr), shadowing_lambda);
+ }
+ if(order+1 < 10) {
+ /* Bounce from the microfacet. */
+#ifdef MF_MULTI_GLASS
+ bool next_outside;
+ wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, lcg_step_float(lcg_state), &next_outside);
+ if(!next_outside) {
+ outside = !outside;
+ wr = -wr;
+ hr = -hr;
+ }
+#elif defined(MF_MULTI_DIFFUSE)
+ wr = mf_sample_phase_diffuse(wm, lcg_step_float(lcg_state), lcg_step_float(lcg_state));
+#else /* MF_MULTI_GLOSSY */
+ wr = mf_sample_phase_glossy(-wr, n, k, &throughput, wm);
+#endif
+
+ lambda_r = mf_lambda(wr, alpha);
+
+ throughput *= color;
+
+ C1_r = mf_C1(hr);
+ G1_r = mf_G1(wr, C1_r, lambda_r);
+ }
+ }
+
+ if(swapped)
+ eval *= fabsf(wi.z / wo.z);
+ return eval;
+}
+
+/* Perform a random walk on the microsurface starting from wi, returning the direction in which the walk
+ * escaped the surface in wo. The function returns the throughput between wi and wo.
+ * Without reflection losses due to coloring or fresnel absorption in conductors, the sampling is optimal.
+ */
+ccl_device float3 MF_FUNCTION_FULL_NAME(mf_sample)(float3 wi, float3 *wo, const float3 color, const float alpha_x, const float alpha_y, uint *lcg_state
+#ifdef MF_MULTI_GLASS
+ , const float eta
+#elif defined(MF_MULTI_GLOSSY)
+ , float3 *n, float3 *k
+#endif
+)
+{
+ const float2 alpha = make_float2(alpha_x, alpha_y);
+
+ float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
+ float3 wr = -wi;
+ float lambda_r = mf_lambda(wr, alpha);
+ float hr = 1.0f;
+ float C1_r = 1.0f;
+ float G1_r = 0.0f;
+ bool outside = true;
+
+ int order;
+ for(order = 0; order < 10; order++) {
+ /* Sample microfacet height. */
+ if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, lcg_step_float(lcg_state))) {
+ /* The random walk has left the surface. */
+ *wo = outside? wr: -wr;
+ return throughput;
+ }
+ /* Sample microfacet normal. */
+ float3 wm = mf_sample_vndf(-wr, alpha, make_float2(lcg_step_float(lcg_state), lcg_step_float(lcg_state)));
+
+ /* First-bounce color is already accounted for in mix weight. */
+ if(order > 0)
+ throughput *= color;
+
+ /* Bounce from the microfacet. */
+#ifdef MF_MULTI_GLASS
+ bool next_outside;
+ wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, lcg_step_float(lcg_state), &next_outside);
+ if(!next_outside) {
+ hr = -hr;
+ wr = -wr;
+ outside = !outside;
+ }
+#elif defined(MF_MULTI_DIFFUSE)
+ wr = mf_sample_phase_diffuse(wm, lcg_step_float(lcg_state), lcg_step_float(lcg_state));
+#else /* MF_MULTI_GLOSSY */
+ wr = mf_sample_phase_glossy(-wr, n, k, &throughput, wm);
+#endif
+
+ /* Update random walk parameters. */
+ lambda_r = mf_lambda(wr, alpha);
+ G1_r = mf_G1(wr, C1_r, lambda_r);
+ }
+ *wo = make_float3(0.0f, 0.0f, 1.0f);
+ return make_float3(0.0f, 0.0f, 0.0f);
+}
+
+#undef MF_MULTI_GLASS
+#undef MF_MULTI_DIFFUSE
+#undef MF_MULTI_GLOSSY
+#undef MF_PHASE_FUNCTION
diff --git a/intern/cycles/kernel/closure/bsdf_util.h b/intern/cycles/kernel/closure/bsdf_util.h
index 05816bac2c1..89b1998d1ce 100644
--- a/intern/cycles/kernel/closure/bsdf_util.h
+++ b/intern/cycles/kernel/closure/bsdf_util.h
@@ -111,10 +111,9 @@ ccl_device float fresnel_dielectric_cos(float cosi, float eta)
return 1.0f; // TIR(no refracted component)
}
-#if 0
ccl_device float3 fresnel_conductor(float cosi, const float3 eta, const float3 k)
{
- float3 cosi2 = make_float3(cosi*cosi);
+ float3 cosi2 = make_float3(cosi*cosi, cosi*cosi, cosi*cosi);
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 tmp_f = eta * eta + k * k;
float3 tmp = tmp_f * cosi2;
@@ -124,7 +123,6 @@ ccl_device float3 fresnel_conductor(float cosi, const float3 eta, const float3 k
(tmp_f + (2.0f * eta * cosi) + cosi2);
return(Rparl2 + Rperp2) * 0.5f;
}
-#endif
ccl_device float smooth_step(float edge0, float edge1, float x)
{
diff --git a/intern/cycles/kernel/kernel_bake.h b/intern/cycles/kernel/kernel_bake.h
index 8d05befe1d4..9ee0b09529e 100644
--- a/intern/cycles/kernel/kernel_bake.h
+++ b/intern/cycles/kernel/kernel_bake.h
@@ -48,7 +48,7 @@ ccl_device void compute_light_pass(KernelGlobals *kg, ShaderData *sd, PathRadian
/* evaluate surface shader */
float rbsdf = path_state_rng_1D(kg, &rng, &state, PRNG_BSDF);
- shader_eval_surface(kg, sd, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, sd, &rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* TODO, disable the closures we won't need */
@@ -220,6 +220,7 @@ ccl_device_inline float3 kernel_bake_shader_bsdf(KernelGlobals *kg,
ccl_device float3 kernel_bake_evaluate_direct_indirect(KernelGlobals *kg,
ShaderData *sd,
+ RNG *rng,
PathState *state,
float3 direct,
float3 indirect,
@@ -239,12 +240,12 @@ ccl_device float3 kernel_bake_evaluate_direct_indirect(KernelGlobals *kg,
}
else {
/* surface color of the pass only */
- shader_eval_surface(kg, sd, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, sd, rng, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
return kernel_bake_shader_bsdf(kg, sd, type);
}
}
else {
- shader_eval_surface(kg, sd, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, sd, rng, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
color = kernel_bake_shader_bsdf(kg, sd, type);
}
@@ -336,7 +337,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
case SHADER_EVAL_NORMAL:
{
if((sd.flag & SD_HAS_BUMP)) {
- shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, &sd, &rng, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
}
/* compression: normal = (2 * color) - 1 */
@@ -350,7 +351,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
}
case SHADER_EVAL_EMISSION:
{
- shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_EMISSION);
+ shader_eval_surface(kg, &sd, &rng, &state, 0.f, 0, SHADER_CONTEXT_EMISSION);
out = shader_emissive_eval(kg, &sd);
break;
}
@@ -403,6 +404,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
+ &rng,
&state,
L.direct_diffuse,
L.indirect_diffuse,
@@ -414,6 +416,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
+ &rng,
&state,
L.direct_glossy,
L.indirect_glossy,
@@ -425,6 +428,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
+ &rng,
&state,
L.direct_transmission,
L.indirect_transmission,
@@ -437,6 +441,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
#ifdef __SUBSURFACE__
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
+ &rng,
&state,
L.direct_subsurface,
L.indirect_subsurface,
diff --git a/intern/cycles/kernel/kernel_emission.h b/intern/cycles/kernel/kernel_emission.h
index e22bcead404..149ac3ed4f9 100644
--- a/intern/cycles/kernel/kernel_emission.h
+++ b/intern/cycles/kernel/kernel_emission.h
@@ -57,7 +57,7 @@ ccl_device_noinline float3 direct_emissive_eval(KernelGlobals *kg,
/* no path flag, we're evaluating this for all closures. that's weak but
* we'd have to do multiple evaluations otherwise */
path_state_modify_bounce(state, true);
- shader_eval_surface(kg, emission_sd, state, 0.0f, 0, SHADER_CONTEXT_EMISSION);
+ shader_eval_surface(kg, emission_sd, NULL, state, 0.0f, 0, SHADER_CONTEXT_EMISSION);
path_state_modify_bounce(state, false);
/* evaluate emissive closure */
diff --git a/intern/cycles/kernel/kernel_path.h b/intern/cycles/kernel/kernel_path.h
index 0dded397ffa..3c3503eab8b 100644
--- a/intern/cycles/kernel/kernel_path.h
+++ b/intern/cycles/kernel/kernel_path.h
@@ -253,7 +253,7 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
&isect,
ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
- shader_eval_surface(kg, sd, state, rbsdf, state->flag, SHADER_CONTEXT_INDIRECT);
+ shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_INDIRECT);
#ifdef __BRANCHED_PATH__
shader_merge_closures(sd);
#endif
@@ -791,7 +791,7 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
/* setup shading */
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
- shader_eval_surface(kg, &sd, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, &sd, rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* holdout */
#ifdef __HOLDOUT__
diff --git a/intern/cycles/kernel/kernel_path_branched.h b/intern/cycles/kernel/kernel_path_branched.h
index fdba1a7b025..56516967d8f 100644
--- a/intern/cycles/kernel/kernel_path_branched.h
+++ b/intern/cycles/kernel/kernel_path_branched.h
@@ -463,7 +463,7 @@ ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, in
/* setup shading */
shader_setup_from_ray(kg, &sd, &isect, &ray);
- shader_eval_surface(kg, &sd, &state, 0.0f, state.flag, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, &sd, rng, &state, 0.0f, state.flag, SHADER_CONTEXT_MAIN);
shader_merge_closures(&sd);
/* holdout */
diff --git a/intern/cycles/kernel/kernel_shader.h b/intern/cycles/kernel/kernel_shader.h
index a0b56118ab7..3a4770f82f1 100644
--- a/intern/cycles/kernel/kernel_shader.h
+++ b/intern/cycles/kernel/kernel_shader.h
@@ -468,6 +468,9 @@ ccl_device void shader_merge_closures(ShaderData *sd)
continue;
}
+ if((sd->flag & SD_BSDF_HAS_CUSTOM) && !(sci->custom1 == scj->custom1 && sci->custom2 == scj->custom2 && sci->custom3 == scj->custom3))
+ continue;
+
sci->weight += scj->weight;
sci->sample_weight += scj->sample_weight;
@@ -488,7 +491,7 @@ ccl_device void shader_merge_closures(ShaderData *sd)
/* BSDF */
-ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, const ShaderData *sd, const float3 omega_in, float *pdf,
+ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, ShaderData *sd, const float3 omega_in, float *pdf,
int skip_bsdf, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
/* this is the veach one-sample model with balance heuristic, some pdf
@@ -517,7 +520,7 @@ ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, const ShaderDa
#ifdef __BRANCHED_PATH__
ccl_device_inline void _shader_bsdf_multi_eval_branched(KernelGlobals *kg,
- const ShaderData *sd,
+ ShaderData *sd,
const float3 omega_in,
BsdfEval *result_eval,
float light_pdf,
@@ -563,7 +566,7 @@ ccl_device void shader_bsdf_eval(KernelGlobals *kg,
}
}
-ccl_device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd,
+ccl_device int shader_bsdf_sample(KernelGlobals *kg, ShaderData *sd,
float randu, float randv, BsdfEval *bsdf_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
@@ -620,7 +623,7 @@ ccl_device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd,
return label;
}
-ccl_device int shader_bsdf_sample_closure(KernelGlobals *kg, const ShaderData *sd,
+ccl_device int shader_bsdf_sample_closure(KernelGlobals *kg, ShaderData *sd,
const ShaderClosure *sc, float randu, float randv, BsdfEval *bsdf_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
@@ -824,7 +827,7 @@ ccl_device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
/* Surface Evaluation */
-ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
+ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd, RNG *rng,
ccl_addr_space PathState *state, float randb, int path_flag, ShaderContext ctx)
{
ccl_fetch(sd, num_closure) = 0;
@@ -846,6 +849,10 @@ ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
ccl_fetch(sd, flag) |= bsdf_diffuse_setup(ccl_fetch_array(sd, closure, 0));
#endif
}
+
+ if(rng && (ccl_fetch(sd, flag) & SD_BSDF_NEEDS_LCG)) {
+ ccl_fetch(sd, lcg_state) = lcg_state_init(rng, state, 0xb4bc3953);
+ }
}
/* Background Evaluation */
diff --git a/intern/cycles/kernel/kernel_shadow.h b/intern/cycles/kernel/kernel_shadow.h
index 1abbbb2ddad..db2fc84834a 100644
--- a/intern/cycles/kernel/kernel_shadow.h
+++ b/intern/cycles/kernel/kernel_shadow.h
@@ -117,7 +117,7 @@ ccl_device_inline bool shadow_blocked(KernelGlobals *kg, ShaderData *shadow_sd,
/* attenuation from transparent surface */
if(!(shadow_sd->flag & SD_HAS_ONLY_VOLUME)) {
path_state_modify_bounce(state, true);
- shader_eval_surface(kg, shadow_sd, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
+ shader_eval_surface(kg, shadow_sd, NULL, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
path_state_modify_bounce(state, false);
throughput *= shader_bsdf_transparency(kg, shadow_sd);
@@ -252,7 +252,7 @@ ccl_device_noinline bool shadow_blocked(KernelGlobals *kg,
/* attenuation from transparent surface */
if(!(ccl_fetch(shadow_sd, flag) & SD_HAS_ONLY_VOLUME)) {
path_state_modify_bounce(state, true);
- shader_eval_surface(kg, shadow_sd, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
+ shader_eval_surface(kg, shadow_sd, NULL, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
path_state_modify_bounce(state, false);
throughput *= shader_bsdf_transparency(kg, shadow_sd);
diff --git a/intern/cycles/kernel/kernel_subsurface.h b/intern/cycles/kernel/kernel_subsurface.h
index 705b57ba6ff..b048bd38fc9 100644
--- a/intern/cycles/kernel/kernel_subsurface.h
+++ b/intern/cycles/kernel/kernel_subsurface.h
@@ -198,7 +198,7 @@ ccl_device void subsurface_color_bump_blur(KernelGlobals *kg,
if(bump || texture_blur > 0.0f) {
/* average color and normal at incoming point */
- shader_eval_surface(kg, sd, state, 0.0f, state_flag, SHADER_CONTEXT_SSS);
+ shader_eval_surface(kg, sd, NULL, state, 0.0f, state_flag, SHADER_CONTEXT_SSS);
float3 in_color = shader_bssrdf_sum(sd, (bump)? N: NULL, NULL);
/* we simply divide out the average color and multiply with the average
diff --git a/intern/cycles/kernel/kernel_types.h b/intern/cycles/kernel/kernel_types.h
index aa5eeebda7b..76d2a6b98e6 100644
--- a/intern/cycles/kernel/kernel_types.h
+++ b/intern/cycles/kernel/kernel_types.h
@@ -679,31 +679,34 @@ typedef enum ShaderContext {
enum ShaderDataFlag {
/* runtime flags */
- SD_BACKFACING = (1 << 0), /* backside of surface? */
- SD_EMISSION = (1 << 1), /* have emissive closure? */
- SD_BSDF = (1 << 2), /* have bsdf closure? */
- SD_BSDF_HAS_EVAL = (1 << 3), /* have non-singular bsdf closure? */
- SD_BSSRDF = (1 << 4), /* have bssrdf */
- SD_HOLDOUT = (1 << 5), /* have holdout closure? */
- SD_ABSORPTION = (1 << 6), /* have volume absorption closure? */
- SD_SCATTER = (1 << 7), /* have volume phase closure? */
- SD_AO = (1 << 8), /* have ao closure? */
- SD_TRANSPARENT = (1 << 9), /* have transparent closure? */
+ SD_BACKFACING = (1 << 0), /* backside of surface? */
+ SD_EMISSION = (1 << 1), /* have emissive closure? */
+ SD_BSDF = (1 << 2), /* have bsdf closure? */
+ SD_BSDF_HAS_EVAL = (1 << 3), /* have non-singular bsdf closure? */
+ SD_BSSRDF = (1 << 4), /* have bssrdf */
+ SD_HOLDOUT = (1 << 5), /* have holdout closure? */
+ SD_ABSORPTION = (1 << 6), /* have volume absorption closure? */
+ SD_SCATTER = (1 << 7), /* have volume phase closure? */
+ SD_AO = (1 << 8), /* have ao closure? */
+ SD_TRANSPARENT = (1 << 9), /* have transparent closure? */
+ SD_BSDF_NEEDS_LCG = (1 << 10),
+ SD_BSDF_HAS_CUSTOM = (1 << 11), /* are the custom variables relevant? */
SD_CLOSURE_FLAGS = (SD_EMISSION|SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF|
- SD_HOLDOUT|SD_ABSORPTION|SD_SCATTER|SD_AO),
+ SD_HOLDOUT|SD_ABSORPTION|SD_SCATTER|SD_AO|
+ SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM),
/* shader flags */
- SD_USE_MIS = (1 << 10), /* direct light sample */
- SD_HAS_TRANSPARENT_SHADOW = (1 << 11), /* has transparent shadow */
- SD_HAS_VOLUME = (1 << 12), /* has volume shader */
- SD_HAS_ONLY_VOLUME = (1 << 13), /* has only volume shader, no surface */
- SD_HETEROGENEOUS_VOLUME = (1 << 14), /* has heterogeneous volume */
- SD_HAS_BSSRDF_BUMP = (1 << 15), /* bssrdf normal uses bump */
- SD_VOLUME_EQUIANGULAR = (1 << 16), /* use equiangular sampling */
- SD_VOLUME_MIS = (1 << 17), /* use multiple importance sampling */
- SD_VOLUME_CUBIC = (1 << 18), /* use cubic interpolation for voxels */
- SD_HAS_BUMP = (1 << 19), /* has data connected to the displacement input */
+ SD_USE_MIS = (1 << 12), /* direct light sample */
+ SD_HAS_TRANSPARENT_SHADOW = (1 << 13), /* has transparent shadow */
+ SD_HAS_VOLUME = (1 << 14), /* has volume shader */
+ SD_HAS_ONLY_VOLUME = (1 << 15), /* has only volume shader, no surface */
+ SD_HETEROGENEOUS_VOLUME = (1 << 16), /* has heterogeneous volume */
+ SD_HAS_BSSRDF_BUMP = (1 << 17), /* bssrdf normal uses bump */
+ SD_VOLUME_EQUIANGULAR = (1 << 18), /* use equiangular sampling */
+ SD_VOLUME_MIS = (1 << 19), /* use multiple importance sampling */
+ SD_VOLUME_CUBIC = (1 << 20), /* use cubic interpolation for voxels */
+ SD_HAS_BUMP = (1 << 21), /* has data connected to the displacement input */
SD_SHADER_FLAGS = (SD_USE_MIS|SD_HAS_TRANSPARENT_SHADOW|SD_HAS_VOLUME|
SD_HAS_ONLY_VOLUME|SD_HETEROGENEOUS_VOLUME|
@@ -711,13 +714,13 @@ enum ShaderDataFlag {
SD_VOLUME_CUBIC|SD_HAS_BUMP),
/* object flags */
- SD_HOLDOUT_MASK = (1 << 20), /* holdout for camera rays */
- SD_OBJECT_MOTION = (1 << 21), /* has object motion blur */
- SD_TRANSFORM_APPLIED = (1 << 22), /* vertices have transform applied */
- SD_NEGATIVE_SCALE_APPLIED = (1 << 23), /* vertices have negative scale applied */
- SD_OBJECT_HAS_VOLUME = (1 << 24), /* object has a volume shader */
- SD_OBJECT_INTERSECTS_VOLUME = (1 << 25), /* object intersects AABB of an object with volume shader */
- SD_OBJECT_HAS_VERTEX_MOTION = (1 << 26), /* has position for motion vertices */
+ SD_HOLDOUT_MASK = (1 << 22), /* holdout for camera rays */
+ SD_OBJECT_MOTION = (1 << 23), /* has object motion blur */
+ SD_TRANSFORM_APPLIED = (1 << 24), /* vertices have transform applied */
+ SD_NEGATIVE_SCALE_APPLIED = (1 << 25), /* vertices have negative scale applied */
+ SD_OBJECT_HAS_VOLUME = (1 << 26), /* object has a volume shader */
+ SD_OBJECT_INTERSECTS_VOLUME = (1 << 27), /* object intersects AABB of an object with volume shader */
+ SD_OBJECT_HAS_VERTEX_MOTION = (1 << 28), /* has position for motion vertices */
SD_OBJECT_FLAGS = (SD_HOLDOUT_MASK|SD_OBJECT_MOTION|SD_TRANSFORM_APPLIED|
SD_NEGATIVE_SCALE_APPLIED|SD_OBJECT_HAS_VOLUME|
@@ -806,6 +809,9 @@ typedef ccl_addr_space struct ShaderData {
int num_closure;
float randb_closure;
+ /* LCG state for closures that require additional random numbers. */
+ uint lcg_state;
+
/* ray start position, only set for backgrounds */
float3 ray_P;
differential3 ray_dP;
diff --git a/intern/cycles/kernel/osl/osl_closures.cpp b/intern/cycles/kernel/osl/osl_closures.cpp
index 95b8cea0922..02b1491489c 100644
--- a/intern/cycles/kernel/osl/osl_closures.cpp
+++ b/intern/cycles/kernel/osl/osl_closures.cpp
@@ -44,11 +44,13 @@
#include "kernel_compat_cpu.h"
#include "kernel_globals.h"
#include "kernel_montecarlo.h"
+#include "kernel_random.h"
#include "closure/bsdf_util.h"
#include "closure/bsdf_ashikhmin_velvet.h"
#include "closure/bsdf_diffuse.h"
#include "closure/bsdf_microfacet.h"
+#include "closure/bsdf_microfacet_multi.h"
#include "closure/bsdf_oren_nayar.h"
#include "closure/bsdf_reflection.h"
#include "closure/bsdf_refraction.h"
@@ -205,6 +207,12 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
bsdf_microfacet_ggx_aniso_params(), bsdf_microfacet_ggx_aniso_prepare);
register_closure(ss, "microfacet_ggx_refraction", id++,
bsdf_microfacet_ggx_refraction_params(), bsdf_microfacet_ggx_refraction_prepare);
+ register_closure(ss, "microfacet_multi_ggx", id++,
+ closure_bsdf_microfacet_multi_ggx_params(), closure_bsdf_microfacet_multi_ggx_prepare);
+ register_closure(ss, "microfacet_multi_ggx_glass", id++,
+ closure_bsdf_microfacet_multi_ggx_glass_params(), closure_bsdf_microfacet_multi_ggx_glass_prepare);
+ register_closure(ss, "microfacet_multi_ggx_aniso", id++,
+ closure_bsdf_microfacet_multi_ggx_aniso_params(), closure_bsdf_microfacet_multi_ggx_aniso_prepare);
register_closure(ss, "microfacet_beckmann", id++,
bsdf_microfacet_beckmann_params(), bsdf_microfacet_beckmann_prepare);
register_closure(ss, "microfacet_beckmann_aniso", id++,
@@ -250,5 +258,127 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
volume_absorption_params(), volume_absorption_prepare);
}
+/* Multiscattering GGX closures */
+
+class MicrofacetMultiClosure : public CBSDFClosure {
+public:
+ float3 color;
+
+ /* Technically, the MultiGGX Glass closure may also transmit.
+ * However, since this is set statically and only used for caustic flags, this is probably as good as it gets. */
+ MicrofacetMultiClosure() : CBSDFClosure(LABEL_GLOSSY|LABEL_REFLECT)
+ {
+ }
+
+ void setup()
+ {
+ sc.prim = NULL;
+ sc.custom1 = color.x;
+ sc.custom2 = color.y;
+ sc.custom3 = color.z;
+ }
+
+ void blur(float roughness)
+ {
+ }
+
+ float3 eval_reflect(const float3 &omega_out, const float3 &omega_in, float& pdf) const
+ {
+ pdf = 0.0f;
+ return make_float3(0.0f, 0.0f, 0.0f);
+ }
+
+ float3 eval_transmit(const float3 &omega_out, const float3 &omega_in, float& pdf) const
+ {
+ pdf = 0.0f;
+ return make_float3(0.0f, 0.0f, 0.0f);
+ }
+
+ int sample(const float3 &Ng,
+ const float3 &omega_out, const float3 &domega_out_dx, const float3 &domega_out_dy,
+ float randu, float randv,
+ float3 &omega_in, float3 &domega_in_dx, float3 &domega_in_dy,
+ float &pdf, float3 &eval) const
+ {
+ pdf = 0;
+ return LABEL_NONE;
+ }
+};
+
+class MicrofacetMultiGGXClosure : public MicrofacetMultiClosure {
+public:
+ MicrofacetMultiGGXClosure() : MicrofacetMultiClosure() {}
+
+ void setup()
+ {
+ MicrofacetMultiClosure::setup();
+ m_shaderdata_flag = bsdf_microfacet_multi_ggx_setup(&sc);
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_multi_ggx_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.N),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data0),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, color),
+ CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetMultiGGXClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_prepare, MicrofacetMultiGGXClosure);
+
+class MicrofacetMultiGGXAnisoClosure : public MicrofacetMultiClosure {
+public:
+ MicrofacetMultiGGXAnisoClosure() : MicrofacetMultiClosure() {}
+
+ void setup()
+ {
+ MicrofacetMultiClosure::setup();
+ m_shaderdata_flag = bsdf_microfacet_multi_ggx_aniso_setup(&sc);
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_multi_ggx_aniso_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.N),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.T),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data0),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data1),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, color),
+ CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetMultiGGXClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_aniso_prepare, MicrofacetMultiGGXAnisoClosure);
+
+class MicrofacetMultiGGXGlassClosure : public MicrofacetMultiClosure {
+public:
+ MicrofacetMultiGGXGlassClosure() : MicrofacetMultiClosure() {}
+
+ void setup()
+ {
+ MicrofacetMultiClosure::setup();
+ m_shaderdata_flag = bsdf_microfacet_multi_ggx_glass_setup(&sc);
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.N),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data0),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data2),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, color),
+ CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetMultiGGXClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_glass_prepare, MicrofacetMultiGGXGlassClosure);
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/osl/osl_closures.h b/intern/cycles/kernel/osl/osl_closures.h
index 1578d06cd56..c5a1a29b6af 100644
--- a/intern/cycles/kernel/osl/osl_closures.h
+++ b/intern/cycles/kernel/osl/osl_closures.h
@@ -52,6 +52,9 @@ OSL::ClosureParam *closure_bssrdf_cubic_params();
OSL::ClosureParam *closure_bssrdf_gaussian_params();
OSL::ClosureParam *closure_bssrdf_burley_params();
OSL::ClosureParam *closure_henyey_greenstein_volume_params();
+OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_params();
+OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_params();
+OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_aniso_params();
void closure_emission_prepare(OSL::RendererServices *, int id, void *data);
void closure_background_prepare(OSL::RendererServices *, int id, void *data);
@@ -63,6 +66,9 @@ void closure_bssrdf_cubic_prepare(OSL::RendererServices *, int id, void *data);
void closure_bssrdf_gaussian_prepare(OSL::RendererServices *, int id, void *data);
void closure_bssrdf_burley_prepare(OSL::RendererServices *, int id, void *data);
void closure_henyey_greenstein_volume_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_multi_ggx_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_multi_ggx_glass_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_multi_ggx_aniso_prepare(OSL::RendererServices *, int id, void *data);
#define CCLOSURE_PREPARE(name, classname) \
void name(RendererServices *, int id, void *data) \
diff --git a/intern/cycles/kernel/osl/osl_shader.cpp b/intern/cycles/kernel/osl/osl_shader.cpp
index f58368e6789..6cde7419e10 100644
--- a/intern/cycles/kernel/osl/osl_shader.cpp
+++ b/intern/cycles/kernel/osl/osl_shader.cpp
@@ -177,6 +177,7 @@ static void flatten_surface_closure_tree(ShaderData *sd, int path_flag,
case CClosurePrimitive::BSDF: {
CBSDFClosure *bsdf = (CBSDFClosure *)prim;
int scattering = bsdf->scattering();
+ int shaderdata_flag = bsdf->shaderdata_flag();
/* caustic options */
if((scattering & LABEL_GLOSSY) && (path_flag & PATH_RAY_DIFFUSE)) {
@@ -201,11 +202,16 @@ static void flatten_surface_closure_tree(ShaderData *sd, int path_flag,
sc.data1 = bsdf->sc.data1;
sc.data2 = bsdf->sc.data2;
sc.prim = bsdf->sc.prim;
+ if(shaderdata_flag & SD_BSDF_HAS_CUSTOM) {
+ sc.custom1 = bsdf->sc.custom1;
+ sc.custom2 = bsdf->sc.custom2;
+ sc.custom3 = bsdf->sc.custom3;
+ }
/* add */
if(sc.sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
- sd->flag |= bsdf->shaderdata_flag();
+ sd->flag |= shaderdata_flag;
}
break;
}
diff --git a/intern/cycles/kernel/shaders/node_anisotropic_bsdf.osl b/intern/cycles/kernel/shaders/node_anisotropic_bsdf.osl
index f7f89543aa9..bef6d7e8809 100644
--- a/intern/cycles/kernel/shaders/node_anisotropic_bsdf.osl
+++ b/intern/cycles/kernel/shaders/node_anisotropic_bsdf.osl
@@ -51,6 +51,8 @@ shader node_anisotropic_bsdf(
BSDF = Color * microfacet_beckmann_aniso(Normal, T, RoughnessU, RoughnessV);
else if (distribution == "GGX")
BSDF = Color * microfacet_ggx_aniso(Normal, T, RoughnessU, RoughnessV);
+ else if (distribution == "Multiscatter GGX")
+ BSDF = Color * microfacet_multi_ggx_aniso(Normal, T, RoughnessU, RoughnessV, Color);
else
BSDF = Color * ashikhmin_shirley(Normal, T, RoughnessU, RoughnessV);
}
diff --git a/intern/cycles/kernel/shaders/node_glass_bsdf.osl b/intern/cycles/kernel/shaders/node_glass_bsdf.osl
index 8fd0a2fd714..a9723a8300a 100644
--- a/intern/cycles/kernel/shaders/node_glass_bsdf.osl
+++ b/intern/cycles/kernel/shaders/node_glass_bsdf.osl
@@ -35,6 +35,8 @@ shader node_glass_bsdf(
else if (distribution == "beckmann")
BSDF = Color * (Fr * microfacet_beckmann(Normal, Roughness) +
(1.0 - Fr) * microfacet_beckmann_refraction(Normal, Roughness, eta));
+ else if (distribution == "Multiscatter GGX")
+ BSDF = Color * microfacet_multi_ggx_glass(Normal, Roughness, eta, Color);
else if (distribution == "GGX")
BSDF = Color * (Fr * microfacet_ggx(Normal, Roughness) +
(1.0 - Fr) * microfacet_ggx_refraction(Normal, Roughness, eta));
diff --git a/intern/cycles/kernel/shaders/node_glossy_bsdf.osl b/intern/cycles/kernel/shaders/node_glossy_bsdf.osl
index cc2a66fd46a..f4ea7e7dc6a 100644
--- a/intern/cycles/kernel/shaders/node_glossy_bsdf.osl
+++ b/intern/cycles/kernel/shaders/node_glossy_bsdf.osl
@@ -30,6 +30,8 @@ shader node_glossy_bsdf(
BSDF = Color * microfacet_beckmann(Normal, Roughness);
else if (distribution == "GGX")
BSDF = Color * microfacet_ggx(Normal, Roughness);
+ else if (distribution == "Multiscatter GGX")
+ BSDF = Color * microfacet_multi_ggx(Normal, Roughness, Color);
else
BSDF = Color * ashikhmin_shirley(Normal, vector(0, 0, 0), Roughness, Roughness);
diff --git a/intern/cycles/kernel/shaders/stdosl.h b/intern/cycles/kernel/shaders/stdosl.h
index 8d5d3746caf..a8dda8a12c9 100644
--- a/intern/cycles/kernel/shaders/stdosl.h
+++ b/intern/cycles/kernel/shaders/stdosl.h
@@ -527,6 +527,9 @@ closure color transparent() BUILTIN;
closure color microfacet_ggx(normal N, float ag) BUILTIN;
closure color microfacet_ggx_aniso(normal N, vector T, float ax, float ay) BUILTIN;
closure color microfacet_ggx_refraction(normal N, float ag, float eta) BUILTIN;
+closure color microfacet_multi_ggx(normal N, float ag, color C) BUILTIN;
+closure color microfacet_multi_ggx_aniso(normal N, vector T, float ax, float ay, color C) BUILTIN;
+closure color microfacet_multi_ggx_glass(normal N, float ag, float eta, color C) BUILTIN;
closure color microfacet_beckmann(normal N, float ab) BUILTIN;
closure color microfacet_beckmann_aniso(normal N, vector T, float ax, float ay) BUILTIN;
closure color microfacet_beckmann_refraction(normal N, float ab, float eta) BUILTIN;
diff --git a/intern/cycles/kernel/split/kernel_shader_eval.h b/intern/cycles/kernel/split/kernel_shader_eval.h
index e816a818915..cef64bf5f36 100644
--- a/intern/cycles/kernel/split/kernel_shader_eval.h
+++ b/intern/cycles/kernel/split/kernel_shader_eval.h
@@ -65,6 +65,6 @@ ccl_device void kernel_shader_eval(
isect,
&ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
- shader_eval_surface(kg, sd, state, rbsdf, state->flag, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_MAIN);
}
}
diff --git a/intern/cycles/kernel/svm/svm_closure.h b/intern/cycles/kernel/svm/svm_closure.h
index 65512a0105c..fae89aade60 100644
--- a/intern/cycles/kernel/svm/svm_closure.h
+++ b/intern/cycles/kernel/svm/svm_closure.h
@@ -186,7 +186,8 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
- case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID: {
+ case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
@@ -206,6 +207,14 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_setup(sc);
+ else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) {
+ kernel_assert(stack_valid(data_node.z));
+ float3 color = stack_load_float3(stack, data_node.z);
+ sc->custom1 = color.x;
+ sc->custom2 = color.y;
+ sc->custom3 = color.z;
+ ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_setup(sc);
+ }
else
ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_setup(sc);
}
@@ -307,8 +316,36 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
break;
}
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID: {
+#ifdef __CAUSTICS_TRICKS__
+ if(!kernel_data.integrator.caustics_reflective && !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
+ break;
+#endif
+ ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
+
+ if(sc) {
+ sc->N = N;
+
+ sc->data0 = param1;
+ sc->data1 = param1;
+ float eta = fmaxf(param2, 1e-5f);
+ sc->data2 = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
+
+ kernel_assert(stack_valid(data_node.z));
+ float3 color = stack_load_float3(stack, data_node.z);
+ sc->custom1 = color.x;
+ sc->custom2 = color.y;
+ sc->custom3 = color.z;
+
+ /* setup bsdf */
+ ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_glass_setup(sc);
+ }
+
+ break;
+ }
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
@@ -346,6 +383,14 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_aniso_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_aniso_setup(sc);
+ else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID) {
+ kernel_assert(stack_valid(data_node.w));
+ float3 color = stack_load_float3(stack, data_node.w);
+ sc->custom1 = color.x;
+ sc->custom2 = color.y;
+ sc->custom3 = color.z;
+ ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_aniso_setup(sc);
+ }
else
ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_aniso_setup(sc);
}
diff --git a/intern/cycles/kernel/svm/svm_types.h b/intern/cycles/kernel/svm/svm_types.h
index e57d22b1b13..e1a8ced6a34 100644
--- a/intern/cycles/kernel/svm/svm_types.h
+++ b/intern/cycles/kernel/svm/svm_types.h
@@ -396,8 +396,10 @@ typedef enum ClosureType {
CLOSURE_BSDF_REFLECTION_ID,
CLOSURE_BSDF_MICROFACET_GGX_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_ID,
+ CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID,
CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID,
CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID,
+ CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID,
CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID,
CLOSURE_BSDF_ASHIKHMIN_VELVET_ID,
@@ -413,6 +415,7 @@ typedef enum ClosureType {
CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID,
CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID,
+ CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID,
CLOSURE_BSDF_SHARP_GLASS_ID,
CLOSURE_BSDF_HAIR_TRANSMISSION_ID,
diff --git a/intern/cycles/render/nodes.cpp b/intern/cycles/render/nodes.cpp
index 5e53b66f710..87020823df9 100644
--- a/intern/cycles/render/nodes.cpp
+++ b/intern/cycles/render/nodes.cpp
@@ -1828,6 +1828,7 @@ NODE_DEFINE(AnisotropicBsdfNode)
static NodeEnum distribution_enum;
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
+ distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID);
distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
@@ -1864,7 +1865,10 @@ void AnisotropicBsdfNode::compile(SVMCompiler& compiler)
{
closure = distribution;
- BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
+ if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID)
+ BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"), input("Color"));
+ else
+ BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
}
void AnisotropicBsdfNode::compile(OSLCompiler& compiler)
@@ -1888,6 +1892,7 @@ NODE_DEFINE(GlossyBsdfNode)
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID);
distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID);
+ distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ID);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.2f);
@@ -1937,6 +1942,8 @@ void GlossyBsdfNode::compile(SVMCompiler& compiler)
if(closure == CLOSURE_BSDF_REFLECTION_ID)
BsdfNode::compile(compiler, NULL, NULL);
+ else if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID)
+ BsdfNode::compile(compiler, input("Roughness"), NULL, input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), NULL);
}
@@ -1961,6 +1968,7 @@ NODE_DEFINE(GlassBsdfNode)
distribution_enum.insert("sharp", CLOSURE_BSDF_SHARP_GLASS_ID);
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
+ distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
SOCKET_IN_FLOAT(IOR, "IOR", 0.3f);
@@ -2011,6 +2019,8 @@ void GlassBsdfNode::compile(SVMCompiler& compiler)
if(closure == CLOSURE_BSDF_SHARP_GLASS_ID)
BsdfNode::compile(compiler, NULL, input("IOR"));
+ else if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID)
+ BsdfNode::compile(compiler, input("Roughness"), input("IOR"), input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
}
diff --git a/intern/cycles/util/util_math.h b/intern/cycles/util/util_math.h
index 53944ec1cc4..cfe6fa65143 100644
--- a/intern/cycles/util/util_math.h
+++ b/intern/cycles/util/util_math.h
@@ -545,6 +545,11 @@ ccl_device_inline float3 normalize(const float3 a)
#endif
+ccl_device_inline float3 saturate3(float3 a)
+{
+ return make_float3(saturate(a.x), saturate(a.y), saturate(a.z));
+}
+
ccl_device_inline float3 normalize_len(const float3 a, float *t)
{
*t = len(a);
@@ -1329,6 +1334,15 @@ ccl_device float safe_modulo(float a, float b)
return (b != 0.0f)? fmodf(a, b): 0.0f;
}
+ccl_device_inline float beta(float x, float y)
+{
+#ifndef __KERNEL_OPENCL__
+ return expf(lgammaf(x) + lgammaf(y) - lgammaf(x+y));
+#else
+ return expf(lgamma(x) + lgamma(y) - lgamma(x+y));
+#endif
+}
+
/* Ray Intersection */
ccl_device bool ray_sphere_intersect(
diff --git a/source/blender/makesdna/DNA_node_types.h b/source/blender/makesdna/DNA_node_types.h
index 6cba3322135..46b30f41f5b 100644
--- a/source/blender/makesdna/DNA_node_types.h
+++ b/source/blender/makesdna/DNA_node_types.h
@@ -912,7 +912,8 @@ typedef struct NodeSunBeams {
#define SHD_GLOSSY_BECKMANN 0
#define SHD_GLOSSY_SHARP 1
#define SHD_GLOSSY_GGX 2
-#define SHD_GLOSSY_ASHIKHMIN_SHIRLEY 3
+#define SHD_GLOSSY_ASHIKHMIN_SHIRLEY 3
+#define SHD_GLOSSY_MULTI_GGX 4
/* vector transform */
#define SHD_VECT_TRANSFORM_TYPE_VECTOR 0
diff --git a/source/blender/makesrna/intern/rna_nodetree.c b/source/blender/makesrna/intern/rna_nodetree.c
index bf7e4634c2f..7f2cd1e6080 100644
--- a/source/blender/makesrna/intern/rna_nodetree.c
+++ b/source/blender/makesrna/intern/rna_nodetree.c
@@ -3193,12 +3193,14 @@ static EnumPropertyItem node_glossy_items[] = {
{SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
{SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
{SHD_GLOSSY_ASHIKHMIN_SHIRLEY, "ASHIKHMIN_SHIRLEY", 0, "Ashikhmin-Shirley", ""},
+ {SHD_GLOSSY_MULTI_GGX, "MULTI_GGX", 0, "Multiscatter GGX", ""},
{0, NULL, 0, NULL, NULL}
};
static EnumPropertyItem node_anisotropic_items[] = {
{SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
{SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
+ {SHD_GLOSSY_MULTI_GGX, "MULTI_GGX", 0, "Multiscatter GGX", ""},
{SHD_GLOSSY_ASHIKHMIN_SHIRLEY, "ASHIKHMIN_SHIRLEY", 0, "Ashikhmin-Shirley", ""},
{0, NULL, 0, NULL, NULL}
};
@@ -3207,6 +3209,14 @@ static EnumPropertyItem node_glass_items[] = {
{SHD_GLOSSY_SHARP, "SHARP", 0, "Sharp", ""},
{SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
{SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
+ {SHD_GLOSSY_MULTI_GGX, "MULTI_GGX", 0, "Multiscatter GGX", ""},
+ {0, NULL, 0, NULL, NULL}
+};
+
+static EnumPropertyItem node_refraction_items[] = {
+ {SHD_GLOSSY_SHARP, "SHARP", 0, "Sharp", ""},
+ {SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
+ {SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
{0, NULL, 0, NULL, NULL}
};
@@ -4159,6 +4169,17 @@ static void def_glass(StructRNA *srna)
RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
}
+static void def_refraction(StructRNA *srna)
+{
+ PropertyRNA *prop;
+
+ prop = RNA_def_property(srna, "distribution", PROP_ENUM, PROP_NONE);
+ RNA_def_property_enum_sdna(prop, NULL, "custom1");
+ RNA_def_property_enum_items(prop, node_refraction_items);
+ RNA_def_property_ui_text(prop, "Distribution", "");
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+}
+
static void def_anisotropic(StructRNA *srna)
{
PropertyRNA *prop;
diff --git a/source/blender/nodes/NOD_static_types.h b/source/blender/nodes/NOD_static_types.h
index 9e1a0c926fa..171d5313c1d 100644
--- a/source/blender/nodes/NOD_static_types.h
+++ b/source/blender/nodes/NOD_static_types.h
@@ -82,7 +82,7 @@ DefNode( ShaderNode, SH_NODE_BSDF_ANISOTROPIC, def_anisotropic, "BS
DefNode( ShaderNode, SH_NODE_BSDF_DIFFUSE, 0, "BSDF_DIFFUSE", BsdfDiffuse, "Diffuse BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_GLOSSY, def_glossy, "BSDF_GLOSSY", BsdfGlossy, "Glossy BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_GLASS, def_glass, "BSDF_GLASS", BsdfGlass, "Glass BSDF", "" )
-DefNode( ShaderNode, SH_NODE_BSDF_REFRACTION, def_glass, "BSDF_REFRACTION", BsdfRefraction, "Refraction BSDF", "" )
+DefNode( ShaderNode, SH_NODE_BSDF_REFRACTION, def_refraction, "BSDF_REFRACTION", BsdfRefraction, "Refraction BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_TRANSLUCENT, 0, "BSDF_TRANSLUCENT", BsdfTranslucent, "Translucent BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_TRANSPARENT, 0, "BSDF_TRANSPARENT", BsdfTransparent, "Transparent BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_VELVET, 0, "BSDF_VELVET", BsdfVelvet, "Velvet BSDF", "" )