Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--source/blender/blenkernel/intern/anim.c2
-rw-r--r--source/blender/blenkernel/intern/cdderivedmesh.c40
-rw-r--r--source/blender/blenkernel/intern/modifier.c6
-rw-r--r--source/blender/blenlib/BLI_arithb.h571
-rw-r--r--source/blender/blenlib/BLI_math_rotation.h3
-rw-r--r--source/blender/blenlib/intern/arithb.c5488
-rw-r--r--source/blender/blenlib/intern/math_base.c6
-rw-r--r--source/blender/blenlib/intern/math_color.c2
-rw-r--r--source/blender/blenlib/intern/math_geom.c2
-rw-r--r--source/blender/blenlib/intern/math_rotation.c46
-rw-r--r--source/blender/editors/space_view3d/view3d_edit.c3
-rw-r--r--source/gameengine/Converter/BL_BlenderDataConversion.cpp6
12 files changed, 65 insertions, 6110 deletions
diff --git a/source/blender/blenkernel/intern/anim.c b/source/blender/blenkernel/intern/anim.c
index 5cae2418e89..79372eee468 100644
--- a/source/blender/blenkernel/intern/anim.c
+++ b/source/blender/blenkernel/intern/anim.c
@@ -704,7 +704,7 @@ static void face_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, floa
/* scale */
if(par->transflag & OB_DUPLIFACES_SCALE) {
- float size= v4?AreaQ3Dfl(v1, v2, v3, v4):AreaT3Dfl(v1, v2, v3);
+ float size= v4? AreaQ3Dfl(v1, v2, v3, v4): AreaT3Dfl(v1, v2, v3);
size= sqrt(size) * par->dupfacesca;
Mat3MulFloat(mat[0], size);
}
diff --git a/source/blender/blenkernel/intern/cdderivedmesh.c b/source/blender/blenkernel/intern/cdderivedmesh.c
index e38bb00fe8d..25f60a452cc 100644
--- a/source/blender/blenkernel/intern/cdderivedmesh.c
+++ b/source/blender/blenkernel/intern/cdderivedmesh.c
@@ -405,12 +405,9 @@ static void cdDM_drawFacesSolid(DerivedMesh *dm, int (*setMaterial)(int, void *a
/* TODO make this better (cache facenormals as layer?) */
float nor[3];
if(mface->v4) {
- CalcNormFloat4(mvert[mface->v1].co, mvert[mface->v2].co,
- mvert[mface->v3].co, mvert[mface->v4].co,
- nor);
+ CalcNormFloat4(mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co, nor);
} else {
- CalcNormFloat(mvert[mface->v1].co, mvert[mface->v2].co,
- mvert[mface->v3].co, nor);
+ CalcNormFloat(mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, nor);
}
glNormal3fv(nor);
}
@@ -579,12 +576,9 @@ static void cdDM_drawFacesTex_common(DerivedMesh *dm,
else {
float nor[3];
if(mf->v4) {
- CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, mv[mf->v4].co,
- nor);
+ CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co, nor);
} else {
- CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, nor);
+ CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, nor);
}
glNormal3fv(nor);
}
@@ -754,12 +748,9 @@ static void cdDM_drawMappedFaces(DerivedMesh *dm, int (*setDrawOptions)(void *us
else {
float nor[3];
if(mf->v4) {
- CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, mv[mf->v4].co,
- nor);
+ CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co, nor);
} else {
- CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, nor);
+ CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, nor);
}
glNormal3fv(nor);
}
@@ -929,12 +920,9 @@ static void cdDM_drawMappedFacesGLSL(DerivedMesh *dm, int (*setMaterial)(int, vo
/* TODO ideally a normal layer should always be available */
float nor[3];
if(mface->v4) {
- CalcNormFloat4(mvert[mface->v1].co, mvert[mface->v2].co,
- mvert[mface->v3].co, mvert[mface->v4].co,
- nor);
+ CalcNormFloat4(mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co, nor);
} else {
- CalcNormFloat(mvert[mface->v1].co, mvert[mface->v2].co,
- mvert[mface->v3].co, nor);
+ CalcNormFloat(mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, nor);
}
glNormal3fv(nor);
}
@@ -1275,13 +1263,11 @@ static void cdDM_foreachMappedFaceCenter(
VecAddf(cent, cent, mv[mf->v3].co);
if (mf->v4) {
- CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, mv[mf->v4].co, no);
+ CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co, no);
VecAddf(cent, cent, mv[mf->v4].co);
VecMulf(cent, 0.25f);
} else {
- CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, no);
+ CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, no);
VecMulf(cent, 0.33333333333f);
}
@@ -1630,11 +1616,9 @@ void CDDM_calc_normals(DerivedMesh *dm)
float *f_no = face_nors[i];
if(mf->v4)
- CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, mv[mf->v4].co, f_no);
+ CalcNormFloat4(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co, f_no);
else
- CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co,
- mv[mf->v3].co, f_no);
+ CalcNormFloat(mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, f_no);
VecAddf(temp_nors[mf->v1], temp_nors[mf->v1], f_no);
VecAddf(temp_nors[mf->v2], temp_nors[mf->v2], f_no);
diff --git a/source/blender/blenkernel/intern/modifier.c b/source/blender/blenkernel/intern/modifier.c
index 1f4f69bd376..3c9fd4b8817 100644
--- a/source/blender/blenkernel/intern/modifier.c
+++ b/source/blender/blenkernel/intern/modifier.c
@@ -3947,8 +3947,7 @@ static DerivedMesh *uvprojectModifier_do(UVProjectModifierData *umd,
xmin = -xmax;
ymin = -ymax;
- i_window(xmin, xmax, ymin, ymax,
- cam->clipsta, cam->clipend, perspmat);
+ i_window(xmin, xmax, ymin, ymax, cam->clipsta, cam->clipend, perspmat);
Mat4MulMat4(tmpmat, projectors[i].projmat, perspmat);
} else if(cam->type == CAM_ORTHO) {
float orthomat[4][4];
@@ -3967,8 +3966,7 @@ static DerivedMesh *uvprojectModifier_do(UVProjectModifierData *umd,
xmin = -xmax;
ymin = -ymax;
- i_ortho(xmin, xmax, ymin, ymax,
- cam->clipsta, cam->clipend, orthomat);
+ i_ortho(xmin, xmax, ymin, ymax, cam->clipsta, cam->clipend, orthomat);
Mat4MulMat4(tmpmat, projectors[i].projmat, orthomat);
}
} else {
diff --git a/source/blender/blenlib/BLI_arithb.h b/source/blender/blenlib/BLI_arithb.h
deleted file mode 100644
index 16da7d25721..00000000000
--- a/source/blender/blenlib/BLI_arithb.h
+++ /dev/null
@@ -1,571 +0,0 @@
-#undef TEST_ACTIVE
-//#define ACTIVE 1
-/**
- * blenlib/BLI_arithb.h mar 2001 Nzc
- *
- * $Id$
- *
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
- * All rights reserved.
- *
- * The Original Code is: all of this file.
- *
- * Contributor(s): none yet.
- *
- * ***** END GPL LICENSE BLOCK *****
- * */
-
-#ifndef BLI_ARITHB_H
-#define BLI_ARITHB_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifdef WIN32
-#define _USE_MATH_DEFINES
-#endif
-
-#include <math.h>
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-#ifndef M_PI_2
-#define M_PI_2 1.57079632679489661923
-#endif
-#ifndef M_SQRT2
-#define M_SQRT2 1.41421356237309504880
-#endif
-#ifndef M_SQRT1_2
-#define M_SQRT1_2 0.70710678118654752440
-#endif
-#ifndef M_1_PI
-#define M_1_PI 0.318309886183790671538
-#endif
-
-#ifndef M_E
-#define M_E 2.7182818284590452354
-#endif
-#ifndef M_LOG2E
-#define M_LOG2E 1.4426950408889634074
-#endif
-#ifndef M_LOG10E
-#define M_LOG10E 0.43429448190325182765
-#endif
-#ifndef M_LN2
-#define M_LN2 0.69314718055994530942
-#endif
-#ifndef M_LN10
-#define M_LN10 2.30258509299404568402
-#endif
-
-#ifndef sqrtf
-#define sqrtf(a) ((float)sqrt(a))
-#endif
-#ifndef powf
-#define powf(a, b) ((float)pow(a, b))
-#endif
-#ifndef cosf
-#define cosf(a) ((float)cos(a))
-#endif
-#ifndef sinf
-#define sinf(a) ((float)sin(a))
-#endif
-#ifndef acosf
-#define acosf(a) ((float)acos(a))
-#endif
-#ifndef asinf
-#define asinf(a) ((float)asin(a))
-#endif
-#ifndef atan2f
-#define atan2f(a, b) ((float)atan2(a, b))
-#endif
-#ifndef tanf
-#define tanf(a) ((float)tan(a))
-#endif
-#ifndef atanf
-#define atanf(a) ((float)atan(a))
-#endif
-#ifndef floorf
-#define floorf(a) ((float)floor(a))
-#endif
-#ifndef ceilf
-#define ceilf(a) ((float)ceil(a))
-#endif
-#ifndef fabsf
-#define fabsf(a) ((float)fabs(a))
-#endif
-#ifndef logf
-#define logf(a) ((float)log(a))
-#endif
-#ifndef expf
-#define expf(a) ((float)exp(a))
-#endif
-#ifndef fmodf
-#define fmodf(a, b) ((float)fmod(a, b))
-#endif
-
-#ifdef WIN32
- #ifndef FREE_WINDOWS
- #define isnan(n) _isnan(n)
- #define finite _finite
- #endif
-#endif
-
-#define MAT4_UNITY {{ 1.0, 0.0, 0.0, 0.0},\
- { 0.0, 1.0, 0.0, 0.0},\
- { 0.0, 0.0, 1.0, 0.0},\
- { 0.0, 0.0, 0.0, 1.0}}
-
-#define MAT3_UNITY {{ 1.0, 0.0, 0.0},\
- { 0.0, 1.0, 0.0},\
- { 0.0, 0.0, 1.0}}
-
-
-void CalcCent3f(float *cent, float *v1, float *v2, float *v3);
-void CalcCent4f(float *cent, float *v1, float *v2, float *v3, float *v4);
-
-void Crossf(float *c, float *a, float *b);
-void Projf(float *c, float *v1, float *v2);
-
-float Inpf(float *v1, float *v2);
-float Inp2f(float *v1, float *v2);
-
-float Normalize(float *n);
-float Normalize2(float *n);
-
-float Sqrt3f(float f);
-double Sqrt3d(double d);
-
-float saacos(float fac);
-float saasin(float fac);
-float sasqrt(float fac);
-float saacosf(float fac);
-float saasinf(float fac);
-float sasqrtf(float fac);
-
-int FloatCompare(float *v1, float *v2, float limit);
-int FloatCompare4(float *v1, float *v2, float limit);
-float FloatLerpf(float target, float origin, float fac);
-
-float CalcNormFloat(float *v1, float *v2, float *v3, float *n);
-float CalcNormFloat4(float *v1, float *v2, float *v3, float *v4, float *n);
-
-void CalcNormLong(int *v1, int *v2, int *v3, float *n);
-/* CalcNormShort: is ook uitprodukt - (translates as 'is also out/cross product') */
-void CalcNormShort(short *v1, short *v2, short *v3, float *n);
-float power_of_2(float val);
-
-/**
- * @section Euler conversion routines (With Custom Order)
- */
-
-/* Defines for rotation orders
- * WARNING: must match the eRotationModes in DNA_action_types.h
- * order matters - types are saved to file!
- */
-typedef enum eEulerRotationOrders {
- EULER_ORDER_DEFAULT = 1, /* Blender 'default' (classic) is basically XYZ */
- EULER_ORDER_XYZ = 1, /* Blender 'default' (classic) - must be as 1 to sync with PoseChannel rotmode */
- EULER_ORDER_XZY,
- EULER_ORDER_YXZ,
- EULER_ORDER_YZX,
- EULER_ORDER_ZXY,
- EULER_ORDER_ZYX,
- /* NOTE: there are about 6 more entries when including duplicated entries too */
-} eEulerRotationOrders;
-
-void EulOToQuat(float eul[3], short order, float quat[4]);
-void QuatToEulO(float quat[4], float eul[3], short order);
-
-void EulOToMat3(float eul[3], short order, float Mat[3][3]);
-void EulOToMat4(float eul[3], short order, float Mat[4][4]);
-
-void Mat3ToEulO(float Mat[3][3], float eul[3], short order);
-void Mat4ToEulO(float Mat[4][4], float eul[3], short order);
-
-void Mat3ToCompatibleEulO(float mat[3][3], float eul[3], float oldrot[3], short order);
-
-void eulerO_rot(float beul[3], float ang, char axis, short order);
-
-/**
- * @section Euler conversion routines (Blender XYZ)
- */
-
-void EulToMat3(float *eul, float mat[][3]);
-void EulToMat4(float *eul, float mat[][4]);
-
-void Mat3ToEul(float tmat[][3], float *eul);
-void Mat4ToEul(float tmat[][4],float *eul);
-
-void EulToQuat(float *eul, float *quat);
-
-void Mat3ToCompatibleEul(float mat[][3], float *eul, float *oldrot);
-void EulToGimbalAxis(float gmat[][3], float *eul, short order);
-
-
-void compatible_eul(float *eul, float *oldrot);
-void euler_rot(float *beul, float ang, char axis);
-
-
-/**
- * @section Quaternion arithmetic routines
- */
-
-int QuatIsNul(float *q);
-void QuatToEul(float *quat, float *eul);
-void QuatOne(float *);
-void QuatMul(float *, float *, float *);
-void QuatMulVecf(float *q, float *v);
-void QuatMulf(float *q, float f);
-void QuatMulFac(float *q, float fac);
-
-void NormalQuat(float *);
-void VecRotToQuat(float *vec, float phi, float *quat);
-
-void QuatSub(float *q, float *q1, float *q2);
-void QuatConj(float *q);
-void QuatInv(float *q);
-float QuatDot(float *q1, float *q2);
-void QuatCopy(float *q1, float *q2);
-
-void printquat(char *str, float q[4]);
-
-void QuatInterpol(float *result, float *quat1, float *quat2, float t);
-void QuatAdd(float *result, float *quat1, float *quat2, float t);
-
-void QuatToMat3(float *q, float m[][3]);
-void QuatToMat4(float *q, float m[][4]);
-
-/**
- * @section matrix multiplication and copying routines
- */
-
-void Mat3MulFloat(float *m, float f);
-void Mat4MulFloat(float *m, float f);
-void Mat4MulFloat3(float *m, float f);
-
-void Mat3Transp(float mat[][3]);
-void Mat4Transp(float mat[][4]);
-
-int Mat4Invert(float inverse[][4], float mat[][4]);
-void Mat4InvertSimp(float inverse[][4], float mat[][4]);
-void Mat4Inv(float *m1, float *m2);
-void Mat4InvGG(float out[][4], float in[][4]);
-void Mat3Inv(float m1[][3], float m2[][3]);
-
-void Mat3CpyMat4(float m1[][3],float m2[][4]);
-void Mat4CpyMat3(float m1[][4], float m2[][3]);
-
-void Mat3BlendMat3(float out[][3], float dst[][3], float src[][3], float srcweight);
-void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight);
-
-float Det2x2(float a,float b,float c, float d);
-
-float Det3x3(
- float a1, float a2, float a3,
- float b1, float b2, float b3,
- float c1, float c2, float c3
-);
-
-float Det4x4(float m[][4]);
-
-void Mat3Adj(float m1[][3], float m[][3]);
-void Mat4Adj(float out[][4], float in[][4]);
-
-void Mat4MulMat4(float m1[][4], float m2[][4], float m3[][4]);
-void subMat4MulMat4(float *m1, float *m2, float *m3);
-#ifndef TEST_ACTIVE
-void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3]);
-#else
-void Mat3MulMat3(float *m1, float *m3, float *m2);
-#endif
-void Mat4MulMat34(float (*m1)[4], float (*m3)[3], float (*m2)[4]);
-void Mat4CpyMat4(float m1[][4], float m2[][4]);
-void Mat4SwapMat4(float m1[][4], float m2[][4]);
-void Mat3CpyMat3(float m1[][3], float m2[][3]);
-
-void Mat3MulSerie(float answ[][3],
- float m1[][3], float m2[][3], float m3[][3],
- float m4[][3], float m5[][3], float m6[][3],
- float m7[][3], float m8[][3]
-);
-
-void Mat4MulSerie(float answ[][4], float m1[][4],
- float m2[][4], float m3[][4], float m4[][4],
- float m5[][4], float m6[][4], float m7[][4],
- float m8[][4]
-);
-
-void Mat4Clr(float *m);
-void Mat3Clr(float *m);
-
-void Mat3One(float m[][3]);
-void Mat4One(float m[][4]);
-
-void Mat3Scale(float m[][3], float scale);
-void Mat4Scale(float m[][4], float scale);
-
-/* NOTE: These only normalise the matrix, they don't make it orthogonal */
-void Mat3Ortho(float mat[][3]);
-void Mat4Ortho(float mat[][4]);
-
-int IsMat3Orthogonal(float mat[][3]);
-void Mat3Orthogonal(float mat[][3], int axis); /* axis is the one to keep in place (assumes it is non-null) */
-int IsMat4Orthogonal(float mat[][4]);
-void Mat4Orthogonal(float mat[][4], int axis); /* axis is the one to keep in place (assumes it is non-null) */
-
-void VecMat4MulVecfl(float *in, float mat[][4], float *vec);
-void Mat4MulMat43(float (*m1)[4], float (*m3)[4], float (*m2)[3]);
-void Mat3IsMat3MulMat4(float m1[][3], float m2[][3], float m3[][4]);
-
-void Mat4MulVec(float mat[][4],int *vec);
-void Mat4MulVecfl(float mat[][4], float *vec);
-void Mat4Mul3Vecfl(float mat[][4], float *vec);
-void Mat4MulVec3Project(float mat[][4],float *vec);
-void Mat4MulVec4fl(float mat[][4], float *vec);
-void Mat3MulVec(float mat[][3],int *vec);
-void Mat3MulVecfl(float mat[][3], float *vec);
-void Mat3MulVecd(float mat[][3], double *vec);
-void Mat3TransMulVecfl(float mat[][3], float *vec);
-
-void Mat3AddMat3(float m1[][3], float m2[][3], float m3[][3]);
-void Mat4AddMat4(float m1[][4], float m2[][4], float m3[][4]);
-
-void VecUpMat3old(float *vec, float mat[][3], short axis);
-void VecUpMat3(float *vec, float mat[][3], short axis);
-
-void VecCopyf(float *v1, float *v2);
-int VecLen(int *v1, int *v2);
-float VecLenf(float v1[3], float v2[3]);
-float VecLength(float *v);
-void VecMulf(float *v1, float f);
-void VecNegf(float *v1);
-
-int VecLenCompare(float *v1, float *v2, float limit);
-int VecCompare(float *v1, float *v2, float limit);
-int VecEqual(float *v1, float *v2);
-int VecIsNull(float *v);
-
-void printvecf(char *str,float v[3]);
-void printvec4f(char *str, float v[4]);
-
-void VecAddf(float *v, float *v1, float *v2);
-void VecSubf(float *v, float *v1, float *v2);
-void VecMulVecf(float *v, float *v1, float *v2);
-void VecLerpf(float *target, const float *a, const float *b, const float t);
-void VecLerp3f(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3]);
-void VecMidf(float *v, float *v1, float *v2);
-
-void VecOrthoBasisf(float *v, float *v1, float *v2);
-
-float Vec2Lenf(float *v1, float *v2);
-float Vec2Length(float *v);
-void Vec2Mulf(float *v1, float f);
-void Vec2Addf(float *v, float *v1, float *v2);
-void Vec2Subf(float *v, float *v1, float *v2);
-void Vec2Copyf(float *v1, float *v2);
-void Vec2Lerpf(float *target, const float *a, const float *b, const float t);
-void Vec2Lerp3f(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3]);
-
-void AxisAngleToQuat(float q[4], float axis[3], float angle);
-void QuatToAxisAngle(float q[4], float axis[3], float *angle);
-void AxisAngleToEulO(float axis[3], float angle, float eul[3], short order);
-void EulOToAxisAngle(float eul[3], short order, float axis[3], float *angle);
-void AxisAngleToMat3(float axis[3], float angle, float mat[3][3]);
-void AxisAngleToMat4(float axis[3], float angle, float mat[4][4]);
-void Mat3ToAxisAngle(float mat[3][3], float axis[3], float *angle);
-void Mat4ToAxisAngle(float mat[4][4], float axis[3], float *angle);
-
-void Mat3ToVecRot(float mat[3][3], float axis[3], float *angle);
-void Mat4ToVecRot(float mat[4][4], float axis[3], float *angle);
-void VecRotToMat3(float *vec, float phi, float mat[][3]);
-void VecRotToMat4(float *vec, float phi, float mat[][4]);
-
-void RotationBetweenVectorsToQuat(float *q, float v1[3], float v2[3]);
-void vectoquat(float *vec, short axis, short upflag, float *q);
-void Mat3ToQuat_is_ok(float wmat[][3], float *q);
-
-void VecReflect(float *out, float *v1, float *v2);
-void VecBisect3(float *v, float *v1, float *v2, float *v3);
-float VecAngle2(float *v1, float *v2);
-float VecAngle3(float *v1, float *v2, float *v3);
-float NormalizedVecAngle2(float *v1, float *v2);
-
-float Vec2Angle3(float *v1, float *v2, float *v3);
-float NormalizedVecAngle2_2D(float *v1, float *v2);
-
-void NormalShortToFloat(float *out, short *in);
-void NormalFloatToShort(short *out, float *in);
-
-float DistVL2Dfl(float *v1, float *v2, float *v3);
-float PdistVL2Dfl(float *v1, float *v2, float *v3);
-float PdistVL3Dfl(float *v1, float *v2, float *v3);
-void PclosestVL3Dfl(float *closest, float v1[3], float v2[3], float v3[3]);
-float AreaF2Dfl(float *v1, float *v2, float *v3);
-float AreaQ3Dfl(float *v1, float *v2, float *v3, float *v4);
-float AreaT3Dfl(float *v1, float *v2, float *v3);
-float AreaPoly3Dfl(int nr, float *verts, float *normal);
-
-/* intersect Line-Line
- return:
- -1: colliniar
- 0: no intersection of segments
- 1: exact intersection of segments
- 2: cross-intersection of segments
-*/
-extern short IsectLL2Df(float *v1, float *v2, float *v3, float *v4);
-extern short IsectLL2Ds(short *v1, short *v2, short *v3, short *v4);
-
-/*point in tri, 0 no intersection, 1 intersect */
-int IsectPT2Df(float pt[2], float v1[2], float v2[2], float v3[2]);
-/* point in quad, 0 no intersection, 1 intersect */
-int IsectPQ2Df(float pt[2], float v1[2], float v2[2], float v3[2], float v4[2]);
-
-/* interpolation weights of point in a triangle or quad, v4 may be NULL */
-void InterpWeightsQ3Dfl(float *v1, float *v2, float *v3, float *v4, float *co, float *w);
-/* interpolation weights of point in a polygon with >= 3 vertices */
-void MeanValueWeights(float v[][3], int n, float *co, float *w);
-
-void i_lookat(
- float vx, float vy,
- float vz, float px,
- float py, float pz,
- float twist, float mat[][4]
-);
-
-void i_window(
- float left, float right,
- float bottom, float top,
- float nearClip, float farClip,
- float mat[][4]
-);
-
-#define BLI_CS_SMPTE 0
-#define BLI_CS_REC709 1
-#define BLI_CS_CIE 2
-
-#define RAD2DEG(_rad) ((_rad)*(180.0/M_PI))
-#define DEG2RAD(_deg) ((_deg)*(M_PI/180.0))
-
-void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b);
-void hex_to_rgb(char *hexcol, float *r, float *g, float *b);
-void rgb_to_yuv(float r, float g, float b, float *ly, float *lu, float *lv);
-void yuv_to_rgb(float y, float u, float v, float *lr, float *lg, float *lb);
-void ycc_to_rgb(float y, float cb, float cr, float *lr, float *lg, float *lb);
-void rgb_to_ycc(float r, float g, float b, float *ly, float *lcb, float *lcr);
-void rgb_to_hsv(float r, float g, float b, float *lh, float *ls, float *lv);
-void xyz_to_rgb(float x, float y, float z, float *r, float *g, float *b, int colorspace);
-int constrain_rgb(float *r, float *g, float *b);
-unsigned int hsv_to_cpack(float h, float s, float v);
-unsigned int rgb_to_cpack(float r, float g, float b);
-void cpack_to_rgb(unsigned int col, float *r, float *g, float *b);
-void MinMaxRGB(short c[]);
-
-
-
-void VecStar(float mat[][3],float *vec);
-
-short EenheidsMat(float mat[][3]);
-
-void i_ortho(float left, float right, float bottom, float top, float nearClip, float farClip, float matrix[][4]);
-void i_polarview(float dist, float azimuth, float incidence, float twist, float Vm[][4]);
-void i_translate(float Tx, float Ty, float Tz, float mat[][4]);
-void i_multmatrix(float icand[][4], float Vm[][4]);
-void i_rotate(float angle, char axis, float mat[][4]);
-
-
-
-void MinMax3(float *min, float *max, float *vec);
-void SizeToMat3(float *size, float mat[][3]);
-void SizeToMat4(float *size, float mat[][4]);
-
-float Mat3ToScalef(float mat[][3]);
-float Mat4ToScalef(float mat[][4]);
-
-void printmatrix3(char *str, float m[][3]);
-void printmatrix4(char *str, float m[][4]);
-
-/* uit Sig.Proc.85 pag 253 */
-void Mat3ToQuat(float wmat[][3], float *q);
-void Mat4ToQuat(float m[][4], float *q);
-
-void Mat3ToSize(float mat[][3], float *size);
-void Mat4ToSize(float mat[][4], float *size);
-
-void triatoquat(float *v1, float *v2, float *v3, float *quat);
-
-void LocEulSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3]);
-void LocEulOSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3], short rotOrder);
-void LocQuatSizeToMat4(float mat[4][4], float loc[3], float quat[4], float size[3]);
-
-void tubemap(float x, float y, float z, float *u, float *v);
-void spheremap(float x, float y, float z, float *u, float *v);
-
-int LineIntersectLine(float v1[3], float v2[3], float v3[3], float v4[3], float i1[3], float i2[3]);
-int LineIntersectLineStrict(float v1[3], float v2[3], float v3[3], float v4[3], float vi[3], float *lambda);
-int LineIntersectsTriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv);
-int RayIntersectsTriangle(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv);
-int RayIntersectsTriangleThreshold(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv, float threshold);
-int SweepingSphereIntersectsTriangleUV(float p1[3], float p2[3], float radius, float v0[3], float v1[3], float v2[3], float *lambda, float *ipoint);
-int AxialLineIntersectsTriangle(int axis, float co1[3], float co2[3], float v0[3], float v1[3], float v2[3], float *lambda);
-int AabbIntersectAabb(float min1[3], float max1[3], float min2[3], float max2[3]);
-void VecfCubicInterpol(float *x1, float *v1, float *x2, float *v2, float t, float *x, float *v);
-void PointInQuad2DUV(float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv);
-void PointInFace2DUV(int isquad, float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv);
-int IsPointInTri2D(float v1[2], float v2[2], float v3[2], float pt[2]);
-int IsPointInTri2DInts(int x1, int y1, int x2, int y2, int a, int b);
-int point_in_tri_prism(float p[3], float v1[3], float v2[3], float v3[3]);
-
-float lambda_cp_line_ex(float p[3], float l1[3], float l2[3], float cp[3]);
-
-float AngleToLength(const float angle);
-
-typedef struct DualQuat {
- float quat[4];
- float trans[4];
-
- float scale[4][4];
- float scale_weight;
-} DualQuat;
-
-void Mat4ToDQuat(float basemat[][4], float mat[][4], DualQuat *dq);
-void DQuatToMat4(DualQuat *dq, float mat[][4]);
-void DQuatAddWeighted(DualQuat *dqsum, DualQuat *dq, float weight);
-void DQuatNormalize(DualQuat *dq, float totweight);
-void DQuatMulVecfl(DualQuat *dq, float *co, float mat[][3]);
-void DQuatCpyDQuat(DualQuat *dq1, DualQuat *dq2);
-
-/* Tangent stuff */
-typedef struct VertexTangent {
- float tang[3], uv[2];
- struct VertexTangent *next;
-} VertexTangent;
-
-void sum_or_add_vertex_tangent(void *arena, VertexTangent **vtang, float *tang, float *uv);
-float *find_vertex_tangent(VertexTangent *vtang, float *uv);
-void tangent_from_uv(float *uv1, float *uv2, float *uv3, float *co1, float *co2, float *co3, float *n, float *tang);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/source/blender/blenlib/BLI_math_rotation.h b/source/blender/blenlib/BLI_math_rotation.h
index 814dc3ba1a6..b221d89487f 100644
--- a/source/blender/blenlib/BLI_math_rotation.h
+++ b/source/blender/blenlib/BLI_math_rotation.h
@@ -72,6 +72,9 @@ void tri_to_quat(float q[4], float a[3], float b[3], float c[3]);
void vec_to_quat(float q[4], float vec[3], short axis, short upflag);
void rotation_between_vecs_to_quat(float q[4], float v1[3], float v2[3]);
+/* TODO: don't what this is, but it's not the same as mat3_to_quat */
+void mat3_to_quat_is_ok(float q[4], float mat[3][3]);
+
/* other */
void print_qt(char *str, float q[4]);
diff --git a/source/blender/blenlib/intern/arithb.c b/source/blender/blenlib/intern/arithb.c
deleted file mode 100644
index 874756135e5..00000000000
--- a/source/blender/blenlib/intern/arithb.c
+++ /dev/null
@@ -1,5488 +0,0 @@
-/* arithb.c
- *
- * simple math for blender code
- *
- * sort of cleaned up mar-01 nzc
- *
- * $Id$
- *
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
- * All rights reserved.
- *
- * The Original Code is: all of this file.
- *
- * Contributor(s): none yet.
- *
- * ***** END GPL LICENSE BLOCK *****
- */
-
-/* ************************ FUNKTIES **************************** */
-
-#include <stdlib.h>
-#include <math.h>
-#include <sys/types.h>
-#include <string.h>
-#include <float.h>
-
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-#if defined(__sun__) || defined( __sun ) || defined (__sparc) || defined (__sparc__)
-#include <strings.h>
-#endif
-
-#if !defined(__sgi) && !defined(WIN32)
-#include <sys/time.h>
-#include <unistd.h>
-#endif
-
-#include <stdio.h>
-#include "BLI_arithb.h"
-#include "BLI_memarena.h"
-
-/* A few small defines. Keep'em local! */
-#define SMALL_NUMBER 1.e-8
-#define ABS(x) ((x) < 0 ? -(x) : (x))
-#define SWAP(type, a, b) { type sw_ap; sw_ap=(a); (a)=(b); (b)=sw_ap; }
-#define CLAMP(a, b, c) if((a)<(b)) (a)=(b); else if((a)>(c)) (a)=(c)
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-
-#ifndef M_SQRT2
-#define M_SQRT2 1.41421356237309504880
-#endif
-
-
-float saacos(float fac)
-{
- if(fac<= -1.0f) return (float)M_PI;
- else if(fac>=1.0f) return 0.0;
- else return (float)acos(fac);
-}
-
-float saasin(float fac)
-{
- if(fac<= -1.0f) return (float)-M_PI/2.0f;
- else if(fac>=1.0f) return (float)M_PI/2.0f;
- else return (float)asin(fac);
-}
-
-float sasqrt(float fac)
-{
- if(fac<=0.0) return 0.0;
- return (float)sqrt(fac);
-}
-
-float saacosf(float fac)
-{
- if(fac<= -1.0f) return (float)M_PI;
- else if(fac>=1.0f) return 0.0f;
- else return (float)acosf(fac);
-}
-
-float saasinf(float fac)
-{
- if(fac<= -1.0f) return (float)-M_PI/2.0f;
- else if(fac>=1.0f) return (float)M_PI/2.0f;
- else return (float)asinf(fac);
-}
-
-float sasqrtf(float fac)
-{
- if(fac<=0.0) return 0.0;
- return (float)sqrtf(fac);
-}
-
-float Normalize(float *n)
-{
- float d;
-
- d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
- /* A larger value causes normalize errors in a scaled down models with camera xtreme close */
- if(d>1.0e-35f) {
- d= (float)sqrt(d);
-
- n[0]/=d;
- n[1]/=d;
- n[2]/=d;
- } else {
- n[0]=n[1]=n[2]= 0.0f;
- d= 0.0f;
- }
- return d;
-}
-
-/* Crossf stores the cross product c = a x b */
-void Crossf(float *c, float *a, float *b)
-{
- c[0] = a[1] * b[2] - a[2] * b[1];
- c[1] = a[2] * b[0] - a[0] * b[2];
- c[2] = a[0] * b[1] - a[1] * b[0];
-}
-
-/* Inpf returns the dot product, also called the scalar product and inner product */
-float Inpf( float *v1, float *v2)
-{
- return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
-}
-
-/* Project v1 on v2 */
-void Projf(float *c, float *v1, float *v2)
-{
- float mul;
- mul = Inpf(v1, v2) / Inpf(v2, v2);
-
- c[0] = mul * v2[0];
- c[1] = mul * v2[1];
- c[2] = mul * v2[2];
-}
-
-void Mat3Transp(float mat[][3])
-{
- float t;
-
- t = mat[0][1] ;
- mat[0][1] = mat[1][0] ;
- mat[1][0] = t;
- t = mat[0][2] ;
- mat[0][2] = mat[2][0] ;
- mat[2][0] = t;
- t = mat[1][2] ;
- mat[1][2] = mat[2][1] ;
- mat[2][1] = t;
-}
-
-void Mat4Transp(float mat[][4])
-{
- float t;
-
- t = mat[0][1] ;
- mat[0][1] = mat[1][0] ;
- mat[1][0] = t;
- t = mat[0][2] ;
- mat[0][2] = mat[2][0] ;
- mat[2][0] = t;
- t = mat[0][3] ;
- mat[0][3] = mat[3][0] ;
- mat[3][0] = t;
-
- t = mat[1][2] ;
- mat[1][2] = mat[2][1] ;
- mat[2][1] = t;
- t = mat[1][3] ;
- mat[1][3] = mat[3][1] ;
- mat[3][1] = t;
-
- t = mat[2][3] ;
- mat[2][3] = mat[3][2] ;
- mat[3][2] = t;
-}
-
-
-/*
- * invertmat -
- * computes the inverse of mat and puts it in inverse. Returns
- * TRUE on success (i.e. can always find a pivot) and FALSE on failure.
- * Uses Gaussian Elimination with partial (maximal column) pivoting.
- *
- * Mark Segal - 1992
- */
-
-int Mat4Invert(float inverse[][4], float mat[][4])
-{
- int i, j, k;
- double temp;
- float tempmat[4][4];
- float max;
- int maxj;
-
- /* Set inverse to identity */
- for (i=0; i<4; i++)
- for (j=0; j<4; j++)
- inverse[i][j] = 0;
- for (i=0; i<4; i++)
- inverse[i][i] = 1;
-
- /* Copy original matrix so we don't mess it up */
- for(i = 0; i < 4; i++)
- for(j = 0; j <4; j++)
- tempmat[i][j] = mat[i][j];
-
- for(i = 0; i < 4; i++) {
- /* Look for row with max pivot */
- max = ABS(tempmat[i][i]);
- maxj = i;
- for(j = i + 1; j < 4; j++) {
- if(ABS(tempmat[j][i]) > max) {
- max = ABS(tempmat[j][i]);
- maxj = j;
- }
- }
- /* Swap rows if necessary */
- if (maxj != i) {
- for( k = 0; k < 4; k++) {
- SWAP(float, tempmat[i][k], tempmat[maxj][k]);
- SWAP(float, inverse[i][k], inverse[maxj][k]);
- }
- }
-
- temp = tempmat[i][i];
- if (temp == 0)
- return 0; /* No non-zero pivot */
- for(k = 0; k < 4; k++) {
- tempmat[i][k] = (float)(tempmat[i][k]/temp);
- inverse[i][k] = (float)(inverse[i][k]/temp);
- }
- for(j = 0; j < 4; j++) {
- if(j != i) {
- temp = tempmat[j][i];
- for(k = 0; k < 4; k++) {
- tempmat[j][k] -= (float)(tempmat[i][k]*temp);
- inverse[j][k] -= (float)(inverse[i][k]*temp);
- }
- }
- }
- }
- return 1;
-}
-#ifdef TEST_ACTIVE
-void Mat4InvertSimp(float inverse[][4], float mat[][4])
-{
- /* only for Matrices that have a rotation */
- /* based at GG IV pag 205 */
- float scale;
-
- scale= mat[0][0]*mat[0][0] + mat[1][0]*mat[1][0] + mat[2][0]*mat[2][0];
- if(scale==0.0) return;
-
- scale= 1.0/scale;
-
- /* transpose and scale */
- inverse[0][0]= scale*mat[0][0];
- inverse[1][0]= scale*mat[0][1];
- inverse[2][0]= scale*mat[0][2];
- inverse[0][1]= scale*mat[1][0];
- inverse[1][1]= scale*mat[1][1];
- inverse[2][1]= scale*mat[1][2];
- inverse[0][2]= scale*mat[2][0];
- inverse[1][2]= scale*mat[2][1];
- inverse[2][2]= scale*mat[2][2];
-
- inverse[3][0]= -(inverse[0][0]*mat[3][0] + inverse[1][0]*mat[3][1] + inverse[2][0]*mat[3][2]);
- inverse[3][1]= -(inverse[0][1]*mat[3][0] + inverse[1][1]*mat[3][1] + inverse[2][1]*mat[3][2]);
- inverse[3][2]= -(inverse[0][2]*mat[3][0] + inverse[1][2]*mat[3][1] + inverse[2][2]*mat[3][2]);
-
- inverse[0][3]= inverse[1][3]= inverse[2][3]= 0.0;
- inverse[3][3]= 1.0;
-}
-#endif
-/* struct Matrix4; */
-
-#ifdef TEST_ACTIVE
-/* this seems to be unused.. */
-
-void Mat4Inv(float *m1, float *m2)
-{
-
-/* This gets me into trouble: */
- float mat1[3][3], mat2[3][3];
-
-/* void Mat3Inv(); */
-/* void Mat3CpyMat4(); */
-/* void Mat4CpyMat3(); */
-
- Mat3CpyMat4((float*)mat2,m2);
- Mat3Inv((float*)mat1, (float*) mat2);
- Mat4CpyMat3(m1, mat1);
-
-}
-#endif
-
-
-float Det2x2(float a,float b,float c,float d)
-{
-
- return a*d - b*c;
-}
-
-
-
-float Det3x3(float a1, float a2, float a3,
- float b1, float b2, float b3,
- float c1, float c2, float c3 )
-{
- float ans;
-
- ans = a1 * Det2x2( b2, b3, c2, c3 )
- - b1 * Det2x2( a2, a3, c2, c3 )
- + c1 * Det2x2( a2, a3, b2, b3 );
-
- return ans;
-}
-
-float Det4x4(float m[][4])
-{
- float ans;
- float a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
-
- a1= m[0][0];
- b1= m[0][1];
- c1= m[0][2];
- d1= m[0][3];
-
- a2= m[1][0];
- b2= m[1][1];
- c2= m[1][2];
- d2= m[1][3];
-
- a3= m[2][0];
- b3= m[2][1];
- c3= m[2][2];
- d3= m[2][3];
-
- a4= m[3][0];
- b4= m[3][1];
- c4= m[3][2];
- d4= m[3][3];
-
- ans = a1 * Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4)
- - b1 * Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4)
- + c1 * Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4)
- - d1 * Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
-
- return ans;
-}
-
-
-void Mat4Adj(float out[][4], float in[][4]) /* out = ADJ(in) */
-{
- float a1, a2, a3, a4, b1, b2, b3, b4;
- float c1, c2, c3, c4, d1, d2, d3, d4;
-
- a1= in[0][0];
- b1= in[0][1];
- c1= in[0][2];
- d1= in[0][3];
-
- a2= in[1][0];
- b2= in[1][1];
- c2= in[1][2];
- d2= in[1][3];
-
- a3= in[2][0];
- b3= in[2][1];
- c3= in[2][2];
- d3= in[2][3];
-
- a4= in[3][0];
- b4= in[3][1];
- c4= in[3][2];
- d4= in[3][3];
-
-
- out[0][0] = Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
- out[1][0] = - Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
- out[2][0] = Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
- out[3][0] = - Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
-
- out[0][1] = - Det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
- out[1][1] = Det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
- out[2][1] = - Det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
- out[3][1] = Det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
-
- out[0][2] = Det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
- out[1][2] = - Det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
- out[2][2] = Det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
- out[3][2] = - Det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
-
- out[0][3] = - Det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
- out[1][3] = Det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
- out[2][3] = - Det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
- out[3][3] = Det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
-}
-
-void Mat4InvGG(float out[][4], float in[][4]) /* from Graphic Gems I, out= INV(in) */
-{
- int i, j;
- float det;
-
- /* calculate the adjoint matrix */
-
- Mat4Adj(out,in);
-
- det = Det4x4(out);
-
- if ( fabs( det ) < SMALL_NUMBER) {
- return;
- }
-
- /* scale the adjoint matrix to get the inverse */
-
- for (i=0; i<4; i++)
- for(j=0; j<4; j++)
- out[i][j] = out[i][j] / det;
-
- /* the last factor is not always 1. For that reason an extra division should be implemented? */
-}
-
-
-void Mat3Inv(float m1[][3], float m2[][3])
-{
- short a,b;
- float det;
-
- /* calc adjoint */
- Mat3Adj(m1,m2);
-
- /* then determinant old matrix! */
- det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
- -m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
- +m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
-
- if(det==0) det=1;
- det= 1/det;
- for(a=0;a<3;a++) {
- for(b=0;b<3;b++) {
- m1[a][b]*=det;
- }
- }
-}
-
-void Mat3Adj(float m1[][3], float m[][3])
-{
- m1[0][0]=m[1][1]*m[2][2]-m[1][2]*m[2][1];
- m1[0][1]= -m[0][1]*m[2][2]+m[0][2]*m[2][1];
- m1[0][2]=m[0][1]*m[1][2]-m[0][2]*m[1][1];
-
- m1[1][0]= -m[1][0]*m[2][2]+m[1][2]*m[2][0];
- m1[1][1]=m[0][0]*m[2][2]-m[0][2]*m[2][0];
- m1[1][2]= -m[0][0]*m[1][2]+m[0][2]*m[1][0];
-
- m1[2][0]=m[1][0]*m[2][1]-m[1][1]*m[2][0];
- m1[2][1]= -m[0][0]*m[2][1]+m[0][1]*m[2][0];
- m1[2][2]=m[0][0]*m[1][1]-m[0][1]*m[1][0];
-}
-
-void Mat4MulMat4(float m1[][4], float m2[][4], float m3[][4])
-{
- /* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
-
- m1[0][0] = m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0] + m2[0][3]*m3[3][0];
- m1[0][1] = m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1] + m2[0][3]*m3[3][1];
- m1[0][2] = m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2] + m2[0][3]*m3[3][2];
- m1[0][3] = m2[0][0]*m3[0][3] + m2[0][1]*m3[1][3] + m2[0][2]*m3[2][3] + m2[0][3]*m3[3][3];
-
- m1[1][0] = m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0] + m2[1][3]*m3[3][0];
- m1[1][1] = m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1] + m2[1][3]*m3[3][1];
- m1[1][2] = m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2] + m2[1][3]*m3[3][2];
- m1[1][3] = m2[1][0]*m3[0][3] + m2[1][1]*m3[1][3] + m2[1][2]*m3[2][3] + m2[1][3]*m3[3][3];
-
- m1[2][0] = m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0] + m2[2][3]*m3[3][0];
- m1[2][1] = m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1] + m2[2][3]*m3[3][1];
- m1[2][2] = m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2] + m2[2][3]*m3[3][2];
- m1[2][3] = m2[2][0]*m3[0][3] + m2[2][1]*m3[1][3] + m2[2][2]*m3[2][3] + m2[2][3]*m3[3][3];
-
- m1[3][0] = m2[3][0]*m3[0][0] + m2[3][1]*m3[1][0] + m2[3][2]*m3[2][0] + m2[3][3]*m3[3][0];
- m1[3][1] = m2[3][0]*m3[0][1] + m2[3][1]*m3[1][1] + m2[3][2]*m3[2][1] + m2[3][3]*m3[3][1];
- m1[3][2] = m2[3][0]*m3[0][2] + m2[3][1]*m3[1][2] + m2[3][2]*m3[2][2] + m2[3][3]*m3[3][2];
- m1[3][3] = m2[3][0]*m3[0][3] + m2[3][1]*m3[1][3] + m2[3][2]*m3[2][3] + m2[3][3]*m3[3][3];
-
-}
-#ifdef TEST_ACTIVE
-void subMat4MulMat4(float *m1, float *m2, float *m3)
-{
-
- m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
- m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
- m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
- m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
- m1+=4;
- m2+=4;
- m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
- m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
- m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
- m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
- m1+=4;
- m2+=4;
- m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
- m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
- m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
- m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
-}
-#endif
-
-#ifndef TEST_ACTIVE
-void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3])
-#else
-void Mat3MulMat3(float *m1, float *m3, float *m2)
-#endif
-{
- /* m1[i][j] = m2[i][k]*m3[k][j], args are flipped! */
-#ifndef TEST_ACTIVE
- m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
- m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
- m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
-
- m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
- m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
- m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
-
- m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
- m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
- m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
-#else
- m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
- m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
- m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
- m1+=3;
- m2+=3;
- m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
- m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
- m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
- m1+=3;
- m2+=3;
- m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
- m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
- m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
-#endif
-} /* end of void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3]) */
-
-void Mat4MulMat43(float (*m1)[4], float (*m3)[4], float (*m2)[3])
-{
- m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
- m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
- m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
- m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
- m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
- m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
- m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
- m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
- m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
-}
-/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3*/
-void Mat3IsMat3MulMat4(float m1[][3], float m2[][3], float m3[][4])
-{
- /* m1[i][j] = m2[i][k] * m3[k][j] */
- m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] +m2[0][2] * m3[2][0];
- m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] +m2[0][2] * m3[2][1];
- m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] +m2[0][2] * m3[2][2];
-
- m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] +m2[1][2] * m3[2][0];
- m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] +m2[1][2] * m3[2][1];
- m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] +m2[1][2] * m3[2][2];
-
- m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] +m2[2][2] * m3[2][0];
- m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] +m2[2][2] * m3[2][1];
- m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] +m2[2][2] * m3[2][2];
-}
-
-
-
-void Mat4MulMat34(float (*m1)[4], float (*m3)[3], float (*m2)[4])
-{
- m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
- m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
- m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
- m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
- m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
- m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
- m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
- m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
- m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
-}
-
-void Mat4CpyMat4(float m1[][4], float m2[][4])
-{
- memcpy(m1, m2, 4*4*sizeof(float));
-}
-
-void Mat4SwapMat4(float m1[][4], float m2[][4])
-{
- float t;
- int i, j;
-
- for(i = 0; i < 4; i++) {
- for (j = 0; j < 4; j++) {
- t = m1[i][j];
- m1[i][j] = m2[i][j];
- m2[i][j] = t;
- }
- }
-}
-
-typedef float Mat3Row[3];
-typedef float Mat4Row[4];
-
-#ifdef TEST_ACTIVE
-void Mat3CpyMat4(float *m1p, float *m2p)
-#else
-void Mat3CpyMat4(float m1[][3], float m2[][4])
-#endif
-{
-#ifdef TEST_ACTIVE
- int i, j;
- Mat3Row *m1= (Mat3Row *)m1p;
- Mat4Row *m2= (Mat4Row *)m2p;
- for ( i = 0; i++; i < 3) {
- for (j = 0; j++; j < 3) {
- m1p[3*i + j] = m2p[4*i + j];
- }
- }
-#endif
- m1[0][0]= m2[0][0];
- m1[0][1]= m2[0][1];
- m1[0][2]= m2[0][2];
-
- m1[1][0]= m2[1][0];
- m1[1][1]= m2[1][1];
- m1[1][2]= m2[1][2];
-
- m1[2][0]= m2[2][0];
- m1[2][1]= m2[2][1];
- m1[2][2]= m2[2][2];
-}
-
-/* Butched. See .h for comment */
-/* void Mat4CpyMat3(float m1[][4], float m2[][3]) */
-#ifdef TEST_ACTIVE
-void Mat4CpyMat3(float* m1, float *m2)
-{
- int i;
- for (i = 0; i < 3; i++) {
- m1[(4*i)] = m2[(3*i)];
- m1[(4*i) + 1]= m2[(3*i) + 1];
- m1[(4*i) + 2]= m2[(3*i) + 2];
- m1[(4*i) + 3]= 0.0;
- i++;
- }
-
- m1[12]=m1[13]= m1[14]= 0.0;
- m1[15]= 1.0;
-}
-#else
-
-void Mat4CpyMat3(float m1[][4], float m2[][3]) /* no clear */
-{
- m1[0][0]= m2[0][0];
- m1[0][1]= m2[0][1];
- m1[0][2]= m2[0][2];
-
- m1[1][0]= m2[1][0];
- m1[1][1]= m2[1][1];
- m1[1][2]= m2[1][2];
-
- m1[2][0]= m2[2][0];
- m1[2][1]= m2[2][1];
- m1[2][2]= m2[2][2];
-
- /* Reevan's Bugfix */
- m1[0][3]=0.0F;
- m1[1][3]=0.0F;
- m1[2][3]=0.0F;
-
- m1[3][0]=0.0F;
- m1[3][1]=0.0F;
- m1[3][2]=0.0F;
- m1[3][3]=1.0F;
-
-
-}
-#endif
-
-void Mat3CpyMat3(float m1[][3], float m2[][3])
-{
- /* destination comes first: */
- memcpy(&m1[0], &m2[0], 9*sizeof(float));
-}
-
-void Mat3MulSerie(float answ[][3],
- float m1[][3], float m2[][3], float m3[][3],
- float m4[][3], float m5[][3], float m6[][3],
- float m7[][3], float m8[][3])
-{
- float temp[3][3];
-
- if(m1==0 || m2==0) return;
-
-
- Mat3MulMat3(answ, m2, m1);
- if(m3) {
- Mat3MulMat3(temp, m3, answ);
- if(m4) {
- Mat3MulMat3(answ, m4, temp);
- if(m5) {
- Mat3MulMat3(temp, m5, answ);
- if(m6) {
- Mat3MulMat3(answ, m6, temp);
- if(m7) {
- Mat3MulMat3(temp, m7, answ);
- if(m8) {
- Mat3MulMat3(answ, m8, temp);
- }
- else Mat3CpyMat3(answ, temp);
- }
- }
- else Mat3CpyMat3(answ, temp);
- }
- }
- else Mat3CpyMat3(answ, temp);
- }
-}
-
-void Mat4MulSerie(float answ[][4], float m1[][4],
- float m2[][4], float m3[][4], float m4[][4],
- float m5[][4], float m6[][4], float m7[][4],
- float m8[][4])
-{
- float temp[4][4];
-
- if(m1==0 || m2==0) return;
-
- Mat4MulMat4(answ, m2, m1);
- if(m3) {
- Mat4MulMat4(temp, m3, answ);
- if(m4) {
- Mat4MulMat4(answ, m4, temp);
- if(m5) {
- Mat4MulMat4(temp, m5, answ);
- if(m6) {
- Mat4MulMat4(answ, m6, temp);
- if(m7) {
- Mat4MulMat4(temp, m7, answ);
- if(m8) {
- Mat4MulMat4(answ, m8, temp);
- }
- else Mat4CpyMat4(answ, temp);
- }
- }
- else Mat4CpyMat4(answ, temp);
- }
- }
- else Mat4CpyMat4(answ, temp);
- }
-}
-
-void Mat3BlendMat3(float out[][3], float dst[][3], float src[][3], float srcweight)
-{
- float squat[4], dquat[4], fquat[4];
- float ssize[3], dsize[3], fsize[4];
- float rmat[3][3], smat[3][3];
-
- Mat3ToQuat(dst, dquat);
- Mat3ToSize(dst, dsize);
-
- Mat3ToQuat(src, squat);
- Mat3ToSize(src, ssize);
-
- /* do blending */
- QuatInterpol(fquat, dquat, squat, srcweight);
- VecLerpf(fsize, dsize, ssize, srcweight);
-
- /* compose new matrix */
- QuatToMat3(fquat, rmat);
- SizeToMat3(fsize, smat);
- Mat3MulMat3(out, rmat, smat);
-}
-
-void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight)
-{
- float squat[4], dquat[4], fquat[4];
- float ssize[3], dsize[3], fsize[4];
- float sloc[3], dloc[3], floc[3];
-
- Mat4ToQuat(dst, dquat);
- Mat4ToSize(dst, dsize);
- VecCopyf(dloc, dst[3]);
-
- Mat4ToQuat(src, squat);
- Mat4ToSize(src, ssize);
- VecCopyf(sloc, src[3]);
-
- /* do blending */
- VecLerpf(floc, dloc, sloc, srcweight);
- QuatInterpol(fquat, dquat, squat, srcweight);
- VecLerpf(fsize, dsize, ssize, srcweight);
-
- /* compose new matrix */
- LocQuatSizeToMat4(out, floc, fquat, fsize);
-}
-
-void Mat4Clr(float *m)
-{
- memset(m, 0, 4*4*sizeof(float));
-}
-
-void Mat3Clr(float *m)
-{
- memset(m, 0, 3*3*sizeof(float));
-}
-
-void Mat4One(float m[][4])
-{
-
- m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
- m[0][1]= m[0][2]= m[0][3]= 0.0;
- m[1][0]= m[1][2]= m[1][3]= 0.0;
- m[2][0]= m[2][1]= m[2][3]= 0.0;
- m[3][0]= m[3][1]= m[3][2]= 0.0;
-}
-
-void Mat3One(float m[][3])
-{
-
- m[0][0]= m[1][1]= m[2][2]= 1.0;
- m[0][1]= m[0][2]= 0.0;
- m[1][0]= m[1][2]= 0.0;
- m[2][0]= m[2][1]= 0.0;
-}
-
-void Mat4Scale(float m[][4], float scale)
-{
-
- m[0][0]= m[1][1]= m[2][2]= scale;
- m[3][3]= 1.0;
- m[0][1]= m[0][2]= m[0][3]= 0.0;
- m[1][0]= m[1][2]= m[1][3]= 0.0;
- m[2][0]= m[2][1]= m[2][3]= 0.0;
- m[3][0]= m[3][1]= m[3][2]= 0.0;
-}
-
-void Mat3Scale(float m[][3], float scale)
-{
-
- m[0][0]= m[1][1]= m[2][2]= scale;
- m[0][1]= m[0][2]= 0.0;
- m[1][0]= m[1][2]= 0.0;
- m[2][0]= m[2][1]= 0.0;
-}
-
-void Mat4MulVec( float mat[][4], int *vec)
-{
- int x,y;
-
- x=vec[0];
- y=vec[1];
- vec[0]=(int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0]);
- vec[1]=(int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1]);
- vec[2]=(int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2]);
-}
-
-void Mat4MulVecfl( float mat[][4], float *vec)
-{
- float x,y;
-
- x=vec[0];
- y=vec[1];
- vec[0]=x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
- vec[1]=x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
- vec[2]=x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
-}
-
-void VecMat4MulVecfl(float *in, float mat[][4], float *vec)
-{
- float x,y;
-
- x=vec[0];
- y=vec[1];
- in[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
- in[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
- in[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
-}
-
-void Mat4Mul3Vecfl( float mat[][4], float *vec)
-{
- float x,y;
-
- x= vec[0];
- y= vec[1];
- vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
- vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
- vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
-}
-
-void Mat4MulVec3Project(float mat[][4], float *vec)
-{
- float w;
-
- w = vec[0]*mat[0][3] + vec[1]*mat[1][3] + vec[2]*mat[2][3] + mat[3][3];
- Mat4MulVecfl(mat, vec);
-
- vec[0] /= w;
- vec[1] /= w;
- vec[2] /= w;
-}
-
-void Mat4MulVec4fl( float mat[][4], float *vec)
-{
- float x,y,z;
-
- x=vec[0];
- y=vec[1];
- z= vec[2];
- vec[0]=x*mat[0][0] + y*mat[1][0] + z*mat[2][0] + mat[3][0]*vec[3];
- vec[1]=x*mat[0][1] + y*mat[1][1] + z*mat[2][1] + mat[3][1]*vec[3];
- vec[2]=x*mat[0][2] + y*mat[1][2] + z*mat[2][2] + mat[3][2]*vec[3];
- vec[3]=x*mat[0][3] + y*mat[1][3] + z*mat[2][3] + mat[3][3]*vec[3];
-}
-
-void Mat3MulVec( float mat[][3], int *vec)
-{
- int x,y;
-
- x=vec[0];
- y=vec[1];
- vec[0]= (int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2]);
- vec[1]= (int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2]);
- vec[2]= (int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2]);
-}
-
-void Mat3MulVecfl( float mat[][3], float *vec)
-{
- float x,y;
-
- x=vec[0];
- y=vec[1];
- vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
- vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
- vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
-}
-
-void Mat3MulVecd( float mat[][3], double *vec)
-{
- double x,y;
-
- x=vec[0];
- y=vec[1];
- vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
- vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
- vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
-}
-
-void Mat3TransMulVecfl( float mat[][3], float *vec)
-{
- float x,y;
-
- x=vec[0];
- y=vec[1];
- vec[0]= x*mat[0][0] + y*mat[0][1] + mat[0][2]*vec[2];
- vec[1]= x*mat[1][0] + y*mat[1][1] + mat[1][2]*vec[2];
- vec[2]= x*mat[2][0] + y*mat[2][1] + mat[2][2]*vec[2];
-}
-
-void Mat3MulFloat(float *m, float f)
-{
- int i;
-
- for(i=0;i<9;i++) m[i]*=f;
-}
-
-void Mat4MulFloat(float *m, float f)
-{
- int i;
-
- for(i=0;i<16;i++) m[i]*=f; /* count to 12: without vector component */
-}
-
-
-void Mat4MulFloat3(float *m, float f) /* only scale component */
-{
- int i,j;
-
- for(i=0; i<3; i++) {
- for(j=0; j<3; j++) {
-
- m[4*i+j] *= f;
- }
- }
-}
-
-void Mat3AddMat3(float m1[][3], float m2[][3], float m3[][3])
-{
- int i, j;
-
- for(i=0;i<3;i++)
- for(j=0;j<3;j++)
- m1[i][j]= m2[i][j] + m3[i][j];
-}
-
-void Mat4AddMat4(float m1[][4], float m2[][4], float m3[][4])
-{
- int i, j;
-
- for(i=0;i<4;i++)
- for(j=0;j<4;j++)
- m1[i][j]= m2[i][j] + m3[i][j];
-}
-
-void VecStar(float mat[][3], float *vec)
-{
-
- mat[0][0]= mat[1][1]= mat[2][2]= 0.0;
- mat[0][1]= -vec[2];
- mat[0][2]= vec[1];
- mat[1][0]= vec[2];
- mat[1][2]= -vec[0];
- mat[2][0]= -vec[1];
- mat[2][1]= vec[0];
-
-}
-#ifdef TEST_ACTIVE
-short EenheidsMat(float mat[][3])
-{
-
- if(mat[0][0]==1.0 && mat[0][1]==0.0 && mat[0][2]==0.0)
- if(mat[1][0]==0.0 && mat[1][1]==1.0 && mat[1][2]==0.0)
- if(mat[2][0]==0.0 && mat[2][1]==0.0 && mat[2][2]==1.0)
- return 1;
- return 0;
-}
-#endif
-
-int FloatCompare( float *v1, float *v2, float limit)
-{
-
- if( fabs(v1[0]-v2[0])<limit ) {
- if( fabs(v1[1]-v2[1])<limit ) {
- if( fabs(v1[2]-v2[2])<limit ) return 1;
- }
- }
- return 0;
-}
-
-int FloatCompare4( float *v1, float *v2, float limit)
-{
-
- if( fabs(v1[0]-v2[0])<limit ) {
- if( fabs(v1[1]-v2[1])<limit ) {
- if( fabs(v1[2]-v2[2])<limit ) {
- if( fabs(v1[3]-v2[3])<limit ) return 1;
- }
- }
- }
- return 0;
-}
-
-float FloatLerpf( float target, float origin, float fac)
-{
- return (fac*target) + (1.0f-fac)*origin;
-}
-
-void printvecf( char *str, float v[3])
-{
- printf("%s: %.3f %.3f %.3f\n", str, v[0], v[1], v[2]);
-
-}
-
-void printquat( char *str, float q[4])
-{
- printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
-
-}
-
-void printvec4f( char *str, float v[4])
-{
- printf("%s\n", str);
- printf("%f %f %f %f\n",v[0],v[1],v[2], v[3]);
- printf("\n");
-
-}
-
-void printmatrix4( char *str, float m[][4])
-{
- printf("%s\n", str);
- printf("%f %f %f %f\n",m[0][0],m[1][0],m[2][0],m[3][0]);
- printf("%f %f %f %f\n",m[0][1],m[1][1],m[2][1],m[3][1]);
- printf("%f %f %f %f\n",m[0][2],m[1][2],m[2][2],m[3][2]);
- printf("%f %f %f %f\n",m[0][3],m[1][3],m[2][3],m[3][3]);
- printf("\n");
-
-}
-
-void printmatrix3( char *str, float m[][3])
-{
- printf("%s\n", str);
- printf("%f %f %f\n",m[0][0],m[1][0],m[2][0]);
- printf("%f %f %f\n",m[0][1],m[1][1],m[2][1]);
- printf("%f %f %f\n",m[0][2],m[1][2],m[2][2]);
- printf("\n");
-
-}
-
-/* **************** QUATERNIONS ********** */
-
-int QuatIsNul(float *q)
-{
- return (q[0] == 0 && q[1] == 0 && q[2] == 0 && q[3] == 0);
-}
-
-void QuatMul(float *q, float *q1, float *q2)
-{
- float t0,t1,t2;
-
- t0= q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3];
- t1= q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2];
- t2= q1[0]*q2[2]+q1[2]*q2[0]+q1[3]*q2[1]-q1[1]*q2[3];
- q[3]= q1[0]*q2[3]+q1[3]*q2[0]+q1[1]*q2[2]-q1[2]*q2[1];
- q[0]=t0;
- q[1]=t1;
- q[2]=t2;
-}
-
-/* Assumes a unit quaternion */
-void QuatMulVecf(float *q, float *v)
-{
- float t0, t1, t2;
-
- t0= -q[1]*v[0]-q[2]*v[1]-q[3]*v[2];
- t1= q[0]*v[0]+q[2]*v[2]-q[3]*v[1];
- t2= q[0]*v[1]+q[3]*v[0]-q[1]*v[2];
- v[2]= q[0]*v[2]+q[1]*v[1]-q[2]*v[0];
- v[0]=t1;
- v[1]=t2;
-
- t1= t0*-q[1]+v[0]*q[0]-v[1]*q[3]+v[2]*q[2];
- t2= t0*-q[2]+v[1]*q[0]-v[2]*q[1]+v[0]*q[3];
- v[2]= t0*-q[3]+v[2]*q[0]-v[0]*q[2]+v[1]*q[1];
- v[0]=t1;
- v[1]=t2;
-}
-
-void QuatConj(float *q)
-{
- q[1] = -q[1];
- q[2] = -q[2];
- q[3] = -q[3];
-}
-
-float QuatDot(float *q1, float *q2)
-{
- return q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2] + q1[3]*q2[3];
-}
-
-void QuatInv(float *q)
-{
- float f = QuatDot(q, q);
-
- if (f == 0.0f)
- return;
-
- QuatConj(q);
- QuatMulf(q, 1.0f/f);
-}
-
-/* simple mult */
-void QuatMulf(float *q, float f)
-{
- q[0] *= f;
- q[1] *= f;
- q[2] *= f;
- q[3] *= f;
-}
-
-void QuatSub(float *q, float *q1, float *q2)
-{
- q2[0]= -q2[0];
- QuatMul(q, q1, q2);
- q2[0]= -q2[0];
-}
-
-/* angular mult factor */
-void QuatMulFac(float *q, float fac)
-{
- float angle= fac*saacos(q[0]); /* quat[0]= cos(0.5*angle), but now the 0.5 and 2.0 rule out */
-
- float co= (float)cos(angle);
- float si= (float)sin(angle);
- q[0]= co;
- Normalize(q+1);
- q[1]*= si;
- q[2]*= si;
- q[3]*= si;
-
-}
-
-void QuatToMat3( float *q, float m[][3])
-{
- double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
-
- q0= M_SQRT2 * q[0];
- q1= M_SQRT2 * q[1];
- q2= M_SQRT2 * q[2];
- q3= M_SQRT2 * q[3];
-
- qda= q0*q1;
- qdb= q0*q2;
- qdc= q0*q3;
- qaa= q1*q1;
- qab= q1*q2;
- qac= q1*q3;
- qbb= q2*q2;
- qbc= q2*q3;
- qcc= q3*q3;
-
- m[0][0]= (float)(1.0-qbb-qcc);
- m[0][1]= (float)(qdc+qab);
- m[0][2]= (float)(-qdb+qac);
-
- m[1][0]= (float)(-qdc+qab);
- m[1][1]= (float)(1.0-qaa-qcc);
- m[1][2]= (float)(qda+qbc);
-
- m[2][0]= (float)(qdb+qac);
- m[2][1]= (float)(-qda+qbc);
- m[2][2]= (float)(1.0-qaa-qbb);
-}
-
-
-void QuatToMat4( float *q, float m[][4])
-{
- double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
-
- q0= M_SQRT2 * q[0];
- q1= M_SQRT2 * q[1];
- q2= M_SQRT2 * q[2];
- q3= M_SQRT2 * q[3];
-
- qda= q0*q1;
- qdb= q0*q2;
- qdc= q0*q3;
- qaa= q1*q1;
- qab= q1*q2;
- qac= q1*q3;
- qbb= q2*q2;
- qbc= q2*q3;
- qcc= q3*q3;
-
- m[0][0]= (float)(1.0-qbb-qcc);
- m[0][1]= (float)(qdc+qab);
- m[0][2]= (float)(-qdb+qac);
- m[0][3]= 0.0f;
-
- m[1][0]= (float)(-qdc+qab);
- m[1][1]= (float)(1.0-qaa-qcc);
- m[1][2]= (float)(qda+qbc);
- m[1][3]= 0.0f;
-
- m[2][0]= (float)(qdb+qac);
- m[2][1]= (float)(-qda+qbc);
- m[2][2]= (float)(1.0-qaa-qbb);
- m[2][3]= 0.0f;
-
- m[3][0]= m[3][1]= m[3][2]= 0.0f;
- m[3][3]= 1.0f;
-}
-
-void Mat3ToQuat(float wmat[][3], float *q)
-{
- double tr, s;
- float mat[3][3];
-
- /* work on a copy */
- Mat3CpyMat3(mat, wmat);
- Mat3Ortho(mat); /* this is needed AND a NormalQuat in the end */
-
- tr= 0.25*(1.0+mat[0][0]+mat[1][1]+mat[2][2]);
-
- if(tr>FLT_EPSILON) {
- s= sqrt( tr);
- q[0]= (float)s;
- s= 1.0/(4.0*s);
- q[1]= (float)((mat[1][2]-mat[2][1])*s);
- q[2]= (float)((mat[2][0]-mat[0][2])*s);
- q[3]= (float)((mat[0][1]-mat[1][0])*s);
- }
- else {
- if(mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) {
- s= 2.0*sqrtf(1.0 + mat[0][0] - mat[1][1] - mat[2][2]);
- q[1]= (float)(0.25*s);
-
- s= 1.0/s;
- q[0]= (float)((mat[2][1] - mat[1][2])*s);
- q[2]= (float)((mat[1][0] + mat[0][1])*s);
- q[3]= (float)((mat[2][0] + mat[0][2])*s);
- }
- else if(mat[1][1] > mat[2][2]) {
- s= 2.0*sqrtf(1.0 + mat[1][1] - mat[0][0] - mat[2][2]);
- q[2]= (float)(0.25*s);
-
- s= 1.0/s;
- q[0]= (float)((mat[2][0] - mat[0][2])*s);
- q[1]= (float)((mat[1][0] + mat[0][1])*s);
- q[3]= (float)((mat[2][1] + mat[1][2])*s);
- }
- else {
- s= 2.0*sqrtf(1.0 + mat[2][2] - mat[0][0] - mat[1][1]);
- q[3]= (float)(0.25*s);
-
- s= 1.0/s;
- q[0]= (float)((mat[1][0] - mat[0][1])*s);
- q[1]= (float)((mat[2][0] + mat[0][2])*s);
- q[2]= (float)((mat[2][1] + mat[1][2])*s);
- }
- }
- NormalQuat(q);
-}
-
-void Mat3ToQuat_is_ok( float wmat[][3], float *q)
-{
- float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
-
- /* work on a copy */
- Mat3CpyMat3(mat, wmat);
- Mat3Ortho(mat);
-
- /* rotate z-axis of matrix to z-axis */
-
- nor[0] = mat[2][1]; /* cross product with (0,0,1) */
- nor[1] = -mat[2][0];
- nor[2] = 0.0;
- Normalize(nor);
-
- co= mat[2][2];
- angle= 0.5f*saacos(co);
-
- co= (float)cos(angle);
- si= (float)sin(angle);
- q1[0]= co;
- q1[1]= -nor[0]*si; /* negative here, but why? */
- q1[2]= -nor[1]*si;
- q1[3]= -nor[2]*si;
-
- /* rotate back x-axis from mat, using inverse q1 */
- QuatToMat3(q1, matr);
- Mat3Inv(matn, matr);
- Mat3MulVecfl(matn, mat[0]);
-
- /* and align x-axes */
- angle= (float)(0.5*atan2(mat[0][1], mat[0][0]));
-
- co= (float)cos(angle);
- si= (float)sin(angle);
- q2[0]= co;
- q2[1]= 0.0f;
- q2[2]= 0.0f;
- q2[3]= si;
-
- QuatMul(q, q1, q2);
-}
-
-
-void Mat4ToQuat( float m[][4], float *q)
-{
- float mat[3][3];
-
- Mat3CpyMat4(mat, m);
- Mat3ToQuat(mat, q);
-
-}
-
-void QuatOne(float *q)
-{
- q[0]= 1.0;
- q[1]= q[2]= q[3]= 0.0;
-}
-
-void NormalQuat(float *q)
-{
- float len;
-
- len= (float)sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
- if(len!=0.0) {
- q[0]/= len;
- q[1]/= len;
- q[2]/= len;
- q[3]/= len;
- } else {
- q[1]= 1.0f;
- q[0]= q[2]= q[3]= 0.0f;
- }
-}
-
-void RotationBetweenVectorsToQuat(float *q, float v1[3], float v2[3])
-{
- float axis[3];
- float angle;
-
- Crossf(axis, v1, v2);
-
- angle = NormalizedVecAngle2(v1, v2);
-
- AxisAngleToQuat(q, axis, angle);
-}
-
-void vectoquat(float *vec, short axis, short upflag, float *q)
-{
- float q2[4], nor[3], *fp, mat[3][3], angle, si, co, x2, y2, z2, len1;
-
- /* first rotate to axis */
- if(axis>2) {
- x2= vec[0] ; y2= vec[1] ; z2= vec[2];
- axis-= 3;
- }
- else {
- x2= -vec[0] ; y2= -vec[1] ; z2= -vec[2];
- }
-
- q[0]=1.0;
- q[1]=q[2]=q[3]= 0.0;
-
- len1= (float)sqrt(x2*x2+y2*y2+z2*z2);
- if(len1 == 0.0) return;
-
- /* nasty! I need a good routine for this...
- * problem is a rotation of an Y axis to the negative Y-axis for example.
- */
-
- if(axis==0) { /* x-axis */
- nor[0]= 0.0;
- nor[1]= -z2;
- nor[2]= y2;
-
- if(fabs(y2)+fabs(z2)<0.0001)
- nor[1]= 1.0;
-
- co= x2;
- }
- else if(axis==1) { /* y-axis */
- nor[0]= z2;
- nor[1]= 0.0;
- nor[2]= -x2;
-
- if(fabs(x2)+fabs(z2)<0.0001)
- nor[2]= 1.0;
-
- co= y2;
- }
- else { /* z-axis */
- nor[0]= -y2;
- nor[1]= x2;
- nor[2]= 0.0;
-
- if(fabs(x2)+fabs(y2)<0.0001)
- nor[0]= 1.0;
-
- co= z2;
- }
- co/= len1;
-
- Normalize(nor);
-
- angle= 0.5f*saacos(co);
- si= (float)sin(angle);
- q[0]= (float)cos(angle);
- q[1]= nor[0]*si;
- q[2]= nor[1]*si;
- q[3]= nor[2]*si;
-
- if(axis!=upflag) {
- QuatToMat3(q, mat);
-
- fp= mat[2];
- if(axis==0) {
- if(upflag==1) angle= (float)(0.5*atan2(fp[2], fp[1]));
- else angle= (float)(-0.5*atan2(fp[1], fp[2]));
- }
- else if(axis==1) {
- if(upflag==0) angle= (float)(-0.5*atan2(fp[2], fp[0]));
- else angle= (float)(0.5*atan2(fp[0], fp[2]));
- }
- else {
- if(upflag==0) angle= (float)(0.5*atan2(-fp[1], -fp[0]));
- else angle= (float)(-0.5*atan2(-fp[0], -fp[1]));
- }
-
- co= (float)cos(angle);
- si= (float)(sin(angle)/len1);
- q2[0]= co;
- q2[1]= x2*si;
- q2[2]= y2*si;
- q2[3]= z2*si;
-
- QuatMul(q,q2,q);
- }
-}
-
-void VecUpMat3old( float *vec, float mat[][3], short axis)
-{
- float inp, up[3];
- short cox = 0, coy = 0, coz = 0;
-
- /* using different up's is not useful, infact there is no real 'up'!
- */
-
- up[0]= 0.0;
- up[1]= 0.0;
- up[2]= 1.0;
-
- if(axis==0) {
- cox= 0; coy= 1; coz= 2; /* Y up Z tr */
- }
- if(axis==1) {
- cox= 1; coy= 2; coz= 0; /* Z up X tr */
- }
- if(axis==2) {
- cox= 2; coy= 0; coz= 1; /* X up Y tr */
- }
- if(axis==3) {
- cox= 0; coy= 2; coz= 1; /* */
- }
- if(axis==4) {
- cox= 1; coy= 0; coz= 2; /* */
- }
- if(axis==5) {
- cox= 2; coy= 1; coz= 0; /* Y up X tr */
- }
-
- mat[coz][0]= vec[0];
- mat[coz][1]= vec[1];
- mat[coz][2]= vec[2];
- Normalize((float *)mat[coz]);
-
- inp= mat[coz][0]*up[0] + mat[coz][1]*up[1] + mat[coz][2]*up[2];
- mat[coy][0]= up[0] - inp*mat[coz][0];
- mat[coy][1]= up[1] - inp*mat[coz][1];
- mat[coy][2]= up[2] - inp*mat[coz][2];
-
- Normalize((float *)mat[coy]);
-
- Crossf(mat[cox], mat[coy], mat[coz]);
-
-}
-
-void VecUpMat3(float *vec, float mat[][3], short axis)
-{
- float inp;
- short cox = 0, coy = 0, coz = 0;
-
- /* using different up's is not useful, infact there is no real 'up'!
- */
-
- if(axis==0) {
- cox= 0; coy= 1; coz= 2; /* Y up Z tr */
- }
- if(axis==1) {
- cox= 1; coy= 2; coz= 0; /* Z up X tr */
- }
- if(axis==2) {
- cox= 2; coy= 0; coz= 1; /* X up Y tr */
- }
- if(axis==3) {
- cox= 0; coy= 1; coz= 2; /* Y op -Z tr */
- vec[0]= -vec[0];
- vec[1]= -vec[1];
- vec[2]= -vec[2];
- }
- if(axis==4) {
- cox= 1; coy= 0; coz= 2; /* */
- }
- if(axis==5) {
- cox= 2; coy= 1; coz= 0; /* Y up X tr */
- }
-
- mat[coz][0]= vec[0];
- mat[coz][1]= vec[1];
- mat[coz][2]= vec[2];
- Normalize((float *)mat[coz]);
-
- inp= mat[coz][2];
- mat[coy][0]= - inp*mat[coz][0];
- mat[coy][1]= - inp*mat[coz][1];
- mat[coy][2]= 1.0f - inp*mat[coz][2];
-
- Normalize((float *)mat[coy]);
-
- Crossf(mat[cox], mat[coy], mat[coz]);
-
-}
-
-/* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
-void QuatInterpolW(float *, float *, float *, float ); // XXX why this?
-
-void QuatInterpolW(float *result, float *quat1, float *quat2, float t)
-{
- float omega, cosom, sinom, sc1, sc2;
-
- cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
-
- /* rotate around shortest angle */
- if ((1.0f + cosom) > 0.0001f) {
-
- if ((1.0f - cosom) > 0.0001f) {
- omega = (float)acos(cosom);
- sinom = (float)sin(omega);
- sc1 = (float)sin((1.0 - t) * omega) / sinom;
- sc2 = (float)sin(t * omega) / sinom;
- }
- else {
- sc1 = 1.0f - t;
- sc2 = t;
- }
- result[0] = sc1*quat1[0] + sc2*quat2[0];
- result[1] = sc1*quat1[1] + sc2*quat2[1];
- result[2] = sc1*quat1[2] + sc2*quat2[2];
- result[3] = sc1*quat1[3] + sc2*quat2[3];
- }
- else {
- result[0] = quat2[3];
- result[1] = -quat2[2];
- result[2] = quat2[1];
- result[3] = -quat2[0];
-
- sc1 = (float)sin((1.0 - t)*M_PI_2);
- sc2 = (float)sin(t*M_PI_2);
-
- result[0] = sc1*quat1[0] + sc2*result[0];
- result[1] = sc1*quat1[1] + sc2*result[1];
- result[2] = sc1*quat1[2] + sc2*result[2];
- result[3] = sc1*quat1[3] + sc2*result[3];
- }
-}
-
-void QuatInterpol(float *result, float *quat1, float *quat2, float t)
-{
- float quat[4], omega, cosom, sinom, sc1, sc2;
-
- cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
-
- /* rotate around shortest angle */
- if (cosom < 0.0f) {
- cosom = -cosom;
- quat[0]= -quat1[0];
- quat[1]= -quat1[1];
- quat[2]= -quat1[2];
- quat[3]= -quat1[3];
- }
- else {
- quat[0]= quat1[0];
- quat[1]= quat1[1];
- quat[2]= quat1[2];
- quat[3]= quat1[3];
- }
-
- if ((1.0f - cosom) > 0.0001f) {
- omega = (float)acos(cosom);
- sinom = (float)sin(omega);
- sc1 = (float)sin((1 - t) * omega) / sinom;
- sc2 = (float)sin(t * omega) / sinom;
- } else {
- sc1= 1.0f - t;
- sc2= t;
- }
-
- result[0] = sc1 * quat[0] + sc2 * quat2[0];
- result[1] = sc1 * quat[1] + sc2 * quat2[1];
- result[2] = sc1 * quat[2] + sc2 * quat2[2];
- result[3] = sc1 * quat[3] + sc2 * quat2[3];
-}
-
-void QuatAdd(float *result, float *quat1, float *quat2, float t)
-{
- result[0]= quat1[0] + t*quat2[0];
- result[1]= quat1[1] + t*quat2[1];
- result[2]= quat1[2] + t*quat2[2];
- result[3]= quat1[3] + t*quat2[3];
-}
-
-void QuatCopy(float *q1, float *q2)
-{
- q1[0]= q2[0];
- q1[1]= q2[1];
- q1[2]= q2[2];
- q1[3]= q2[3];
-}
-
-/* **************** DUAL QUATERNIONS ************** */
-
-/*
- Conversion routines between (regular quaternion, translation) and
- dual quaternion.
-
- Version 1.0.0, February 7th, 2007
-
- Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
- Reserved
-
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the author(s) be held liable for any damages
- arising from the use of this software.
-
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
-
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
-
- Author: Ladislav Kavan, kavanl@cs.tcd.ie
-
- Changes for Blender:
- - renaming, style changes and optimizations
- - added support for scaling
-*/
-
-void Mat4ToDQuat(float basemat[][4], float mat[][4], DualQuat *dq)
-{
- float *t, *q, dscale[3], scale[3], basequat[4];
- float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
- float R[4][4], S[4][4];
-
- /* split scaling and rotation, there is probably a faster way to do
- this, it's done like this now to correctly get negative scaling */
- Mat4MulMat4(baseRS, basemat, mat);
- Mat4ToSize(baseRS, scale);
-
- VecCopyf(dscale, scale);
- dscale[0] -= 1.0f; dscale[1] -= 1.0f; dscale[2] -= 1.0f;
-
- if((Det4x4(mat) < 0.0f) || VecLength(dscale) > 1e-4) {
- /* extract R and S */
- Mat4ToQuat(baseRS, basequat);
- QuatToMat4(basequat, baseR);
- VecCopyf(baseR[3], baseRS[3]);
-
- Mat4Invert(baseinv, basemat);
- Mat4MulMat4(R, baseinv, baseR);
-
- Mat4Invert(baseRinv, baseR);
- Mat4MulMat4(S, baseRS, baseRinv);
-
- /* set scaling part */
- Mat4MulSerie(dq->scale, basemat, S, baseinv, 0, 0, 0, 0, 0);
- dq->scale_weight= 1.0f;
- }
- else {
- /* matrix does not contain scaling */
- Mat4CpyMat4(R, mat);
- dq->scale_weight= 0.0f;
- }
-
- /* non-dual part */
- Mat4ToQuat(R, dq->quat);
-
- /* dual part */
- t= R[3];
- q= dq->quat;
- dq->trans[0]= -0.5f*( t[0]*q[1] + t[1]*q[2] + t[2]*q[3]);
- dq->trans[1]= 0.5f*( t[0]*q[0] + t[1]*q[3] - t[2]*q[2]);
- dq->trans[2]= 0.5f*(-t[0]*q[3] + t[1]*q[0] + t[2]*q[1]);
- dq->trans[3]= 0.5f*( t[0]*q[2] - t[1]*q[1] + t[2]*q[0]);
-}
-
-void DQuatToMat4(DualQuat *dq, float mat[][4])
-{
- float len, *t, q0[4];
-
- /* regular quaternion */
- QuatCopy(q0, dq->quat);
-
- /* normalize */
- len= (float)sqrt(QuatDot(q0, q0));
- if(len != 0.0f)
- QuatMulf(q0, 1.0f/len);
-
- /* rotation */
- QuatToMat4(q0, mat);
-
- /* translation */
- t= dq->trans;
- mat[3][0]= 2.0f*(-t[0]*q0[1] + t[1]*q0[0] - t[2]*q0[3] + t[3]*q0[2]);
- mat[3][1]= 2.0f*(-t[0]*q0[2] + t[1]*q0[3] + t[2]*q0[0] - t[3]*q0[1]);
- mat[3][2]= 2.0f*(-t[0]*q0[3] - t[1]*q0[2] + t[2]*q0[1] + t[3]*q0[0]);
-
- /* note: this does not handle scaling */
-}
-
-void DQuatAddWeighted(DualQuat *dqsum, DualQuat *dq, float weight)
-{
- int flipped= 0;
-
- /* make sure we interpolate quats in the right direction */
- if (QuatDot(dq->quat, dqsum->quat) < 0) {
- flipped= 1;
- weight= -weight;
- }
-
- /* interpolate rotation and translation */
- dqsum->quat[0] += weight*dq->quat[0];
- dqsum->quat[1] += weight*dq->quat[1];
- dqsum->quat[2] += weight*dq->quat[2];
- dqsum->quat[3] += weight*dq->quat[3];
-
- dqsum->trans[0] += weight*dq->trans[0];
- dqsum->trans[1] += weight*dq->trans[1];
- dqsum->trans[2] += weight*dq->trans[2];
- dqsum->trans[3] += weight*dq->trans[3];
-
- /* interpolate scale - but only if needed */
- if (dq->scale_weight) {
- float wmat[4][4];
-
- if(flipped) /* we don't want negative weights for scaling */
- weight= -weight;
-
- Mat4CpyMat4(wmat, dq->scale);
- Mat4MulFloat((float*)wmat, weight);
- Mat4AddMat4(dqsum->scale, dqsum->scale, wmat);
- dqsum->scale_weight += weight;
- }
-}
-
-void DQuatNormalize(DualQuat *dq, float totweight)
-{
- float scale= 1.0f/totweight;
-
- QuatMulf(dq->quat, scale);
- QuatMulf(dq->trans, scale);
-
- if(dq->scale_weight) {
- float addweight= totweight - dq->scale_weight;
-
- if(addweight) {
- dq->scale[0][0] += addweight;
- dq->scale[1][1] += addweight;
- dq->scale[2][2] += addweight;
- dq->scale[3][3] += addweight;
- }
-
- Mat4MulFloat((float*)dq->scale, scale);
- dq->scale_weight= 1.0f;
- }
-}
-
-void DQuatMulVecfl(DualQuat *dq, float *co, float mat[][3])
-{
- float M[3][3], t[3], scalemat[3][3], len2;
- float w= dq->quat[0], x= dq->quat[1], y= dq->quat[2], z= dq->quat[3];
- float t0= dq->trans[0], t1= dq->trans[1], t2= dq->trans[2], t3= dq->trans[3];
-
- /* rotation matrix */
- M[0][0]= w*w + x*x - y*y - z*z;
- M[1][0]= 2*(x*y - w*z);
- M[2][0]= 2*(x*z + w*y);
-
- M[0][1]= 2*(x*y + w*z);
- M[1][1]= w*w + y*y - x*x - z*z;
- M[2][1]= 2*(y*z - w*x);
-
- M[0][2]= 2*(x*z - w*y);
- M[1][2]= 2*(y*z + w*x);
- M[2][2]= w*w + z*z - x*x - y*y;
-
- len2= QuatDot(dq->quat, dq->quat);
- if(len2 > 0.0f)
- len2= 1.0f/len2;
-
- /* translation */
- t[0]= 2*(-t0*x + w*t1 - t2*z + y*t3);
- t[1]= 2*(-t0*y + t1*z - x*t3 + w*t2);
- t[2]= 2*(-t0*z + x*t2 + w*t3 - t1*y);
-
- /* apply scaling */
- if(dq->scale_weight)
- Mat4MulVecfl(dq->scale, co);
-
- /* apply rotation and translation */
- Mat3MulVecfl(M, co);
- co[0]= (co[0] + t[0])*len2;
- co[1]= (co[1] + t[1])*len2;
- co[2]= (co[2] + t[2])*len2;
-
- /* compute crazyspace correction mat */
- if(mat) {
- if(dq->scale_weight) {
- Mat3CpyMat4(scalemat, dq->scale);
- Mat3MulMat3(mat, M, scalemat);
- }
- else
- Mat3CpyMat3(mat, M);
- Mat3MulFloat((float*)mat, len2);
- }
-}
-
-void DQuatCpyDQuat(DualQuat *dq1, DualQuat *dq2)
-{
- memcpy(dq1, dq2, sizeof(DualQuat));
-}
-
-/* **************** VIEW / PROJECTION ******************************** */
-
-
-void i_ortho(
- float left, float right,
- float bottom, float top,
- float nearClip, float farClip,
- float matrix[][4]
-){
- float Xdelta, Ydelta, Zdelta;
-
- Xdelta = right - left;
- Ydelta = top - bottom;
- Zdelta = farClip - nearClip;
- if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
- return;
- }
- Mat4One(matrix);
- matrix[0][0] = 2.0f/Xdelta;
- matrix[3][0] = -(right + left)/Xdelta;
- matrix[1][1] = 2.0f/Ydelta;
- matrix[3][1] = -(top + bottom)/Ydelta;
- matrix[2][2] = -2.0f/Zdelta; /* note: negate Z */
- matrix[3][2] = -(farClip + nearClip)/Zdelta;
-}
-
-void i_window(
- float left, float right,
- float bottom, float top,
- float nearClip, float farClip,
- float mat[][4]
-){
- float Xdelta, Ydelta, Zdelta;
-
- Xdelta = right - left;
- Ydelta = top - bottom;
- Zdelta = farClip - nearClip;
-
- if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
- return;
- }
- mat[0][0] = nearClip * 2.0f/Xdelta;
- mat[1][1] = nearClip * 2.0f/Ydelta;
- mat[2][0] = (right + left)/Xdelta; /* note: negate Z */
- mat[2][1] = (top + bottom)/Ydelta;
- mat[2][2] = -(farClip + nearClip)/Zdelta;
- mat[2][3] = -1.0f;
- mat[3][2] = (-2.0f * nearClip * farClip)/Zdelta;
- mat[0][1] = mat[0][2] = mat[0][3] =
- mat[1][0] = mat[1][2] = mat[1][3] =
- mat[3][0] = mat[3][1] = mat[3][3] = 0.0;
-
-}
-
-void i_translate(float Tx, float Ty, float Tz, float mat[][4])
-{
- mat[3][0] += (Tx*mat[0][0] + Ty*mat[1][0] + Tz*mat[2][0]);
- mat[3][1] += (Tx*mat[0][1] + Ty*mat[1][1] + Tz*mat[2][1]);
- mat[3][2] += (Tx*mat[0][2] + Ty*mat[1][2] + Tz*mat[2][2]);
-}
-
-void i_multmatrix( float icand[][4], float Vm[][4])
-{
- int row, col;
- float temp[4][4];
-
- for(row=0 ; row<4 ; row++)
- for(col=0 ; col<4 ; col++)
- temp[row][col] = icand[row][0] * Vm[0][col]
- + icand[row][1] * Vm[1][col]
- + icand[row][2] * Vm[2][col]
- + icand[row][3] * Vm[3][col];
- Mat4CpyMat4(Vm, temp);
-}
-
-void i_rotate(float angle, char axis, float mat[][4])
-{
- int col;
- float temp[4];
- float cosine, sine;
-
- for(col=0; col<4 ; col++) /* init temp to zero matrix */
- temp[col] = 0;
-
- angle = (float)(angle*(3.1415926535/180.0));
- cosine = (float)cos(angle);
- sine = (float)sin(angle);
- switch(axis){
- case 'x':
- case 'X':
- for(col=0 ; col<4 ; col++)
- temp[col] = cosine*mat[1][col] + sine*mat[2][col];
- for(col=0 ; col<4 ; col++) {
- mat[2][col] = - sine*mat[1][col] + cosine*mat[2][col];
- mat[1][col] = temp[col];
- }
- break;
-
- case 'y':
- case 'Y':
- for(col=0 ; col<4 ; col++)
- temp[col] = cosine*mat[0][col] - sine*mat[2][col];
- for(col=0 ; col<4 ; col++) {
- mat[2][col] = sine*mat[0][col] + cosine*mat[2][col];
- mat[0][col] = temp[col];
- }
- break;
-
- case 'z':
- case 'Z':
- for(col=0 ; col<4 ; col++)
- temp[col] = cosine*mat[0][col] + sine*mat[1][col];
- for(col=0 ; col<4 ; col++) {
- mat[1][col] = - sine*mat[0][col] + cosine*mat[1][col];
- mat[0][col] = temp[col];
- }
- break;
- }
-}
-
-void i_polarview(float dist, float azimuth, float incidence, float twist, float Vm[][4])
-{
-
- Mat4One(Vm);
-
- i_translate(0.0, 0.0, -dist, Vm);
- i_rotate(-twist,'z', Vm);
- i_rotate(-incidence,'x', Vm);
- i_rotate(-azimuth,'z', Vm);
-}
-
-void i_lookat(float vx, float vy, float vz, float px, float py, float pz, float twist, float mat[][4])
-{
- float sine, cosine, hyp, hyp1, dx, dy, dz;
- float mat1[4][4];
-
- Mat4One(mat);
- Mat4One(mat1);
-
- i_rotate(-twist,'z', mat);
-
- dx = px - vx;
- dy = py - vy;
- dz = pz - vz;
- hyp = dx * dx + dz * dz; /* hyp squared */
- hyp1 = (float)sqrt(dy*dy + hyp);
- hyp = (float)sqrt(hyp); /* the real hyp */
-
- if (hyp1 != 0.0) { /* rotate X */
- sine = -dy / hyp1;
- cosine = hyp /hyp1;
- } else {
- sine = 0;
- cosine = 1.0f;
- }
- mat1[1][1] = cosine;
- mat1[1][2] = sine;
- mat1[2][1] = -sine;
- mat1[2][2] = cosine;
-
- i_multmatrix(mat1, mat);
-
- mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
- mat1[1][2] = mat1[2][1] = 0.0; /* those modified by the last */
-
- /* paragraph */
- if (hyp != 0.0f) { /* rotate Y */
- sine = dx / hyp;
- cosine = -dz / hyp;
- } else {
- sine = 0;
- cosine = 1.0f;
- }
- mat1[0][0] = cosine;
- mat1[0][2] = -sine;
- mat1[2][0] = sine;
- mat1[2][2] = cosine;
-
- i_multmatrix(mat1, mat);
- i_translate(-vx,-vy,-vz, mat); /* translate viewpoint to origin */
-}
-
-
-
-
-
-/* ************************************************ */
-
-void Mat3Orthogonal(float mat[][3], int axis)
-{
- float size[3];
- size[0] = VecLength(mat[0]);
- size[1] = VecLength(mat[1]);
- size[2] = VecLength(mat[2]);
- Normalize(mat[axis]);
- switch(axis)
- {
- case 0:
- if (Inpf(mat[0], mat[1]) < 1) {
- Crossf(mat[2], mat[0], mat[1]);
- Normalize(mat[2]);
- Crossf(mat[1], mat[2], mat[0]);
- } else if (Inpf(mat[0], mat[2]) < 1) {
- Crossf(mat[1], mat[2], mat[0]);
- Normalize(mat[1]);
- Crossf(mat[2], mat[0], mat[1]);
- } else {
- float vec[3] = {mat[0][1], mat[0][2], mat[0][0]};
-
- Crossf(mat[2], mat[0], vec);
- Normalize(mat[2]);
- Crossf(mat[1], mat[2], mat[0]);
- }
- case 1:
- if (Inpf(mat[1], mat[0]) < 1) {
- Crossf(mat[2], mat[0], mat[1]);
- Normalize(mat[2]);
- Crossf(mat[0], mat[1], mat[2]);
- } else if (Inpf(mat[0], mat[2]) < 1) {
- Crossf(mat[0], mat[1], mat[2]);
- Normalize(mat[0]);
- Crossf(mat[2], mat[0], mat[1]);
- } else {
- float vec[3] = {mat[1][1], mat[1][2], mat[1][0]};
-
- Crossf(mat[0], mat[1], vec);
- Normalize(mat[0]);
- Crossf(mat[2], mat[0], mat[1]);
- }
- case 2:
- if (Inpf(mat[2], mat[0]) < 1) {
- Crossf(mat[1], mat[2], mat[0]);
- Normalize(mat[1]);
- Crossf(mat[0], mat[1], mat[2]);
- } else if (Inpf(mat[2], mat[1]) < 1) {
- Crossf(mat[0], mat[1], mat[2]);
- Normalize(mat[0]);
- Crossf(mat[1], mat[2], mat[0]);
- } else {
- float vec[3] = {mat[2][1], mat[2][2], mat[2][0]};
-
- Crossf(mat[0], vec, mat[2]);
- Normalize(mat[0]);
- Crossf(mat[1], mat[2], mat[0]);
- }
- }
- VecMulf(mat[0], size[0]);
- VecMulf(mat[1], size[1]);
- VecMulf(mat[2], size[2]);
-}
-
-void Mat4Orthogonal(float mat[][4], int axis)
-{
- float size[3];
- size[0] = VecLength(mat[0]);
- size[1] = VecLength(mat[1]);
- size[2] = VecLength(mat[2]);
- Normalize(mat[axis]);
- switch(axis)
- {
- case 0:
- if (Inpf(mat[0], mat[1]) < 1) {
- Crossf(mat[2], mat[0], mat[1]);
- Normalize(mat[2]);
- Crossf(mat[1], mat[2], mat[0]);
- } else if (Inpf(mat[0], mat[2]) < 1) {
- Crossf(mat[1], mat[2], mat[0]);
- Normalize(mat[1]);
- Crossf(mat[2], mat[0], mat[1]);
- } else {
- float vec[3] = {mat[0][1], mat[0][2], mat[0][0]};
-
- Crossf(mat[2], mat[0], vec);
- Normalize(mat[2]);
- Crossf(mat[1], mat[2], mat[0]);
- }
- case 1:
- Normalize(mat[0]);
- if (Inpf(mat[1], mat[0]) < 1) {
- Crossf(mat[2], mat[0], mat[1]);
- Normalize(mat[2]);
- Crossf(mat[0], mat[1], mat[2]);
- } else if (Inpf(mat[0], mat[2]) < 1) {
- Crossf(mat[0], mat[1], mat[2]);
- Normalize(mat[0]);
- Crossf(mat[2], mat[0], mat[1]);
- } else {
- float vec[3] = {mat[1][1], mat[1][2], mat[1][0]};
-
- Crossf(mat[0], mat[1], vec);
- Normalize(mat[0]);
- Crossf(mat[2], mat[0], mat[1]);
- }
- case 2:
- if (Inpf(mat[2], mat[0]) < 1) {
- Crossf(mat[1], mat[2], mat[0]);
- Normalize(mat[1]);
- Crossf(mat[0], mat[1], mat[2]);
- } else if (Inpf(mat[2], mat[1]) < 1) {
- Crossf(mat[0], mat[1], mat[2]);
- Normalize(mat[0]);
- Crossf(mat[1], mat[2], mat[0]);
- } else {
- float vec[3] = {mat[2][1], mat[2][2], mat[2][0]};
-
- Crossf(mat[0], vec, mat[2]);
- Normalize(mat[0]);
- Crossf(mat[1], mat[2], mat[0]);
- }
- }
- VecMulf(mat[0], size[0]);
- VecMulf(mat[1], size[1]);
- VecMulf(mat[2], size[2]);
-}
-
-int IsMat3Orthogonal(float mat[][3])
-{
- if (fabs(Inpf(mat[0], mat[1])) > 1.5 * FLT_EPSILON)
- return 0;
-
- if (fabs(Inpf(mat[1], mat[2])) > 1.5 * FLT_EPSILON)
- return 0;
-
- if (fabs(Inpf(mat[0], mat[2])) > 1.5 * FLT_EPSILON)
- return 0;
-
- return 1;
-}
-
-int IsMat4Orthogonal(float mat[][4])
-{
- if (fabs(Inpf(mat[0], mat[1])) > 1.5 * FLT_EPSILON)
- return 0;
-
- if (fabs(Inpf(mat[1], mat[2])) > 1.5 * FLT_EPSILON)
- return 0;
-
- if (fabs(Inpf(mat[0], mat[2])) > 1.5 * FLT_EPSILON)
- return 0;
-
- return 1;
-}
-
-void Mat3Ortho(float mat[][3])
-{
- Normalize(mat[0]);
- Normalize(mat[1]);
- Normalize(mat[2]);
-}
-
-void Mat4Ortho(float mat[][4])
-{
- float len;
-
- len= Normalize(mat[0]);
- if(len!=0.0) mat[0][3]/= len;
- len= Normalize(mat[1]);
- if(len!=0.0) mat[1][3]/= len;
- len= Normalize(mat[2]);
- if(len!=0.0) mat[2][3]/= len;
-}
-
-void VecCopyf(float *v1, float *v2)
-{
- v1[0]= v2[0];
- v1[1]= v2[1];
- v1[2]= v2[2];
-}
-
-int VecLen( int *v1, int *v2)
-{
- float x,y,z;
-
- x=(float)(v1[0]-v2[0]);
- y=(float)(v1[1]-v2[1]);
- z=(float)(v1[2]-v2[2]);
- return (int)floor(sqrt(x*x+y*y+z*z));
-}
-
-float VecLenf(float v1[3], float v2[3])
-{
- float x,y,z;
-
- x=v1[0]-v2[0];
- y=v1[1]-v2[1];
- z=v1[2]-v2[2];
- return (float)sqrt(x*x+y*y+z*z);
-}
-
-float VecLength(float *v)
-{
- return (float) sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
-}
-
-void VecAddf(float *v, float *v1, float *v2)
-{
- v[0]= v1[0]+ v2[0];
- v[1]= v1[1]+ v2[1];
- v[2]= v1[2]+ v2[2];
-}
-
-void VecSubf(float *v, float *v1, float *v2)
-{
- v[0]= v1[0]- v2[0];
- v[1]= v1[1]- v2[1];
- v[2]= v1[2]- v2[2];
-}
-
-void VecMulVecf(float *v, float *v1, float *v2)
-{
- v[0] = v1[0] * v2[0];
- v[1] = v1[1] * v2[1];
- v[2] = v1[2] * v2[2];
-}
-
-void VecLerpf(float *target, const float *a, const float *b, const float t)
-{
- const float s = 1.0f-t;
-
- target[0]= s*a[0] + t*b[0];
- target[1]= s*a[1] + t*b[1];
- target[2]= s*a[2] + t*b[2];
-}
-
-void Vec2Lerpf(float *target, const float *a, const float *b, const float t)
-{
- const float s = 1.0f-t;
-
- target[0]= s*a[0] + t*b[0];
- target[1]= s*a[1] + t*b[1];
-}
-
-/* weight 3 vectors, (VecWeightf in 2.4x)
- * 'w' must be unit length but is not a vector, just 3 weights */
-void VecLerp3f(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3])
-{
- p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
- p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
- p[2] = v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2];
-}
-
-/* weight 3 2D vectors, (Vec2Weightf in 2.4x)
- * 'w' must be unit length but is not a vector, just 3 weights */
-void Vec2Lerp3f(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3])
-{
- p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2];
- p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2];
-}
-
-void VecMidf(float *v, float *v1, float *v2)
-{
- v[0]= 0.5f*(v1[0]+ v2[0]);
- v[1]= 0.5f*(v1[1]+ v2[1]);
- v[2]= 0.5f*(v1[2]+ v2[2]);
-}
-
-void VecMulf(float *v1, float f)
-{
-
- v1[0]*= f;
- v1[1]*= f;
- v1[2]*= f;
-}
-
-void VecNegf(float *v1)
-{
- v1[0] = -v1[0];
- v1[1] = -v1[1];
- v1[2] = -v1[2];
-}
-
-void VecOrthoBasisf(float *v, float *v1, float *v2)
-{
- const float f = (float)sqrt(v[0]*v[0] + v[1]*v[1]);
-
- if (f < 1e-35f) {
- // degenerate case
- v1[0] = (v[2] < 0.0f) ? -1.0f : 1.0f;
- v1[1] = v1[2] = v2[0] = v2[2] = 0.0f;
- v2[1] = 1.0f;
- }
- else {
- const float d= 1.0f/f;
-
- v1[0] = v[1]*d;
- v1[1] = -v[0]*d;
- v1[2] = 0.0f;
- v2[0] = -v[2]*v1[1];
- v2[1] = v[2]*v1[0];
- v2[2] = v[0]*v1[1] - v[1]*v1[0];
- }
-}
-
-int VecLenCompare(float *v1, float *v2, float limit)
-{
- float x,y,z;
-
- x=v1[0]-v2[0];
- y=v1[1]-v2[1];
- z=v1[2]-v2[2];
-
- return ((x*x + y*y + z*z) < (limit*limit));
-}
-
-int VecCompare( float *v1, float *v2, float limit)
-{
- if( fabs(v1[0]-v2[0])<limit )
- if( fabs(v1[1]-v2[1])<limit )
- if( fabs(v1[2]-v2[2])<limit ) return 1;
- return 0;
-}
-
-int VecEqual(float *v1, float *v2)
-{
- return ((v1[0]==v2[0]) && (v1[1]==v2[1]) && (v1[2]==v2[2]));
-}
-
-int VecIsNull(float *v)
-{
- return (v[0] == 0 && v[1] == 0 && v[2] == 0);
-}
-
-void CalcNormShort( short *v1, short *v2, short *v3, float *n) /* is also cross product */
-{
- float n1[3],n2[3];
-
- n1[0]= (float)(v1[0]-v2[0]);
- n2[0]= (float)(v2[0]-v3[0]);
- n1[1]= (float)(v1[1]-v2[1]);
- n2[1]= (float)(v2[1]-v3[1]);
- n1[2]= (float)(v1[2]-v2[2]);
- n2[2]= (float)(v2[2]-v3[2]);
- n[0]= n1[1]*n2[2]-n1[2]*n2[1];
- n[1]= n1[2]*n2[0]-n1[0]*n2[2];
- n[2]= n1[0]*n2[1]-n1[1]*n2[0];
- Normalize(n);
-}
-
-void CalcNormLong( int* v1, int*v2, int*v3, float *n)
-{
- float n1[3],n2[3];
-
- n1[0]= (float)(v1[0]-v2[0]);
- n2[0]= (float)(v2[0]-v3[0]);
- n1[1]= (float)(v1[1]-v2[1]);
- n2[1]= (float)(v2[1]-v3[1]);
- n1[2]= (float)(v1[2]-v2[2]);
- n2[2]= (float)(v2[2]-v3[2]);
- n[0]= n1[1]*n2[2]-n1[2]*n2[1];
- n[1]= n1[2]*n2[0]-n1[0]*n2[2];
- n[2]= n1[0]*n2[1]-n1[1]*n2[0];
- Normalize(n);
-}
-
-float CalcNormFloat( float *v1, float *v2, float *v3, float *n)
-{
- float n1[3],n2[3];
-
- n1[0]= v1[0]-v2[0];
- n2[0]= v2[0]-v3[0];
- n1[1]= v1[1]-v2[1];
- n2[1]= v2[1]-v3[1];
- n1[2]= v1[2]-v2[2];
- n2[2]= v2[2]-v3[2];
- n[0]= n1[1]*n2[2]-n1[2]*n2[1];
- n[1]= n1[2]*n2[0]-n1[0]*n2[2];
- n[2]= n1[0]*n2[1]-n1[1]*n2[0];
- return Normalize(n);
-}
-
-float CalcNormFloat4( float *v1, float *v2, float *v3, float *v4, float *n)
-{
- /* real cross! */
- float n1[3],n2[3];
-
- n1[0]= v1[0]-v3[0];
- n1[1]= v1[1]-v3[1];
- n1[2]= v1[2]-v3[2];
-
- n2[0]= v2[0]-v4[0];
- n2[1]= v2[1]-v4[1];
- n2[2]= v2[2]-v4[2];
-
- n[0]= n1[1]*n2[2]-n1[2]*n2[1];
- n[1]= n1[2]*n2[0]-n1[0]*n2[2];
- n[2]= n1[0]*n2[1]-n1[1]*n2[0];
-
- return Normalize(n);
-}
-
-
-void CalcCent3f(float *cent, float *v1, float *v2, float *v3)
-{
-
- cent[0]= 0.33333f*(v1[0]+v2[0]+v3[0]);
- cent[1]= 0.33333f*(v1[1]+v2[1]+v3[1]);
- cent[2]= 0.33333f*(v1[2]+v2[2]+v3[2]);
-}
-
-void CalcCent4f(float *cent, float *v1, float *v2, float *v3, float *v4)
-{
-
- cent[0]= 0.25f*(v1[0]+v2[0]+v3[0]+v4[0]);
- cent[1]= 0.25f*(v1[1]+v2[1]+v3[1]+v4[1]);
- cent[2]= 0.25f*(v1[2]+v2[2]+v3[2]+v4[2]);
-}
-
-float Sqrt3f(float f)
-{
- if(f==0.0) return 0;
- if(f<0) return (float)(-exp(log(-f)/3));
- else return (float)(exp(log(f)/3));
-}
-
-double Sqrt3d(double d)
-{
- if(d==0.0) return 0;
- if(d<0) return -exp(log(-d)/3);
- else return exp(log(d)/3);
-}
-
-void NormalShortToFloat(float *out, short *in)
-{
- out[0] = in[0] / 32767.0f;
- out[1] = in[1] / 32767.0f;
- out[2] = in[2] / 32767.0f;
-}
-
-void NormalFloatToShort(short *out, float *in)
-{
- out[0] = (short)(in[0] * 32767.0);
- out[1] = (short)(in[1] * 32767.0);
- out[2] = (short)(in[2] * 32767.0);
-}
-
-/* distance v1 to line v2-v3 */
-/* using Hesse formula, NO LINE PIECE! */
-float DistVL2Dfl( float *v1, float *v2, float *v3) {
- float a[2],deler;
-
- a[0]= v2[1]-v3[1];
- a[1]= v3[0]-v2[0];
- deler= (float)sqrt(a[0]*a[0]+a[1]*a[1]);
- if(deler== 0.0f) return 0;
-
- return (float)(fabs((v1[0]-v2[0])*a[0]+(v1[1]-v2[1])*a[1])/deler);
-
-}
-
-/* distance v1 to line-piece v2-v3 */
-float PdistVL2Dfl( float *v1, float *v2, float *v3)
-{
- float labda, rc[2], pt[2], len;
-
- rc[0]= v3[0]-v2[0];
- rc[1]= v3[1]-v2[1];
- len= rc[0]*rc[0]+ rc[1]*rc[1];
- if(len==0.0) {
- rc[0]= v1[0]-v2[0];
- rc[1]= v1[1]-v2[1];
- return (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
- }
-
- labda= ( rc[0]*(v1[0]-v2[0]) + rc[1]*(v1[1]-v2[1]) )/len;
- if(labda<=0.0) {
- pt[0]= v2[0];
- pt[1]= v2[1];
- }
- else if(labda>=1.0) {
- pt[0]= v3[0];
- pt[1]= v3[1];
- }
- else {
- pt[0]= labda*rc[0]+v2[0];
- pt[1]= labda*rc[1]+v2[1];
- }
-
- rc[0]= pt[0]-v1[0];
- rc[1]= pt[1]-v1[1];
- return (float)sqrt(rc[0]*rc[0]+ rc[1]*rc[1]);
-}
-
-float AreaF2Dfl( float *v1, float *v2, float *v3)
-{
- return (float)(0.5*fabs( (v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]) ));
-}
-
-
-float AreaQ3Dfl( float *v1, float *v2, float *v3, float *v4) /* only convex Quadrilaterals */
-{
- float len, vec1[3], vec2[3], n[3];
-
- VecSubf(vec1, v2, v1);
- VecSubf(vec2, v4, v1);
- Crossf(n, vec1, vec2);
- len= Normalize(n);
-
- VecSubf(vec1, v4, v3);
- VecSubf(vec2, v2, v3);
- Crossf(n, vec1, vec2);
- len+= Normalize(n);
-
- return (len/2.0f);
-}
-
-float AreaT3Dfl( float *v1, float *v2, float *v3) /* Triangles */
-{
- float len, vec1[3], vec2[3], n[3];
-
- VecSubf(vec1, v3, v2);
- VecSubf(vec2, v1, v2);
- Crossf(n, vec1, vec2);
- len= Normalize(n);
-
- return (len/2.0f);
-}
-
-#define MAX2(x,y) ( (x)>(y) ? (x) : (y) )
-#define MAX3(x,y,z) MAX2( MAX2((x),(y)) , (z) )
-
-
-float AreaPoly3Dfl(int nr, float *verts, float *normal)
-{
- float x, y, z, area, max;
- float *cur, *prev;
- int a, px=0, py=1;
-
- /* first: find dominant axis: 0==X, 1==Y, 2==Z */
- x= (float)fabs(normal[0]);
- y= (float)fabs(normal[1]);
- z= (float)fabs(normal[2]);
- max = MAX3(x, y, z);
- if(max==y) py=2;
- else if(max==x) {
- px=1;
- py= 2;
- }
-
- /* The Trapezium Area Rule */
- prev= verts+3*(nr-1);
- cur= verts;
- area= 0;
- for(a=0; a<nr; a++) {
- area+= (cur[px]-prev[px])*(cur[py]+prev[py]);
- prev= cur;
- cur+=3;
- }
-
- return (float)fabs(0.5*area/max);
-}
-
-/* intersect Line-Line, shorts */
-short IsectLL2Ds(short *v1, short *v2, short *v3, short *v4)
-{
- /* return:
- -1: colliniar
- 0: no intersection of segments
- 1: exact intersection of segments
- 2: cross-intersection of segments
- */
- float div, labda, mu;
-
- div= (float)((v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]));
- if(div==0.0f) return -1;
-
- labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
-
- mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
-
- if(labda>=0.0f && labda<=1.0f && mu>=0.0f && mu<=1.0f) {
- if(labda==0.0f || labda==1.0f || mu==0.0f || mu==1.0f) return 1;
- return 2;
- }
- return 0;
-}
-
-/* intersect Line-Line, floats */
-short IsectLL2Df(float *v1, float *v2, float *v3, float *v4)
-{
- /* return:
- -1: colliniar
-0: no intersection of segments
-1: exact intersection of segments
-2: cross-intersection of segments
- */
- float div, labda, mu;
-
- div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
- if(div==0.0) return -1;
-
- labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
-
- mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
-
- if(labda>=0.0 && labda<=1.0 && mu>=0.0 && mu<=1.0) {
- if(labda==0.0 || labda==1.0 || mu==0.0 || mu==1.0) return 1;
- return 2;
- }
- return 0;
-}
-
-/*
--1: colliniar
- 1: intersection
-
-*/
-static short IsectLLPt2Df(float x0,float y0,float x1,float y1,
- float x2,float y2,float x3,float y3, float *xi,float *yi)
-
-{
- /*
- this function computes the intersection of the sent lines
- and returns the intersection point, note that the function assumes
- the lines intersect. the function can handle vertical as well
- as horizontal lines. note the function isn't very clever, it simply
- applies the math, but we don't need speed since this is a
- pre-processing step
- */
- float c1,c2, // constants of linear equations
- det_inv, // the inverse of the determinant of the coefficient
- m1,m2; // the slopes of each line
- /*
- compute slopes, note the cludge for infinity, however, this will
- be close enough
- */
- if ( fabs( x1-x0 ) > 0.000001 )
- m1 = ( y1-y0 ) / ( x1-x0 );
- else
- return -1; /*m1 = ( float ) 1e+10;*/ // close enough to infinity
-
- if ( fabs( x3-x2 ) > 0.000001 )
- m2 = ( y3-y2 ) / ( x3-x2 );
- else
- return -1; /*m2 = ( float ) 1e+10;*/ // close enough to infinity
-
- if (fabs(m1-m2) < 0.000001)
- return -1; /* paralelle lines */
-
-// compute constants
-
- c1 = ( y0-m1*x0 );
- c2 = ( y2-m2*x2 );
-
-// compute the inverse of the determinate
-
- det_inv = 1.0f / ( -m1 + m2 );
-
-// use Kramers rule to compute xi and yi
-
- *xi= ( ( -c2 + c1 ) *det_inv );
- *yi= ( ( m2*c1 - m1*c2 ) *det_inv );
-
- return 1;
-} // end Intersect_Lines
-
-#define SIDE_OF_LINE(pa,pb,pp) ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1]))
-/* point in tri */
-int IsectPT2Df(float pt[2], float v1[2], float v2[2], float v3[2])
-{
- if (SIDE_OF_LINE(v1,v2,pt)>=0.0) {
- if (SIDE_OF_LINE(v2,v3,pt)>=0.0) {
- if (SIDE_OF_LINE(v3,v1,pt)>=0.0) {
- return 1;
- }
- }
- } else {
- if (! (SIDE_OF_LINE(v2,v3,pt)>=0.0) ) {
- if (! (SIDE_OF_LINE(v3,v1,pt)>=0.0)) {
- return -1;
- }
- }
- }
-
- return 0;
-}
-/* point in quad - only convex quads */
-int IsectPQ2Df(float pt[2], float v1[2], float v2[2], float v3[2], float v4[2])
-{
- if (SIDE_OF_LINE(v1,v2,pt)>=0.0) {
- if (SIDE_OF_LINE(v2,v3,pt)>=0.0) {
- if (SIDE_OF_LINE(v3,v4,pt)>=0.0) {
- if (SIDE_OF_LINE(v4,v1,pt)>=0.0) {
- return 1;
- }
- }
- }
- } else {
- if (! (SIDE_OF_LINE(v2,v3,pt)>=0.0) ) {
- if (! (SIDE_OF_LINE(v3,v4,pt)>=0.0)) {
- if (! (SIDE_OF_LINE(v4,v1,pt)>=0.0)) {
- return -1;
- }
- }
- }
- }
-
- return 0;
-}
-
-
-/**
- *
- * @param min
- * @param max
- * @param vec
- */
-void MinMax3(float *min, float *max, float *vec)
-{
- if(min[0]>vec[0]) min[0]= vec[0];
- if(min[1]>vec[1]) min[1]= vec[1];
- if(min[2]>vec[2]) min[2]= vec[2];
-
- if(max[0]<vec[0]) max[0]= vec[0];
- if(max[1]<vec[1]) max[1]= vec[1];
- if(max[2]<vec[2]) max[2]= vec[2];
-}
-
-static float TriSignedArea(float *v1, float *v2, float *v3, int i, int j)
-{
- return 0.5f*((v1[i]-v2[i])*(v2[j]-v3[j]) + (v1[j]-v2[j])*(v3[i]-v2[i]));
-}
-
-static int BarycentricWeights(float *v1, float *v2, float *v3, float *co, float *n, float *w)
-{
- float xn, yn, zn, a1, a2, a3, asum;
- short i, j;
-
- /* find best projection of face XY, XZ or YZ: barycentric weights of
- the 2d projected coords are the same and faster to compute */
- xn= (float)fabs(n[0]);
- yn= (float)fabs(n[1]);
- zn= (float)fabs(n[2]);
- if(zn>=xn && zn>=yn) {i= 0; j= 1;}
- else if(yn>=xn && yn>=zn) {i= 0; j= 2;}
- else {i= 1; j= 2;}
-
- a1= TriSignedArea(v2, v3, co, i, j);
- a2= TriSignedArea(v3, v1, co, i, j);
- a3= TriSignedArea(v1, v2, co, i, j);
-
- asum= a1 + a2 + a3;
-
- if (fabs(asum) < FLT_EPSILON) {
- /* zero area triangle */
- w[0]= w[1]= w[2]= 1.0f/3.0f;
- return 1;
- }
-
- asum= 1.0f/asum;
- w[0]= a1*asum;
- w[1]= a2*asum;
- w[2]= a3*asum;
-
- return 0;
-}
-
-void InterpWeightsQ3Dfl(float *v1, float *v2, float *v3, float *v4, float *co, float *w)
-{
- float w2[3];
-
- w[0]= w[1]= w[2]= w[3]= 0.0f;
-
- /* first check for exact match */
- if(VecEqual(co, v1))
- w[0]= 1.0f;
- else if(VecEqual(co, v2))
- w[1]= 1.0f;
- else if(VecEqual(co, v3))
- w[2]= 1.0f;
- else if(v4 && VecEqual(co, v4))
- w[3]= 1.0f;
- else {
- /* otherwise compute barycentric interpolation weights */
- float n1[3], n2[3], n[3];
- int degenerate;
-
- VecSubf(n1, v1, v3);
- if (v4) {
- VecSubf(n2, v2, v4);
- }
- else {
- VecSubf(n2, v2, v3);
- }
- Crossf(n, n1, n2);
-
- /* OpenGL seems to split this way, so we do too */
- if (v4) {
- degenerate= BarycentricWeights(v1, v2, v4, co, n, w);
- SWAP(float, w[2], w[3]);
-
- if(degenerate || (w[0] < 0.0f)) {
- /* if w[1] is negative, co is on the other side of the v1-v3 edge,
- so we interpolate using the other triangle */
- degenerate= BarycentricWeights(v2, v3, v4, co, n, w2);
-
- if(!degenerate) {
- w[0]= 0.0f;
- w[1]= w2[0];
- w[2]= w2[1];
- w[3]= w2[2];
- }
- }
- }
- else
- BarycentricWeights(v1, v2, v3, co, n, w);
- }
-}
-
-/* Mean value weights - smooth interpolation weights for polygons with
- * more than 3 vertices */
-static float MeanValueHalfTan(float *v1, float *v2, float *v3)
-{
- float d2[3], d3[3], cross[3], area, dot, len;
-
- VecSubf(d2, v2, v1);
- VecSubf(d3, v3, v1);
- Crossf(cross, d2, d3);
-
- area= VecLength(cross);
- dot= Inpf(d2, d3);
- len= VecLength(d2)*VecLength(d3);
-
- if(area == 0.0f)
- return 0.0f;
- else
- return (len - dot)/area;
-}
-
-void MeanValueWeights(float v[][3], int n, float *co, float *w)
-{
- float totweight, t1, t2, len, *vmid, *vprev, *vnext;
- int i;
-
- totweight= 0.0f;
-
- for(i=0; i<n; i++) {
- vmid= v[i];
- vprev= (i == 0)? v[n-1]: v[i-1];
- vnext= (i == n-1)? v[0]: v[i+1];
-
- t1= MeanValueHalfTan(co, vprev, vmid);
- t2= MeanValueHalfTan(co, vmid, vnext);
-
- len= VecLenf(co, vmid);
- w[i]= (t1+t2)/len;
- totweight += w[i];
- }
-
- if(totweight != 0.0f)
- for(i=0; i<n; i++)
- w[i] /= totweight;
-}
-
-
-/* ************ EULER *************** */
-
-/* Euler Rotation Order Code:
- * was adapted from
- ANSI C code from the article
- "Euler Angle Conversion"
- by Ken Shoemake, shoemake@graphics.cis.upenn.edu
- in "Graphics Gems IV", Academic Press, 1994
- * for use in Blender
- */
-
-/* Type for rotation order info - see wiki for derivation details */
-typedef struct RotOrderInfo {
- short axis[3];
- short parity; /* parity of axis permutation (even=0, odd=1) - 'n' in original code */
-} RotOrderInfo;
-
-/* Array of info for Rotation Order calculations
- * WARNING: must be kept in same order as eEulerRotationOrders
- */
-static RotOrderInfo rotOrders[]= {
- /* i, j, k, n */
- {{0, 1, 2}, 0}, // XYZ
- {{0, 2, 1}, 1}, // XZY
- {{1, 0, 2}, 1}, // YXZ
- {{1, 2, 0}, 0}, // YZX
- {{2, 0, 1}, 0}, // ZXY
- {{2, 1, 0}, 1} // ZYZ
-};
-
-/* Get relevant pointer to rotation order set from the array
- * NOTE: since we start at 1 for the values, but arrays index from 0,
- * there is -1 factor involved in this process...
- */
-#define GET_ROTATIONORDER_INFO(order) (((order)>=1) ? &rotOrders[(order)-1] : &rotOrders[0])
-
-/* Construct quaternion from Euler angles (in radians). */
-void EulOToQuat(float e[3], short order, float q[4])
-{
- RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
- short i=R->axis[0], j=R->axis[1], k=R->axis[2];
- double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
- double a[3];
-
- ti = e[i]/2; tj = e[j]/2; th = e[k]/2;
-
- if (R->parity) e[j] = -e[j];
-
- ci = cos(ti); cj = cos(tj); ch = cos(th);
- si = sin(ti); sj = sin(tj); sh = sin(th);
-
- cc = ci*ch; cs = ci*sh;
- sc = si*ch; ss = si*sh;
-
- a[i] = cj*sc - sj*cs;
- a[j] = cj*ss + sj*cc;
- a[k] = cj*cs - sj*sc;
-
- q[0] = cj*cc + sj*ss;
- q[1] = a[0];
- q[2] = a[1];
- q[3] = a[2];
-
- if (R->parity) q[j] = -q[j];
-}
-
-/* Convert quaternion to Euler angles (in radians). */
-void QuatToEulO(float q[4], float e[3], short order)
-{
- float M[3][3];
-
- QuatToMat3(q, M);
- Mat3ToEulO(M, e, order);
-}
-
-/* Construct 3x3 matrix from Euler angles (in radians). */
-void EulOToMat3(float e[3], short order, float M[3][3])
-{
- RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
- short i=R->axis[0], j=R->axis[1], k=R->axis[2];
- double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
-
- if (R->parity) {
- ti = -e[i]; tj = -e[j]; th = -e[k];
- }
- else {
- ti = e[i]; tj = e[j]; th = e[k];
- }
-
- ci = cos(ti); cj = cos(tj); ch = cos(th);
- si = sin(ti); sj = sin(tj); sh = sin(th);
-
- cc = ci*ch; cs = ci*sh;
- sc = si*ch; ss = si*sh;
-
- M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss;
- M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc;
- M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci;
-}
-
-/* Construct 4x4 matrix from Euler angles (in radians). */
-void EulOToMat4(float e[3], short order, float M[4][4])
-{
- float m[3][3];
-
- /* for now, we'll just do this the slow way (i.e. copying matrices) */
- Mat3Ortho(m);
- EulOToMat3(e, order, m);
- Mat4CpyMat3(M, m);
-}
-
-/* Convert 3x3 matrix to Euler angles (in radians). */
-void Mat3ToEulO(float M[3][3], float e[3], short order)
-{
- RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
- short i=R->axis[0], j=R->axis[1], k=R->axis[2];
- double cy = sqrt(M[i][i]*M[i][i] + M[i][j]*M[i][j]);
-
- if (cy > 16*FLT_EPSILON) {
- e[i] = atan2(M[j][k], M[k][k]);
- e[j] = atan2(-M[i][k], cy);
- e[k] = atan2(M[i][j], M[i][i]);
- }
- else {
- e[i] = atan2(-M[k][j], M[j][j]);
- e[j] = atan2(-M[i][k], cy);
- e[k] = 0;
- }
-
- if (R->parity) {
- e[0] = -e[0];
- e[1] = -e[1];
- e[2] = -e[2];
- }
-}
-
-/* Convert 4x4 matrix to Euler angles (in radians). */
-void Mat4ToEulO(float M[4][4], float e[3], short order)
-{
- float m[3][3];
-
- /* for now, we'll just do this the slow way (i.e. copying matrices) */
- Mat3CpyMat4(m, M);
- Mat3Ortho(m);
- Mat3ToEulO(m, e, order);
-}
-
-/* returns two euler calculation methods, so we can pick the best */
-static void mat3_to_eulo2(float M[3][3], float *e1, float *e2, short order)
-{
- RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
- short i=R->axis[0], j=R->axis[1], k=R->axis[2];
- float m[3][3];
- double cy;
-
- /* process the matrix first */
- Mat3CpyMat3(m, M);
- Mat3Ortho(m);
-
- cy= sqrt(m[i][i]*m[i][i] + m[i][j]*m[i][j]);
-
- if (cy > 16*FLT_EPSILON) {
- e1[i] = atan2(m[j][k], m[k][k]);
- e1[j] = atan2(-m[i][k], cy);
- e1[k] = atan2(m[i][j], m[i][i]);
-
- e2[i] = atan2(-m[j][k], -m[k][k]);
- e2[j] = atan2(-m[i][k], -cy);
- e2[k] = atan2(-m[i][j], -m[i][i]);
- }
- else {
- e1[i] = atan2(-m[k][j], m[j][j]);
- e1[j] = atan2(-m[i][k], cy);
- e1[k] = 0;
-
- VecCopyf(e2, e1);
- }
-
- if (R->parity) {
- e1[0] = -e1[0];
- e1[1] = -e1[1];
- e1[2] = -e1[2];
-
- e2[0] = -e2[0];
- e2[1] = -e2[1];
- e2[2] = -e2[2];
- }
-}
-
-/* uses 2 methods to retrieve eulers, and picks the closest */
-void Mat3ToCompatibleEulO(float mat[3][3], float eul[3], float oldrot[3], short order)
-{
- float eul1[3], eul2[3];
- float d1, d2;
-
- mat3_to_eulo2(mat, eul1, eul2, order);
-
- compatible_eul(eul1, oldrot);
- compatible_eul(eul2, oldrot);
-
- d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]);
- d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]);
-
- /* return best, which is just the one with lowest difference */
- if (d1 > d2)
- VecCopyf(eul, eul2);
- else
- VecCopyf(eul, eul1);
-}
-
-/* rotate the given euler by the given angle on the specified axis */
-// NOTE: is this safe to do with different axis orders?
-void eulerO_rot(float beul[3], float ang, char axis, short order)
-{
- float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
-
- eul[0]= eul[1]= eul[2]= 0.0f;
- if (axis=='x')
- eul[0]= ang;
- else if (axis=='y')
- eul[1]= ang;
- else
- eul[2]= ang;
-
- EulOToMat3(eul, order, mat1);
- EulOToMat3(beul, order, mat2);
-
- Mat3MulMat3(totmat, mat2, mat1);
-
- Mat3ToEulO(totmat, beul, order);
-}
-
-/* ************ EULER (old XYZ) *************** */
-
-/* XYZ order */
-void EulToMat3( float *eul, float mat[][3])
-{
- double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
-
- ci = cos(eul[0]);
- cj = cos(eul[1]);
- ch = cos(eul[2]);
- si = sin(eul[0]);
- sj = sin(eul[1]);
- sh = sin(eul[2]);
- cc = ci*ch;
- cs = ci*sh;
- sc = si*ch;
- ss = si*sh;
-
- mat[0][0] = (float)(cj*ch);
- mat[1][0] = (float)(sj*sc-cs);
- mat[2][0] = (float)(sj*cc+ss);
- mat[0][1] = (float)(cj*sh);
- mat[1][1] = (float)(sj*ss+cc);
- mat[2][1] = (float)(sj*cs-sc);
- mat[0][2] = (float)-sj;
- mat[1][2] = (float)(cj*si);
- mat[2][2] = (float)(cj*ci);
-
-}
-
-/* XYZ order */
-void EulToMat4( float *eul,float mat[][4])
-{
- double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
-
- ci = cos(eul[0]);
- cj = cos(eul[1]);
- ch = cos(eul[2]);
- si = sin(eul[0]);
- sj = sin(eul[1]);
- sh = sin(eul[2]);
- cc = ci*ch;
- cs = ci*sh;
- sc = si*ch;
- ss = si*sh;
-
- mat[0][0] = (float)(cj*ch);
- mat[1][0] = (float)(sj*sc-cs);
- mat[2][0] = (float)(sj*cc+ss);
- mat[0][1] = (float)(cj*sh);
- mat[1][1] = (float)(sj*ss+cc);
- mat[2][1] = (float)(sj*cs-sc);
- mat[0][2] = (float)-sj;
- mat[1][2] = (float)(cj*si);
- mat[2][2] = (float)(cj*ci);
-
-
- mat[3][0]= mat[3][1]= mat[3][2]= mat[0][3]= mat[1][3]= mat[2][3]= 0.0f;
- mat[3][3]= 1.0f;
-}
-
-/* returns two euler calculation methods, so we can pick the best */
-/* XYZ order */
-static void mat3_to_eul2(float tmat[][3], float *eul1, float *eul2)
-{
- float cy, quat[4], mat[3][3];
-
- Mat3ToQuat(tmat, quat);
- QuatToMat3(quat, mat);
- Mat3CpyMat3(mat, tmat);
- Mat3Ortho(mat);
-
- cy = (float)sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]);
-
- if (cy > 16.0*FLT_EPSILON) {
-
- eul1[0] = (float)atan2(mat[1][2], mat[2][2]);
- eul1[1] = (float)atan2(-mat[0][2], cy);
- eul1[2] = (float)atan2(mat[0][1], mat[0][0]);
-
- eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]);
- eul2[1] = (float)atan2(-mat[0][2], -cy);
- eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]);
-
- } else {
- eul1[0] = (float)atan2(-mat[2][1], mat[1][1]);
- eul1[1] = (float)atan2(-mat[0][2], cy);
- eul1[2] = 0.0f;
-
- VecCopyf(eul2, eul1);
- }
-}
-
-/* XYZ order */
-void Mat3ToEul(float tmat[][3], float *eul)
-{
- float eul1[3], eul2[3];
-
- mat3_to_eul2(tmat, eul1, eul2);
-
- /* return best, which is just the one with lowest values it in */
- if( fabs(eul1[0])+fabs(eul1[1])+fabs(eul1[2]) > fabs(eul2[0])+fabs(eul2[1])+fabs(eul2[2])) {
- VecCopyf(eul, eul2);
- }
- else {
- VecCopyf(eul, eul1);
- }
-}
-
-/* XYZ order */
-void Mat4ToEul(float tmat[][4], float *eul)
-{
- float tempMat[3][3];
-
- Mat3CpyMat4(tempMat, tmat);
- Mat3Ortho(tempMat);
- Mat3ToEul(tempMat, eul);
-}
-
-/* XYZ order */
-void QuatToEul(float *quat, float *eul)
-{
- float mat[3][3];
-
- QuatToMat3(quat, mat);
- Mat3ToEul(mat, eul);
-}
-
-/* XYZ order */
-void EulToQuat(float *eul, float *quat)
-{
- float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
-
- ti = eul[0]*0.5f; tj = eul[1]*0.5f; th = eul[2]*0.5f;
- ci = (float)cos(ti); cj = (float)cos(tj); ch = (float)cos(th);
- si = (float)sin(ti); sj = (float)sin(tj); sh = (float)sin(th);
- cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh;
-
- quat[0] = cj*cc + sj*ss;
- quat[1] = cj*sc - sj*cs;
- quat[2] = cj*ss + sj*cc;
- quat[3] = cj*cs - sj*sc;
-}
-
-/* XYZ order */
-void euler_rot(float *beul, float ang, char axis)
-{
- float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
-
- eul[0]= eul[1]= eul[2]= 0.0f;
- if(axis=='x') eul[0]= ang;
- else if(axis=='y') eul[1]= ang;
- else eul[2]= ang;
-
- EulToMat3(eul, mat1);
- EulToMat3(beul, mat2);
-
- Mat3MulMat3(totmat, mat2, mat1);
-
- Mat3ToEul(totmat, beul);
-
-}
-
-/* exported to transform.c */
-/* order independent! */
-void compatible_eul(float *eul, float *oldrot)
-{
- float dx, dy, dz;
-
- /* correct differences of about 360 degrees first */
- dx= eul[0] - oldrot[0];
- dy= eul[1] - oldrot[1];
- dz= eul[2] - oldrot[2];
-
- while(fabs(dx) > 5.1) {
- if(dx > 0.0f) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI;
- dx= eul[0] - oldrot[0];
- }
- while(fabs(dy) > 5.1) {
- if(dy > 0.0f) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI;
- dy= eul[1] - oldrot[1];
- }
- while(fabs(dz) > 5.1) {
- if(dz > 0.0f) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI;
- dz= eul[2] - oldrot[2];
- }
-
- /* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
- if( fabs(dx) > 3.2 && fabs(dy)<1.6 && fabs(dz)<1.6 ) {
- if(dx > 0.0) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI;
- }
- if( fabs(dy) > 3.2 && fabs(dz)<1.6 && fabs(dx)<1.6 ) {
- if(dy > 0.0) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI;
- }
- if( fabs(dz) > 3.2 && fabs(dx)<1.6 && fabs(dy)<1.6 ) {
- if(dz > 0.0) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI;
- }
-
- /* the method below was there from ancient days... but why! probably because the code sucks :)
- */
-#if 0
- /* calc again */
- dx= eul[0] - oldrot[0];
- dy= eul[1] - oldrot[1];
- dz= eul[2] - oldrot[2];
-
- /* special case, tested for x-z */
-
- if( (fabs(dx) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dz) > 3.1 ) ) {
- if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
- if(eul[1] > 0.0) eul[1]= M_PI - eul[1]; else eul[1]= -M_PI - eul[1];
- if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
-
- }
- else if( (fabs(dx) > 3.1 && fabs(dy) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dy) > 3.1 ) ) {
- if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
- if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
- if(eul[2] > 0.0) eul[2]= M_PI - eul[2]; else eul[2]= -M_PI - eul[2];
- }
- else if( (fabs(dy) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dy) > 1.5 && fabs(dz) > 3.1 ) ) {
- if(eul[0] > 0.0) eul[0]= M_PI - eul[0]; else eul[0]= -M_PI - eul[0];
- if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
- if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
- }
-#endif
-}
-
-/* uses 2 methods to retrieve eulers, and picks the closest */
-/* XYZ order */
-void Mat3ToCompatibleEul(float mat[][3], float *eul, float *oldrot)
-{
- float eul1[3], eul2[3];
- float d1, d2;
-
- mat3_to_eul2(mat, eul1, eul2);
-
- compatible_eul(eul1, oldrot);
- compatible_eul(eul2, oldrot);
-
- d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]);
- d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]);
-
- /* return best, which is just the one with lowest difference */
- if( d1 > d2) {
- VecCopyf(eul, eul2);
- }
- else {
- VecCopyf(eul, eul1);
- }
-
-}
-
-/* the matrix is written to as 3 axis vectors */
-void EulToGimbalAxis(float gmat[][3], float *eul, short order)
-{
- RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
-
- float mat[3][3];
- float teul[3];
-
- /* first axis is local */
- EulOToMat3(eul, order, mat);
- VecCopyf(gmat[R->axis[0]], mat[R->axis[0]]);
-
- /* second axis is local minus first rotation */
- VecCopyf(teul, eul);
- teul[R->axis[0]] = 0;
- EulOToMat3(teul, order, mat);
- VecCopyf(gmat[R->axis[1]], mat[R->axis[1]]);
-
-
- /* Last axis is global */
- gmat[R->axis[2]][0] = 0;
- gmat[R->axis[2]][1] = 0;
- gmat[R->axis[2]][2] = 0;
- gmat[R->axis[2]][R->axis[2]] = 1;
-}
-
-/* ************ AXIS ANGLE *************** */
-
-/* Axis angle to Quaternions */
-void AxisAngleToQuat(float q[4], float axis[3], float angle)
-{
- float nor[3];
- float si;
-
- VecCopyf(nor, axis);
- Normalize(nor);
-
- angle /= 2;
- si = (float)sin(angle);
- q[0] = (float)cos(angle);
- q[1] = nor[0] * si;
- q[2] = nor[1] * si;
- q[3] = nor[2] * si;
-}
-
-/* Quaternions to Axis Angle */
-void QuatToAxisAngle(float q[4], float axis[3], float *angle)
-{
- float ha, si;
-
- /* calculate angle/2, and sin(angle/2) */
- ha= (float)acos(q[0]);
- si= (float)sin(ha);
-
- /* from half-angle to angle */
- *angle= ha * 2;
-
- /* prevent division by zero for axis conversion */
- if (fabs(si) < 0.0005)
- si= 1.0f;
-
- axis[0]= q[1] / si;
- axis[1]= q[2] / si;
- axis[2]= q[3] / si;
-}
-
-/* Axis Angle to Euler Rotation */
-void AxisAngleToEulO(float axis[3], float angle, float eul[3], short order)
-{
- float q[4];
-
- /* use quaternions as intermediate representation for now... */
- AxisAngleToQuat(q, axis, angle);
- QuatToEulO(q, eul, order);
-}
-
-/* Euler Rotation to Axis Angle */
-void EulOToAxisAngle(float eul[3], short order, float axis[3], float *angle)
-{
- float q[4];
-
- /* use quaternions as intermediate representation for now... */
- EulOToQuat(eul, order, q);
- QuatToAxisAngle(q, axis, angle);
-}
-
-/* axis angle to 3x3 matrix - safer version (normalisation of axis performed) */
-void AxisAngleToMat3(float axis[3], float angle, float mat[3][3])
-{
- float nor[3], nsi[3], co, si, ico;
-
- /* normalise the axis first (to remove unwanted scaling) */
- VecCopyf(nor, axis);
- Normalize(nor);
-
- /* now convert this to a 3x3 matrix */
- co= (float)cos(angle);
- si= (float)sin(angle);
-
- ico= (1.0f - co);
- nsi[0]= nor[0]*si;
- nsi[1]= nor[1]*si;
- nsi[2]= nor[2]*si;
-
- mat[0][0] = ((nor[0] * nor[0]) * ico) + co;
- mat[0][1] = ((nor[0] * nor[1]) * ico) + nsi[2];
- mat[0][2] = ((nor[0] * nor[2]) * ico) - nsi[1];
- mat[1][0] = ((nor[0] * nor[1]) * ico) - nsi[2];
- mat[1][1] = ((nor[1] * nor[1]) * ico) + co;
- mat[1][2] = ((nor[1] * nor[2]) * ico) + nsi[0];
- mat[2][0] = ((nor[0] * nor[2]) * ico) + nsi[1];
- mat[2][1] = ((nor[1] * nor[2]) * ico) - nsi[0];
- mat[2][2] = ((nor[2] * nor[2]) * ico) + co;
-}
-
-/* axis angle to 4x4 matrix - safer version (normalisation of axis performed) */
-void AxisAngleToMat4(float axis[3], float angle, float mat[4][4])
-{
- float tmat[3][3];
-
- AxisAngleToMat3(axis, angle, tmat);
- Mat4One(mat);
- Mat4CpyMat3(mat, tmat);
-}
-
-/* 3x3 matrix to axis angle (see Mat4ToVecRot too) */
-void Mat3ToAxisAngle(float mat[3][3], float axis[3], float *angle)
-{
- float q[4];
-
- /* use quaternions as intermediate representation */
- // TODO: it would be nicer to go straight there...
- Mat3ToQuat(mat, q);
- QuatToAxisAngle(q, axis, angle);
-}
-
-/* 4x4 matrix to axis angle (see Mat4ToVecRot too) */
-void Mat4ToAxisAngle(float mat[4][4], float axis[3], float *angle)
-{
- float q[4];
-
- /* use quaternions as intermediate representation */
- // TODO: it would be nicer to go straight there...
- Mat4ToQuat(mat, q);
- QuatToAxisAngle(q, axis, angle);
-}
-
-/* ************ AXIS ANGLE (unchecked) *************** */
-// TODO: the following calls should probably be depreceated sometime
-
-/* 3x3 matrix to axis angle */
-void Mat3ToVecRot(float mat[3][3], float axis[3], float *angle)
-{
- float q[4];
-
- /* use quaternions as intermediate representation */
- // TODO: it would be nicer to go straight there...
- Mat3ToQuat(mat, q);
- QuatToAxisAngle(q, axis, angle);
-}
-
-/* 4x4 matrix to axis angle */
-void Mat4ToVecRot(float mat[4][4], float axis[3], float *angle)
-{
- float q[4];
-
- /* use quaternions as intermediate representation */
- // TODO: it would be nicer to go straight there...
- Mat4ToQuat(mat, q);
- QuatToAxisAngle(q, axis, angle);
-}
-
-/* axis angle to 3x3 matrix */
-void VecRotToMat3(float *vec, float phi, float mat[][3])
-{
- /* rotation of phi radials around vec */
- float vx, vx2, vy, vy2, vz, vz2, co, si;
-
- vx= vec[0];
- vy= vec[1];
- vz= vec[2];
- vx2= vx*vx;
- vy2= vy*vy;
- vz2= vz*vz;
- co= (float)cos(phi);
- si= (float)sin(phi);
-
- mat[0][0]= vx2+co*(1.0f-vx2);
- mat[0][1]= vx*vy*(1.0f-co)+vz*si;
- mat[0][2]= vz*vx*(1.0f-co)-vy*si;
- mat[1][0]= vx*vy*(1.0f-co)-vz*si;
- mat[1][1]= vy2+co*(1.0f-vy2);
- mat[1][2]= vy*vz*(1.0f-co)+vx*si;
- mat[2][0]= vz*vx*(1.0f-co)+vy*si;
- mat[2][1]= vy*vz*(1.0f-co)-vx*si;
- mat[2][2]= vz2+co*(1.0f-vz2);
-}
-
-/* axis angle to 4x4 matrix */
-void VecRotToMat4(float *vec, float phi, float mat[][4])
-{
- float tmat[3][3];
-
- VecRotToMat3(vec, phi, tmat);
- Mat4One(mat);
- Mat4CpyMat3(mat, tmat);
-}
-
-/* axis angle to quaternion */
-void VecRotToQuat(float *vec, float phi, float *quat)
-{
- /* rotation of phi radials around vec */
- float si;
-
- quat[1]= vec[0];
- quat[2]= vec[1];
- quat[3]= vec[2];
-
- if( Normalize(quat+1) == 0.0f) {
- QuatOne(quat);
- }
- else {
- quat[0]= (float)cos( phi/2.0 );
- si= (float)sin( phi/2.0 );
- quat[1] *= si;
- quat[2] *= si;
- quat[3] *= si;
- }
-}
-
-/* ************ VECTORS *************** */
-
-/* Returns a vector bisecting the angle at v2 formed by v1, v2 and v3 */
-void VecBisect3(float *out, float *v1, float *v2, float *v3)
-{
- float d_12[3], d_23[3];
- VecSubf(d_12, v2, v1);
- VecSubf(d_23, v3, v2);
- Normalize(d_12);
- Normalize(d_23);
- VecAddf(out, d_12, d_23);
- Normalize(out);
-}
-
-/* Returns a reflection vector from a vector and a normal vector
-reflect = vec - ((2 * DotVecs(vec, mirror)) * mirror)
-*/
-void VecReflect(float *out, float *v1, float *v2)
-{
- float vec[3], normal[3];
- float reflect[3] = {0.0f, 0.0f, 0.0f};
- float dot2;
-
- VecCopyf(vec, v1);
- VecCopyf(normal, v2);
-
- Normalize(normal);
-
- dot2 = 2 * Inpf(vec, normal);
-
- reflect[0] = vec[0] - (dot2 * normal[0]);
- reflect[1] = vec[1] - (dot2 * normal[1]);
- reflect[2] = vec[2] - (dot2 * normal[2]);
-
- VecCopyf(out, reflect);
-}
-
-/* Return the angle in degrees between vecs 1-2 and 2-3 in degrees
- If v1 is a shoulder, v2 is the elbow and v3 is the hand,
- this would return the angle at the elbow */
-float VecAngle3(float *v1, float *v2, float *v3)
-{
- float vec1[3], vec2[3];
-
- VecSubf(vec1, v2, v1);
- VecSubf(vec2, v2, v3);
- Normalize(vec1);
- Normalize(vec2);
-
- return NormalizedVecAngle2(vec1, vec2);
-}
-
-float Vec2Angle3(float *v1, float *v2, float *v3)
-{
- float vec1[2], vec2[2];
-
- vec1[0] = v2[0]-v1[0];
- vec1[1] = v2[1]-v1[1];
-
- vec2[0] = v2[0]-v3[0];
- vec2[1] = v2[1]-v3[1];
-
- Normalize2(vec1);
- Normalize2(vec2);
-
- return NormalizedVecAngle2_2D(vec1, vec2);
-}
-
-/* Return the shortest angle in degrees between the 2 vectors */
-float VecAngle2(float *v1, float *v2)
-{
- float vec1[3], vec2[3];
-
- VecCopyf(vec1, v1);
- VecCopyf(vec2, v2);
- Normalize(vec1);
- Normalize(vec2);
-
- return NormalizedVecAngle2(vec1, vec2);
-}
-
-float NormalizedVecAngle2(float *v1, float *v2)
-{
- /* this is the same as acos(Inpf(v1, v2)), but more accurate */
- if (Inpf(v1, v2) < 0.0f) {
- float vec[3];
-
- vec[0]= -v2[0];
- vec[1]= -v2[1];
- vec[2]= -v2[2];
-
- return (float)M_PI - 2.0f*(float)saasin(VecLenf(vec, v1)/2.0f);
- }
- else
- return 2.0f*(float)saasin(VecLenf(v2, v1)/2.0f);
-}
-
-float NormalizedVecAngle2_2D(float *v1, float *v2)
-{
- /* this is the same as acos(Inpf(v1, v2)), but more accurate */
- if (Inp2f(v1, v2) < 0.0f) {
- float vec[2];
-
- vec[0]= -v2[0];
- vec[1]= -v2[1];
-
- return (float)M_PI - 2.0f*saasin(Vec2Lenf(vec, v1)/2.0f);
- }
- else
- return 2.0f*(float)saasin(Vec2Lenf(v2, v1)/2.0f);
-}
-
-/* ******************************************** */
-
-void SizeToMat3( float *size, float mat[][3])
-{
- mat[0][0]= size[0];
- mat[0][1]= 0.0f;
- mat[0][2]= 0.0f;
- mat[1][1]= size[1];
- mat[1][0]= 0.0f;
- mat[1][2]= 0.0f;
- mat[2][2]= size[2];
- mat[2][1]= 0.0f;
- mat[2][0]= 0.0f;
-}
-
-void SizeToMat4( float *size, float mat[][4])
-{
- float tmat[3][3];
-
- SizeToMat3(size, tmat);
- Mat4One(mat);
- Mat4CpyMat3(mat, tmat);
-}
-
-void Mat3ToSize( float mat[][3], float *size)
-{
- size[0]= VecLength(mat[0]);
- size[1]= VecLength(mat[1]);
- size[2]= VecLength(mat[2]);
-}
-
-void Mat4ToSize( float mat[][4], float *size)
-{
- size[0]= VecLength(mat[0]);
- size[1]= VecLength(mat[1]);
- size[2]= VecLength(mat[2]);
-}
-
-/* this gets the average scale of a matrix, only use when your scaling
- * data that has no idea of scale axis, examples are bone-envelope-radius
- * and curve radius */
-float Mat3ToScalef(float mat[][3])
-{
- /* unit length vector */
- float unit_vec[3] = {0.577350269189626f, 0.577350269189626f, 0.577350269189626f};
- Mat3MulVecfl(mat, unit_vec);
- return VecLength(unit_vec);
-}
-
-float Mat4ToScalef(float mat[][4])
-{
- float tmat[3][3];
- Mat3CpyMat4(tmat, mat);
- return Mat3ToScalef(tmat);
-}
-
-
-/* ************* SPECIALS ******************* */
-
-void triatoquat( float *v1, float *v2, float *v3, float *quat)
-{
- /* imaginary x-axis, y-axis triangle is being rotated */
- float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
-
- /* move z-axis to face-normal */
- CalcNormFloat(v1, v2, v3, vec);
-
- n[0]= vec[1];
- n[1]= -vec[0];
- n[2]= 0.0f;
- Normalize(n);
-
- if(n[0]==0.0f && n[1]==0.0f) n[0]= 1.0f;
-
- angle= -0.5f*(float)saacos(vec[2]);
- co= (float)cos(angle);
- si= (float)sin(angle);
- q1[0]= co;
- q1[1]= n[0]*si;
- q1[2]= n[1]*si;
- q1[3]= 0.0f;
-
- /* rotate back line v1-v2 */
- QuatToMat3(q1, mat);
- Mat3Inv(imat, mat);
- VecSubf(vec, v2, v1);
- Mat3MulVecfl(imat, vec);
-
- /* what angle has this line with x-axis? */
- vec[2]= 0.0f;
- Normalize(vec);
-
- angle= (float)(0.5*atan2(vec[1], vec[0]));
- co= (float)cos(angle);
- si= (float)sin(angle);
- q2[0]= co;
- q2[1]= 0.0f;
- q2[2]= 0.0f;
- q2[3]= si;
-
- QuatMul(quat, q1, q2);
-}
-
-void MinMaxRGB(short c[])
-{
- if(c[0]>255) c[0]=255;
- else if(c[0]<0) c[0]=0;
- if(c[1]>255) c[1]=255;
- else if(c[1]<0) c[1]=0;
- if(c[2]>255) c[2]=255;
- else if(c[2]<0) c[2]=0;
-}
-
-float Vec2Lenf(float *v1, float *v2)
-{
- float x, y;
-
- x = v1[0]-v2[0];
- y = v1[1]-v2[1];
- return (float)sqrt(x*x+y*y);
-}
-
-float Vec2Length(float *v)
-{
- return (float)sqrt(v[0]*v[0] + v[1]*v[1]);
-}
-
-void Vec2Mulf(float *v1, float f)
-{
- v1[0]*= f;
- v1[1]*= f;
-}
-
-void Vec2Addf(float *v, float *v1, float *v2)
-{
- v[0]= v1[0]+ v2[0];
- v[1]= v1[1]+ v2[1];
-}
-
-void Vec2Subf(float *v, float *v1, float *v2)
-{
- v[0]= v1[0]- v2[0];
- v[1]= v1[1]- v2[1];
-}
-
-void Vec2Copyf(float *v1, float *v2)
-{
- v1[0]= v2[0];
- v1[1]= v2[1];
-}
-
-float Inp2f(float *v1, float *v2)
-{
- return v1[0]*v2[0]+v1[1]*v2[1];
-}
-
-float Normalize2(float *n)
-{
- float d;
-
- d= n[0]*n[0]+n[1]*n[1];
-
- if(d>1.0e-35f) {
- d= (float)sqrt(d);
- n[0]/=d;
- n[1]/=d;
- } else {
- n[0]=n[1]= 0.0f;
- d= 0.0f;
- }
- return d;
-}
-
-void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b)
-{
- int i;
- float f, p, q, t;
-
- h *= 360.0f;
-
- if(s==0.0f) {
- *r = v;
- *g = v;
- *b = v;
- }
- else {
- if(h== 360.0f) h = 0.0f;
-
- h /= 60.0f;
- i = (int)floor(h);
- f = h - i;
- p = v*(1.0f-s);
- q = v*(1.0f-(s*f));
- t = v*(1.0f-(s*(1.0f-f)));
-
- switch (i) {
- case 0 :
- *r = v;
- *g = t;
- *b = p;
- break;
- case 1 :
- *r = q;
- *g = v;
- *b = p;
- break;
- case 2 :
- *r = p;
- *g = v;
- *b = t;
- break;
- case 3 :
- *r = p;
- *g = q;
- *b = v;
- break;
- case 4 :
- *r = t;
- *g = p;
- *b = v;
- break;
- case 5 :
- *r = v;
- *g = p;
- *b = q;
- break;
- }
- }
-}
-
-void rgb_to_yuv(float r, float g, float b, float *ly, float *lu, float *lv)
-{
- float y, u, v;
- y= 0.299f*r + 0.587f*g + 0.114f*b;
- u=-0.147f*r - 0.289f*g + 0.436f*b;
- v= 0.615f*r - 0.515f*g - 0.100f*b;
-
- *ly=y;
- *lu=u;
- *lv=v;
-}
-
-void yuv_to_rgb(float y, float u, float v, float *lr, float *lg, float *lb)
-{
- float r, g, b;
- r=y+1.140f*v;
- g=y-0.394f*u - 0.581f*v;
- b=y+2.032f*u;
-
- *lr=r;
- *lg=g;
- *lb=b;
-}
-
-void rgb_to_ycc(float r, float g, float b, float *ly, float *lcb, float *lcr)
-{
- float sr,sg, sb;
- float y, cr, cb;
-
- sr=255.0f*r;
- sg=255.0f*g;
- sb=255.0f*b;
-
-
- y=(0.257f*sr)+(0.504f*sg)+(0.098f*sb)+16.0f;
- cb=(-0.148f*sr)-(0.291f*sg)+(0.439f*sb)+128.0f;
- cr=(0.439f*sr)-(0.368f*sg)-(0.071f*sb)+128.0f;
-
- *ly=y;
- *lcb=cb;
- *lcr=cr;
-}
-
-void ycc_to_rgb(float y, float cb, float cr, float *lr, float *lg, float *lb)
-{
- float r,g,b;
-
- r=1.164f*(y-16.0f)+1.596f*(cr-128.0f);
- g=1.164f*(y-16.0f)-0.813f*(cr-128.0f)-0.392f*(cb-128.0f);
- b=1.164f*(y-16.0f)+2.017f*(cb-128.0f);
-
- *lr=r/255.0f;
- *lg=g/255.0f;
- *lb=b/255.0f;
-}
-
-void hex_to_rgb(char *hexcol, float *r, float *g, float *b)
-{
- unsigned int ri, gi, bi;
-
- if (hexcol[0] == '#') hexcol++;
-
- if (sscanf(hexcol, "%02x%02x%02x", &ri, &gi, &bi)) {
- *r = ri / 255.0f;
- *g = gi / 255.0f;
- *b = bi / 255.0f;
- }
-}
-
-void rgb_to_hsv(float r, float g, float b, float *lh, float *ls, float *lv)
-{
- float h, s, v;
- float cmax, cmin, cdelta;
- float rc, gc, bc;
-
- cmax = r;
- cmin = r;
- cmax = (g>cmax ? g:cmax);
- cmin = (g<cmin ? g:cmin);
- cmax = (b>cmax ? b:cmax);
- cmin = (b<cmin ? b:cmin);
-
- v = cmax; /* value */
- if (cmax != 0.0f)
- s = (cmax - cmin)/cmax;
- else {
- s = 0.0f;
- h = 0.0f;
- }
- if (s == 0.0f)
- h = -1.0f;
- else {
- cdelta = cmax-cmin;
- rc = (cmax-r)/cdelta;
- gc = (cmax-g)/cdelta;
- bc = (cmax-b)/cdelta;
- if (r==cmax)
- h = bc-gc;
- else
- if (g==cmax)
- h = 2.0f+rc-bc;
- else
- h = 4.0f+gc-rc;
- h = h*60.0f;
- if (h < 0.0f)
- h += 360.0f;
- }
-
- *ls = s;
- *lh = h / 360.0f;
- if(*lh < 0.0f) *lh= 0.0f;
- *lv = v;
-}
-
-/*http://brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */
-
-void xyz_to_rgb(float xc, float yc, float zc, float *r, float *g, float *b, int colorspace)
-{
- switch (colorspace) {
- case BLI_CS_SMPTE:
- *r = (3.50570f * xc) + (-1.73964f * yc) + (-0.544011f * zc);
- *g = (-1.06906f * xc) + (1.97781f * yc) + (0.0351720f * zc);
- *b = (0.0563117f * xc) + (-0.196994f * yc) + (1.05005f * zc);
- break;
- case BLI_CS_REC709:
- *r = (3.240476f * xc) + (-1.537150f * yc) + (-0.498535f * zc);
- *g = (-0.969256f * xc) + (1.875992f * yc) + (0.041556f * zc);
- *b = (0.055648f * xc) + (-0.204043f * yc) + (1.057311f * zc);
- break;
- case BLI_CS_CIE:
- *r = (2.28783848734076f * xc) + (-0.833367677835217f * yc) + (-0.454470795871421f * zc);
- *g = (-0.511651380743862f * xc) + (1.42275837632178f * yc) + (0.0888930017552939f * zc);
- *b = (0.00572040983140966f * xc) + (-0.0159068485104036f * yc) + (1.0101864083734f * zc);
- break;
- }
-}
-
-/*If the requested RGB shade contains a negative weight for
- one of the primaries, it lies outside the colour gamut
- accessible from the given triple of primaries. Desaturate
- it by adding white, equal quantities of R, G, and B, enough
- to make RGB all positive. The function returns 1 if the
- components were modified, zero otherwise.*/
-int constrain_rgb(float *r, float *g, float *b)
-{
- float w;
-
- /* Amount of white needed is w = - min(0, *r, *g, *b) */
-
- w = (0 < *r) ? 0 : *r;
- w = (w < *g) ? w : *g;
- w = (w < *b) ? w : *b;
- w = -w;
-
- /* Add just enough white to make r, g, b all positive. */
-
- if (w > 0) {
- *r += w; *g += w; *b += w;
- return 1; /* Color modified to fit RGB gamut */
- }
-
- return 0; /* Color within RGB gamut */
-}
-
-
-/* we define a 'cpack' here as a (3 byte color code) number that can be expressed like 0xFFAA66 or so.
- for that reason it is sensitive for endianness... with this function it works correctly
-*/
-
-unsigned int hsv_to_cpack(float h, float s, float v)
-{
- short r, g, b;
- float rf, gf, bf;
- unsigned int col;
-
- hsv_to_rgb(h, s, v, &rf, &gf, &bf);
-
- r= (short)(rf*255.0f);
- g= (short)(gf*255.0f);
- b= (short)(bf*255.0f);
-
- col= ( r + (g*256) + (b*256*256) );
- return col;
-}
-
-
-unsigned int rgb_to_cpack(float r, float g, float b)
-{
- int ir, ig, ib;
-
- ir= (int)floor(255.0*r);
- if(ir<0) ir= 0; else if(ir>255) ir= 255;
- ig= (int)floor(255.0*g);
- if(ig<0) ig= 0; else if(ig>255) ig= 255;
- ib= (int)floor(255.0*b);
- if(ib<0) ib= 0; else if(ib>255) ib= 255;
-
- return (ir+ (ig*256) + (ib*256*256));
-}
-
-void cpack_to_rgb(unsigned int col, float *r, float *g, float *b)
-{
-
- *r= (float)((col)&0xFF);
- *r /= 255.0f;
-
- *g= (float)(((col)>>8)&0xFF);
- *g /= 255.0f;
-
- *b= (float)(((col)>>16)&0xFF);
- *b /= 255.0f;
-}
-
-
-/* *************** PROJECTIONS ******************* */
-
-void tubemap(float x, float y, float z, float *u, float *v)
-{
- float len;
-
- *v = (z + 1.0f) / 2.0f;
-
- len= (float)sqrt(x*x+y*y);
- if(len > 0.0f)
- *u = (float)((1.0 - (atan2(x/len,y/len) / M_PI)) / 2.0);
- else
- *v = *u = 0.0f; /* to avoid un-initialized variables */
-}
-
-/* ------------------------------------------------------------------------- */
-
-void spheremap(float x, float y, float z, float *u, float *v)
-{
- float len;
-
- len= (float)sqrt(x*x+y*y+z*z);
- if(len > 0.0f) {
- if(x==0.0f && y==0.0f) *u= 0.0f; /* othwise domain error */
- else *u = (float)((1.0 - (float)atan2(x,y) / M_PI) / 2.0);
-
- z/=len;
- *v = 1.0f - (float)saacos(z)/(float)M_PI;
- } else {
- *v = *u = 0.0f; /* to avoid un-initialized variables */
- }
-}
-
-/* ------------------------------------------------------------------------- */
-
-/* proposed api by ton and zr, not used yet */
-#if 0
-/* ***************** m1 = m2 ***************** */
-static void cpy_m3_m3(float m1[][3], float m2[][3])
-{
- memcpy(m1[0], m2[0], 9*sizeof(float));
-}
-
-/* ***************** m1 = m2 ***************** */
-static void cpy_m4_m4(float m1[][4], float m2[][4])
-{
- memcpy(m1[0], m2[0], 16*sizeof(float));
-}
-
-/* ***************** identity matrix ***************** */
-static void ident_m4(float m[][4])
-{
-
- m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
- m[0][1]= m[0][2]= m[0][3]= 0.0;
- m[1][0]= m[1][2]= m[1][3]= 0.0;
- m[2][0]= m[2][1]= m[2][3]= 0.0;
- m[3][0]= m[3][1]= m[3][2]= 0.0;
-}
-
-/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
-static void mul_m3_m3m3(float m1[][3], float m2[][3], float m3[][3])
-{
- float m[3][3];
-
- m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2];
- m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2];
- m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2];
-
- m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2];
- m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2];
- m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2];
-
- m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2];
- m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2];
- m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2];
-
- cpy_m3_m3(m1, m2);
-}
-
-/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
-static void mul_m4_m4m4(float m1[][4], float m2[][4], float m3[][4])
-{
- float m[4][4];
-
- m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2] + m2[3][0]*m3[0][3];
- m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2] + m2[3][1]*m3[0][3];
- m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2] + m2[3][2]*m3[0][3];
- m[0][3]= m2[0][3]*m3[0][0] + m2[1][3]*m3[0][1] + m2[2][3]*m3[0][2] + m2[3][3]*m3[0][3];
-
- m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2] + m2[3][0]*m3[1][3];
- m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2] + m2[3][1]*m3[1][3];
- m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2] + m2[3][2]*m3[1][3];
- m[1][3]= m2[0][3]*m3[1][0] + m2[1][3]*m3[1][1] + m2[2][3]*m3[1][2] + m2[3][3]*m3[1][3];
-
- m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2] + m2[3][0]*m3[2][3];
- m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2] + m2[3][1]*m3[2][3];
- m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2] + m2[3][2]*m3[2][3];
- m[2][3]= m2[0][3]*m3[2][0] + m2[1][3]*m3[2][1] + m2[2][3]*m3[2][2] + m2[3][3]*m3[2][3];
-
- m[3][0]= m2[0][0]*m3[3][0] + m2[1][0]*m3[3][1] + m2[2][0]*m3[3][2] + m2[3][0]*m3[3][3];
- m[3][1]= m2[0][1]*m3[3][0] + m2[1][1]*m3[3][1] + m2[2][1]*m3[3][2] + m2[3][1]*m3[3][3];
- m[3][2]= m2[0][2]*m3[3][0] + m2[1][2]*m3[3][1] + m2[2][2]*m3[3][2] + m2[3][2]*m3[3][3];
- m[3][3]= m2[0][3]*m3[3][0] + m2[1][3]*m3[3][1] + m2[2][3]*m3[3][2] + m2[3][3]*m3[3][3];
-
- cpy_m4_m4(m1, m2);
-}
-
-/* ***************** m1 = inverse(m2) ***************** */
-static void inv_m3_m3(float m1[][3], float m2[][3])
-{
- short a,b;
- float det;
-
- /* calc adjoint */
- Mat3Adj(m1, m2);
-
- /* then determinant old matrix! */
- det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
- -m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
- +m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
-
- if(det==0.0f) det=1.0f;
- det= 1.0f/det;
- for(a=0;a<3;a++) {
- for(b=0;b<3;b++) {
- m1[a][b]*=det;
- }
- }
-}
-
-/* ***************** m1 = inverse(m2) ***************** */
-static int inv_m4_m4(float inverse[][4], float mat[][4])
-{
- int i, j, k;
- double temp;
- float tempmat[4][4];
- float max;
- int maxj;
-
- /* Set inverse to identity */
- ident_m4(inverse);
-
- /* Copy original matrix so we don't mess it up */
- cpy_m4_m4(tempmat, mat);
-
- for(i = 0; i < 4; i++) {
- /* Look for row with max pivot */
- max = ABS(tempmat[i][i]);
- maxj = i;
- for(j = i + 1; j < 4; j++) {
- if(ABS(tempmat[j][i]) > max) {
- max = ABS(tempmat[j][i]);
- maxj = j;
- }
- }
- /* Swap rows if necessary */
- if (maxj != i) {
- for( k = 0; k < 4; k++) {
- SWAP(float, tempmat[i][k], tempmat[maxj][k]);
- SWAP(float, inverse[i][k], inverse[maxj][k]);
- }
- }
-
- temp = tempmat[i][i];
- if (temp == 0)
- return 0; /* No non-zero pivot */
- for(k = 0; k < 4; k++) {
- tempmat[i][k] = (float)(tempmat[i][k]/temp);
- inverse[i][k] = (float)(inverse[i][k]/temp);
- }
- for(j = 0; j < 4; j++) {
- if(j != i) {
- temp = tempmat[j][i];
- for(k = 0; k < 4; k++) {
- tempmat[j][k] -= (float)(tempmat[i][k]*temp);
- inverse[j][k] -= (float)(inverse[i][k]*temp);
- }
- }
- }
- }
- return 1;
-}
-
-/* ***************** v1 = v2 * mat ***************** */
-static void mul_v3_v3m4(float *v1, float *v2, float mat[][4])
-{
- float x, y;
-
- x= v2[0]; /* work with a copy, v1 can be same as v2 */
- y= v2[1];
- v1[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*v2[2] + mat[3][0];
- v1[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*v2[2] + mat[3][1];
- v1[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*v2[2] + mat[3][2];
-
-}
-
-#endif
-
-/* moved from effect.c
- test if the line starting at p1 ending at p2 intersects the triangle v0..v2
- return non zero if it does
-*/
-int LineIntersectsTriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv)
-{
-
- float p[3], s[3], d[3], e1[3], e2[3], q[3];
- float a, f, u, v;
-
- VecSubf(e1, v1, v0);
- VecSubf(e2, v2, v0);
- VecSubf(d, p2, p1);
-
- Crossf(p, d, e2);
- a = Inpf(e1, p);
- if ((a > -0.000001) && (a < 0.000001)) return 0;
- f = 1.0f/a;
-
- VecSubf(s, p1, v0);
-
- Crossf(q, s, e1);
- *lambda = f * Inpf(e2, q);
- if ((*lambda < 0.0)||(*lambda > 1.0)) return 0;
-
- u = f * Inpf(s, p);
- if ((u < 0.0)||(u > 1.0)) return 0;
-
- v = f * Inpf(d, q);
- if ((v < 0.0)||((u + v) > 1.0)) return 0;
-
- if(uv) {
- uv[0]= u;
- uv[1]= v;
- }
-
- return 1;
-}
-
-/* moved from effect.c
- test if the ray starting at p1 going in d direction intersects the triangle v0..v2
- return non zero if it does
-*/
-int RayIntersectsTriangle(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv)
-{
- float p[3], s[3], e1[3], e2[3], q[3];
- float a, f, u, v;
-
- VecSubf(e1, v1, v0);
- VecSubf(e2, v2, v0);
-
- Crossf(p, d, e2);
- a = Inpf(e1, p);
- if ((a > -0.000001) && (a < 0.000001)) return 0;
- f = 1.0f/a;
-
- VecSubf(s, p1, v0);
-
- Crossf(q, s, e1);
- *lambda = f * Inpf(e2, q);
- if ((*lambda < 0.0)) return 0;
-
- u = f * Inpf(s, p);
- if ((u < 0.0)||(u > 1.0)) return 0;
-
- v = f * Inpf(d, q);
- if ((v < 0.0)||((u + v) > 1.0)) return 0;
-
- if(uv) {
- uv[0]= u;
- uv[1]= v;
- }
-
- return 1;
-}
-
-int RayIntersectsTriangleThreshold(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv, float threshold)
-{
- float p[3], s[3], e1[3], e2[3], q[3];
- float a, f, u, v;
- float du = 0, dv = 0;
-
- VecSubf(e1, v1, v0);
- VecSubf(e2, v2, v0);
-
- Crossf(p, d, e2);
- a = Inpf(e1, p);
- if ((a > -0.000001) && (a < 0.000001)) return 0;
- f = 1.0f/a;
-
- VecSubf(s, p1, v0);
-
- Crossf(q, s, e1);
- *lambda = f * Inpf(e2, q);
- if ((*lambda < 0.0)) return 0;
-
- u = f * Inpf(s, p);
- v = f * Inpf(d, q);
-
- if (u < 0) du = u;
- if (u > 1) du = u - 1;
- if (v < 0) dv = v;
- if (v > 1) dv = v - 1;
- if (u > 0 && v > 0 && u + v > 1)
- {
- float t = u + v - 1;
- du = u - t/2;
- dv = v - t/2;
- }
-
- VecMulf(e1, du);
- VecMulf(e2, dv);
-
- if (Inpf(e1, e1) + Inpf(e2, e2) > threshold * threshold)
- {
- return 0;
- }
-
- if(uv) {
- uv[0]= u;
- uv[1]= v;
- }
-
- return 1;
-}
-
-
-/* Adapted from the paper by Kasper Fauerby */
-/* "Improved Collision detection and Response" */
-static int getLowestRoot(float a, float b, float c, float maxR, float* root)
-{
- // Check if a solution exists
- float determinant = b*b - 4.0f*a*c;
-
- // If determinant is negative it means no solutions.
- if (determinant >= 0.0f)
- {
- // calculate the two roots: (if determinant == 0 then
- // x1==x2 but let’s disregard that slight optimization)
- float sqrtD = (float)sqrt(determinant);
- float r1 = (-b - sqrtD) / (2.0f*a);
- float r2 = (-b + sqrtD) / (2.0f*a);
-
- // Sort so x1 <= x2
- if (r1 > r2)
- SWAP( float, r1, r2);
-
- // Get lowest root:
- if (r1 > 0.0f && r1 < maxR)
- {
- *root = r1;
- return 1;
- }
-
- // It is possible that we want x2 - this can happen
- // if x1 < 0
- if (r2 > 0.0f && r2 < maxR)
- {
- *root = r2;
- return 1;
- }
- }
- // No (valid) solutions
- return 0;
-}
-
-int SweepingSphereIntersectsTriangleUV(float p1[3], float p2[3], float radius, float v0[3], float v1[3], float v2[3], float *lambda, float *ipoint)
-{
- float e1[3], e2[3], e3[3], point[3], vel[3], /*dist[3],*/ nor[3], temp[3], bv[3];
- float a, b, c, d, e, x, y, z, radius2=radius*radius;
- float elen2,edotv,edotbv,nordotv,vel2;
- float newLambda;
- int found_by_sweep=0;
-
- VecSubf(e1,v1,v0);
- VecSubf(e2,v2,v0);
- VecSubf(vel,p2,p1);
-
-/*---test plane of tri---*/
- Crossf(nor,e1,e2);
- Normalize(nor);
-
- /* flip normal */
- if(Inpf(nor,vel)>0.0f) VecNegf(nor);
-
- a=Inpf(p1,nor)-Inpf(v0,nor);
- nordotv=Inpf(nor,vel);
-
- if (fabs(nordotv) < 0.000001)
- {
- if(fabs(a)>=radius)
- {
- return 0;
- }
- }
- else
- {
- float t0=(-a+radius)/nordotv;
- float t1=(-a-radius)/nordotv;
-
- if(t0>t1)
- SWAP(float, t0, t1);
-
- if(t0>1.0f || t1<0.0f) return 0;
-
- /* clamp to [0,1] */
- CLAMP(t0, 0.0f, 1.0f);
- CLAMP(t1, 0.0f, 1.0f);
-
- /*---test inside of tri---*/
- /* plane intersection point */
-
- point[0] = p1[0] + vel[0]*t0 - nor[0]*radius;
- point[1] = p1[1] + vel[1]*t0 - nor[1]*radius;
- point[2] = p1[2] + vel[2]*t0 - nor[2]*radius;
-
-
- /* is the point in the tri? */
- a=Inpf(e1,e1);
- b=Inpf(e1,e2);
- c=Inpf(e2,e2);
-
- VecSubf(temp,point,v0);
- d=Inpf(temp,e1);
- e=Inpf(temp,e2);
-
- x=d*c-e*b;
- y=e*a-d*b;
- z=x+y-(a*c-b*b);
-
-
- if( z <= 0.0f && (x >= 0.0f && y >= 0.0f))
- {
- //( ((unsigned int)z)& ~(((unsigned int)x)|((unsigned int)y)) ) & 0x80000000){
- *lambda=t0;
- VecCopyf(ipoint,point);
- return 1;
- }
- }
-
-
- *lambda=1.0f;
-
-/*---test points---*/
- a=vel2=Inpf(vel,vel);
-
- /*v0*/
- VecSubf(temp,p1,v0);
- b=2.0f*Inpf(vel,temp);
- c=Inpf(temp,temp)-radius2;
-
- if(getLowestRoot(a, b, c, *lambda, lambda))
- {
- VecCopyf(ipoint,v0);
- found_by_sweep=1;
- }
-
- /*v1*/
- VecSubf(temp,p1,v1);
- b=2.0f*Inpf(vel,temp);
- c=Inpf(temp,temp)-radius2;
-
- if(getLowestRoot(a, b, c, *lambda, lambda))
- {
- VecCopyf(ipoint,v1);
- found_by_sweep=1;
- }
-
- /*v2*/
- VecSubf(temp,p1,v2);
- b=2.0f*Inpf(vel,temp);
- c=Inpf(temp,temp)-radius2;
-
- if(getLowestRoot(a, b, c, *lambda, lambda))
- {
- VecCopyf(ipoint,v2);
- found_by_sweep=1;
- }
-
-/*---test edges---*/
- VecSubf(e3,v2,v1); //wasnt yet calculated
-
-
- /*e1*/
- VecSubf(bv,v0,p1);
-
- elen2 = Inpf(e1,e1);
- edotv = Inpf(e1,vel);
- edotbv = Inpf(e1,bv);
-
- a=elen2*(-Inpf(vel,vel))+edotv*edotv;
- b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
- c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
-
- if(getLowestRoot(a, b, c, *lambda, &newLambda))
- {
- e=(edotv*newLambda-edotbv)/elen2;
-
- if(e >= 0.0f && e <= 1.0f)
- {
- *lambda = newLambda;
- VecCopyf(ipoint,e1);
- VecMulf(ipoint,e);
- VecAddf(ipoint,ipoint,v0);
- found_by_sweep=1;
- }
- }
-
- /*e2*/
- /*bv is same*/
- elen2 = Inpf(e2,e2);
- edotv = Inpf(e2,vel);
- edotbv = Inpf(e2,bv);
-
- a=elen2*(-Inpf(vel,vel))+edotv*edotv;
- b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
- c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
-
- if(getLowestRoot(a, b, c, *lambda, &newLambda))
- {
- e=(edotv*newLambda-edotbv)/elen2;
-
- if(e >= 0.0f && e <= 1.0f)
- {
- *lambda = newLambda;
- VecCopyf(ipoint,e2);
- VecMulf(ipoint,e);
- VecAddf(ipoint,ipoint,v0);
- found_by_sweep=1;
- }
- }
-
- /*e3*/
- VecSubf(bv,v0,p1);
- elen2 = Inpf(e1,e1);
- edotv = Inpf(e1,vel);
- edotbv = Inpf(e1,bv);
-
- VecSubf(bv,v1,p1);
- elen2 = Inpf(e3,e3);
- edotv = Inpf(e3,vel);
- edotbv = Inpf(e3,bv);
-
- a=elen2*(-Inpf(vel,vel))+edotv*edotv;
- b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
- c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
-
- if(getLowestRoot(a, b, c, *lambda, &newLambda))
- {
- e=(edotv*newLambda-edotbv)/elen2;
-
- if(e >= 0.0f && e <= 1.0f)
- {
- *lambda = newLambda;
- VecCopyf(ipoint,e3);
- VecMulf(ipoint,e);
- VecAddf(ipoint,ipoint,v1);
- found_by_sweep=1;
- }
- }
-
-
- return found_by_sweep;
-}
-int AxialLineIntersectsTriangle(int axis, float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda)
-{
- float p[3], e1[3], e2[3];
- float u, v, f;
- int a0=axis, a1=(axis+1)%3, a2=(axis+2)%3;
-
- //return LineIntersectsTriangle(p1,p2,v0,v1,v2,lambda);
-
- ///* first a simple bounding box test */
- //if(MIN3(v0[a1],v1[a1],v2[a1]) > p1[a1]) return 0;
- //if(MIN3(v0[a2],v1[a2],v2[a2]) > p1[a2]) return 0;
- //if(MAX3(v0[a1],v1[a1],v2[a1]) < p1[a1]) return 0;
- //if(MAX3(v0[a2],v1[a2],v2[a2]) < p1[a2]) return 0;
-
- ///* then a full intersection test */
-
- VecSubf(e1,v1,v0);
- VecSubf(e2,v2,v0);
- VecSubf(p,v0,p1);
-
- f= (e2[a1]*e1[a2]-e2[a2]*e1[a1]);
- if ((f > -0.000001) && (f < 0.000001)) return 0;
-
- v= (p[a2]*e1[a1]-p[a1]*e1[a2])/f;
- if ((v < 0.0)||(v > 1.0)) return 0;
-
- f= e1[a1];
- if((f > -0.000001) && (f < 0.000001)){
- f= e1[a2];
- if((f > -0.000001) && (f < 0.000001)) return 0;
- u= (-p[a2]-v*e2[a2])/f;
- }
- else
- u= (-p[a1]-v*e2[a1])/f;
-
- if ((u < 0.0)||((u + v) > 1.0)) return 0;
-
- *lambda = (p[a0]+u*e1[a0]+v*e2[a0])/(p2[a0]-p1[a0]);
-
- if ((*lambda < 0.0)||(*lambda > 1.0)) return 0;
-
- return 1;
-}
-
-/* Returns the number of point of interests
- * 0 - lines are colinear
- * 1 - lines are coplanar, i1 is set to intersection
- * 2 - i1 and i2 are the nearest points on line 1 (v1, v2) and line 2 (v3, v4) respectively
- * */
-int LineIntersectLine(float v1[3], float v2[3], float v3[3], float v4[3], float i1[3], float i2[3])
-{
- float a[3], b[3], c[3], ab[3], cb[3], dir1[3], dir2[3];
- float d;
-
- VecSubf(c, v3, v1);
- VecSubf(a, v2, v1);
- VecSubf(b, v4, v3);
-
- VecCopyf(dir1, a);
- Normalize(dir1);
- VecCopyf(dir2, b);
- Normalize(dir2);
- d = Inpf(dir1, dir2);
- if (d == 1.0f || d == -1.0f) {
- /* colinear */
- return 0;
- }
-
- Crossf(ab, a, b);
- d = Inpf(c, ab);
-
- /* test if the two lines are coplanar */
- if (d > -0.000001f && d < 0.000001f) {
- Crossf(cb, c, b);
-
- VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
- VecAddf(i1, v1, a);
- VecCopyf(i2, i1);
-
- return 1; /* one intersection only */
- }
- /* if not */
- else {
- float n[3], t[3];
- float v3t[3], v4t[3];
- VecSubf(t, v1, v3);
-
- /* offset between both plane where the lines lies */
- Crossf(n, a, b);
- Projf(t, t, n);
-
- /* for the first line, offset the second line until it is coplanar */
- VecAddf(v3t, v3, t);
- VecAddf(v4t, v4, t);
-
- VecSubf(c, v3t, v1);
- VecSubf(a, v2, v1);
- VecSubf(b, v4t, v3t);
-
- Crossf(ab, a, b);
- Crossf(cb, c, b);
-
- VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
- VecAddf(i1, v1, a);
-
- /* for the second line, just substract the offset from the first intersection point */
- VecSubf(i2, i1, t);
-
- return 2; /* two nearest points */
- }
-}
-
-/* Intersection point strictly between the two lines
- * 0 when no intersection is found
- * */
-int LineIntersectLineStrict(float v1[3], float v2[3], float v3[3], float v4[3], float vi[3], float *lambda)
-{
- float a[3], b[3], c[3], ab[3], cb[3], ca[3], dir1[3], dir2[3];
- float d;
- float d1;
-
- VecSubf(c, v3, v1);
- VecSubf(a, v2, v1);
- VecSubf(b, v4, v3);
-
- VecCopyf(dir1, a);
- Normalize(dir1);
- VecCopyf(dir2, b);
- Normalize(dir2);
- d = Inpf(dir1, dir2);
- if (d == 1.0f || d == -1.0f || d == 0) {
- /* colinear or one vector is zero-length*/
- return 0;
- }
-
- d1 = d;
-
- Crossf(ab, a, b);
- d = Inpf(c, ab);
-
- /* test if the two lines are coplanar */
- if (d > -0.000001f && d < 0.000001f) {
- float f1, f2;
- Crossf(cb, c, b);
- Crossf(ca, c, a);
-
- f1 = Inpf(cb, ab) / Inpf(ab, ab);
- f2 = Inpf(ca, ab) / Inpf(ab, ab);
-
- if (f1 >= 0 && f1 <= 1 &&
- f2 >= 0 && f2 <= 1)
- {
- VecMulf(a, f1);
- VecAddf(vi, v1, a);
-
- if (lambda != NULL)
- {
- *lambda = f1;
- }
-
- return 1; /* intersection found */
- }
- else
- {
- return 0;
- }
- }
- else
- {
- return 0;
- }
-}
-
-int AabbIntersectAabb(float min1[3], float max1[3], float min2[3], float max2[3])
-{
- return (min1[0]<max2[0] && min1[1]<max2[1] && min1[2]<max2[2] &&
- min2[0]<max1[0] && min2[1]<max1[1] && min2[2]<max1[2]);
-}
-
-/* find closest point to p on line through l1,l2 and return lambda,
- * where (0 <= lambda <= 1) when cp is in the line segement l1,l2
- */
-float lambda_cp_line_ex(float p[3], float l1[3], float l2[3], float cp[3])
-{
- float h[3],u[3],lambda;
- VecSubf(u, l2, l1);
- VecSubf(h, p, l1);
- lambda =Inpf(u,h)/Inpf(u,u);
- cp[0] = l1[0] + u[0] * lambda;
- cp[1] = l1[1] + u[1] * lambda;
- cp[2] = l1[2] + u[2] * lambda;
- return lambda;
-}
-
-#if 0
-/* little sister we only need to know lambda */
-static float lambda_cp_line(float p[3], float l1[3], float l2[3])
-{
- float h[3],u[3];
- VecSubf(u, l2, l1);
- VecSubf(h, p, l1);
- return(Inpf(u,h)/Inpf(u,u));
-}
-#endif
-
-/* useful to calculate an even width shell, by taking the angle between 2 planes.
- * The return value is a scale on the offset.
- * no angle between planes is 1.0, as the angle between the 2 planes approches 180d
- * the distance gets very high, 180d would be inf, but this case isn't valid */
-float AngleToLength(const float angle)
-{
- return (angle < SMALL_NUMBER) ? 1.0f : fabsf(1.0f / cosf(angle * (M_PI/180.0f)));
-}
-
-/* Similar to LineIntersectsTriangleUV, except it operates on a quad and in 2d, assumes point is in quad */
-void PointInQuad2DUV(float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv)
-{
- float x0,y0, x1,y1, wtot, v2d[2], w1, w2;
-
- /* used for paralelle lines */
- float pt3d[3], l1[3], l2[3], pt_on_line[3];
-
- /* compute 2 edges of the quad intersection point */
- if (IsectLLPt2Df(v0[0],v0[1],v1[0],v1[1], v2[0],v2[1],v3[0],v3[1], &x0,&y0) == 1) {
- /* the intersection point between the quad-edge intersection and the point in the quad we want the uv's for */
- /* should never be paralle !! */
- /*printf("\tnot paralelle 1\n");*/
- IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v3[0],v3[1], &x1,&y1);
-
- /* Get the weights from the new intersection point, to each edge */
- v2d[0] = x1-v0[0];
- v2d[1] = y1-v0[1];
- w1 = Vec2Length(v2d);
-
- v2d[0] = x1-v3[0]; /* some but for the other vert */
- v2d[1] = y1-v3[1];
- w2 = Vec2Length(v2d);
- wtot = w1+w2;
- /*w1 = w1/wtot;*/
- /*w2 = w2/wtot;*/
- uv[0] = w1/wtot;
- } else {
- /* lines are paralelle, lambda_cp_line_ex is 3d grrr */
- /*printf("\tparalelle1\n");*/
- pt3d[0] = pt[0];
- pt3d[1] = pt[1];
- pt3d[2] = l1[2] = l2[2] = 0.0f;
-
- l1[0] = v0[0]; l1[1] = v0[1];
- l2[0] = v1[0]; l2[1] = v1[1];
- lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
- v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
- v2d[1] = pt[1]-pt_on_line[1];
- w1 = Vec2Length(v2d);
-
- l1[0] = v2[0]; l1[1] = v2[1];
- l2[0] = v3[0]; l2[1] = v3[1];
- lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
- v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
- v2d[1] = pt[1]-pt_on_line[1];
- w2 = Vec2Length(v2d);
- wtot = w1+w2;
- uv[0] = w1/wtot;
- }
-
- /* Same as above to calc the uv[1] value, alternate calculation */
-
- if (IsectLLPt2Df(v0[0],v0[1],v3[0],v3[1], v1[0],v1[1],v2[0],v2[1], &x0,&y0) == 1) { /* was v0,v1 v2,v3 now v0,v3 v1,v2*/
- /* never paralle if above was not */
- /*printf("\tnot paralelle2\n");*/
- IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v1[0],v1[1], &x1,&y1);/* was v0,v3 now v0,v1*/
-
- v2d[0] = x1-v0[0];
- v2d[1] = y1-v0[1];
- w1 = Vec2Length(v2d);
-
- v2d[0] = x1-v1[0];
- v2d[1] = y1-v1[1];
- w2 = Vec2Length(v2d);
- wtot = w1+w2;
- uv[1] = w1/wtot;
- } else {
- /* lines are paralelle, lambda_cp_line_ex is 3d grrr */
- /*printf("\tparalelle2\n");*/
- pt3d[0] = pt[0];
- pt3d[1] = pt[1];
- pt3d[2] = l1[2] = l2[2] = 0.0f;
-
-
- l1[0] = v0[0]; l1[1] = v0[1];
- l2[0] = v3[0]; l2[1] = v3[1];
- lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
- v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
- v2d[1] = pt[1]-pt_on_line[1];
- w1 = Vec2Length(v2d);
-
- l1[0] = v1[0]; l1[1] = v1[1];
- l2[0] = v2[0]; l2[1] = v2[1];
- lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
- v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
- v2d[1] = pt[1]-pt_on_line[1];
- w2 = Vec2Length(v2d);
- wtot = w1+w2;
- uv[1] = w1/wtot;
- }
- /* may need to flip UV's here */
-}
-
-/* same as above but does tri's and quads, tri's are a bit of a hack */
-void PointInFace2DUV(int isquad, float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv)
-{
- if (isquad) {
- PointInQuad2DUV(v0, v1, v2, v3, pt, uv);
- }
- else {
- /* not for quads, use for our abuse of LineIntersectsTriangleUV */
- float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3], lambda;
-
- p1_3d[0] = p2_3d[0] = uv[0];
- p1_3d[1] = p2_3d[1] = uv[1];
- p1_3d[2] = 1.0f;
- p2_3d[2] = -1.0f;
- v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
-
- /* generate a new fuv, (this is possibly a non optimal solution,
- * since we only need 2d calculation but use 3d func's)
- *
- * this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
- * Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
- * This means the new values will be correct in relation to the derived meshes face.
- */
- Vec2Copyf(v0_3d, v0);
- Vec2Copyf(v1_3d, v1);
- Vec2Copyf(v2_3d, v2);
-
- /* Doing this in 3D is not nice */
- LineIntersectsTriangle(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
- }
-}
-
-int IsPointInTri2D(float v1[2], float v2[2], float v3[2], float pt[2])
-{
- float inp1, inp2, inp3;
-
- inp1= (v2[0]-v1[0])*(v1[1]-pt[1]) + (v1[1]-v2[1])*(v1[0]-pt[0]);
- inp2= (v3[0]-v2[0])*(v2[1]-pt[1]) + (v2[1]-v3[1])*(v2[0]-pt[0]);
- inp3= (v1[0]-v3[0])*(v3[1]-pt[1]) + (v3[1]-v1[1])*(v3[0]-pt[0]);
-
- if(inp1<=0.0f && inp2<=0.0f && inp3<=0.0f) return 1;
- if(inp1>=0.0f && inp2>=0.0f && inp3>=0.0f) return 1;
-
- return 0;
-}
-
-#if 0
-int IsPointInTri2D(float v0[2], float v1[2], float v2[2], float pt[2])
-{
- /* not for quads, use for our abuse of LineIntersectsTriangleUV */
- float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3];
- /* not used */
- float lambda, uv[3];
-
- p1_3d[0] = p2_3d[0] = uv[0]= pt[0];
- p1_3d[1] = p2_3d[1] = uv[1]= uv[2]= pt[1];
- p1_3d[2] = 1.0f;
- p2_3d[2] = -1.0f;
- v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
-
- /* generate a new fuv, (this is possibly a non optimal solution,
- * since we only need 2d calculation but use 3d func's)
- *
- * this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
- * Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
- * This means the new values will be correct in relation to the derived meshes face.
- */
- Vec2Copyf(v0_3d, v0);
- Vec2Copyf(v1_3d, v1);
- Vec2Copyf(v2_3d, v2);
-
- /* Doing this in 3D is not nice */
- return LineIntersectsTriangle(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
-}
-#endif
-
-/*
-
- x1,y2
- | \
- | \ .(a,b)
- | \
- x1,y1-- x2,y1
-
-*/
-int IsPointInTri2DInts(int x1, int y1, int x2, int y2, int a, int b)
-{
- float v1[2], v2[2], v3[2], p[2];
-
- v1[0]= (float)x1;
- v1[1]= (float)y1;
-
- v2[0]= (float)x1;
- v2[1]= (float)y2;
-
- v3[0]= (float)x2;
- v3[1]= (float)y1;
-
- p[0]= (float)a;
- p[1]= (float)b;
-
- return IsPointInTri2D(v1, v2, v3, p);
-
-}
-
-/* (x1,v1)(t1=0)------(x2,v2)(t2=1), 0<t<1 --> (x,v)(t) */
-void VecfCubicInterpol(float *x1, float *v1, float *x2, float *v2, float t, float *x, float *v)
-{
- float a[3],b[3];
- float t2= t*t;
- float t3= t2*t;
-
- /* cubic interpolation */
- a[0]= v1[0] + v2[0] + 2*(x1[0] - x2[0]);
- a[1]= v1[1] + v2[1] + 2*(x1[1] - x2[1]);
- a[2]= v1[2] + v2[2] + 2*(x1[2] - x2[2]);
-
- b[0]= -2*v1[0] - v2[0] - 3*(x1[0] - x2[0]);
- b[1]= -2*v1[1] - v2[1] - 3*(x1[1] - x2[1]);
- b[2]= -2*v1[2] - v2[2] - 3*(x1[2] - x2[2]);
-
- x[0]= a[0]*t3 + b[0]*t2 + v1[0]*t + x1[0];
- x[1]= a[1]*t3 + b[1]*t2 + v1[1]*t + x1[1];
- x[2]= a[2]*t3 + b[2]*t2 + v1[2]*t + x1[2];
-
- v[0]= 3*a[0]*t2 + 2*b[0]*t + v1[0];
- v[1]= 3*a[1]*t2 + 2*b[1]*t + v1[1];
- v[2]= 3*a[2]*t2 + 2*b[2]*t + v1[2];
-}
-
-static int point_in_slice(float p[3], float v1[3], float l1[3], float l2[3])
-{
-/*
-what is a slice ?
-some maths:
-a line including l1,l2 and a point not on the line
-define a subset of R3 delimeted by planes parallel to the line and orthogonal
-to the (point --> line) distance vector,one plane on the line one on the point,
-the room inside usually is rather small compared to R3 though still infinte
-useful for restricting (speeding up) searches
-e.g. all points of triangular prism are within the intersection of 3 'slices'
-onother trivial case : cube
-but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too
-*/
- float h,rp[3],cp[3],q[3];
-
- lambda_cp_line_ex(v1,l1,l2,cp);
- VecSubf(q,cp,v1);
-
- VecSubf(rp,p,v1);
- h=Inpf(q,rp)/Inpf(q,q);
- if (h < 0.0f || h > 1.0f) return 0;
- return 1;
-}
-
-#if 0
-/*adult sister defining the slice planes by the origin and the normal
-NOTE |normal| may not be 1 but defining the thickness of the slice*/
-static int point_in_slice_as(float p[3],float origin[3],float normal[3])
-{
- float h,rp[3];
- VecSubf(rp,p,origin);
- h=Inpf(normal,rp)/Inpf(normal,normal);
- if (h < 0.0f || h > 1.0f) return 0;
- return 1;
-}
-
-/*mama (knowing the squared lenght of the normal)*/
-static int point_in_slice_m(float p[3],float origin[3],float normal[3],float lns)
-{
- float h,rp[3];
- VecSubf(rp,p,origin);
- h=Inpf(normal,rp)/lns;
- if (h < 0.0f || h > 1.0f) return 0;
- return 1;
-}
-#endif
-
-
-int point_in_tri_prism(float p[3], float v1[3], float v2[3], float v3[3])
-{
- if(!point_in_slice(p,v1,v2,v3)) return 0;
- if(!point_in_slice(p,v2,v3,v1)) return 0;
- if(!point_in_slice(p,v3,v1,v2)) return 0;
- return 1;
-}
-
-/* point closest to v1 on line v2-v3 in 3D */
-void PclosestVL3Dfl(float *closest, float v1[3], float v2[3], float v3[3])
-{
- float lambda, cp[3];
-
- lambda= lambda_cp_line_ex(v1, v2, v3, cp);
-
- if(lambda <= 0.0f)
- VecCopyf(closest, v2);
- else if(lambda >= 1.0f)
- VecCopyf(closest, v3);
- else
- VecCopyf(closest, cp);
-}
-
-/* distance v1 to line-piece v2-v3 in 3D */
-float PdistVL3Dfl(float *v1, float *v2, float *v3)
-{
- float closest[3];
-
- PclosestVL3Dfl(closest, v1, v2, v3);
-
- return VecLenf(closest, v1);
-}
-
-/********************************************************/
-
-/* make a 4x4 matrix out of 3 transform components */
-/* matrices are made in the order: scale * rot * loc */
-// TODO: need to have a version that allows for rotation order...
-void LocEulSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3])
-{
- float rmat[3][3], smat[3][3], tmat[3][3];
-
- /* initialise new matrix */
- Mat4One(mat);
-
- /* make rotation + scaling part */
- EulToMat3(eul, rmat);
- SizeToMat3(size, smat);
- Mat3MulMat3(tmat, rmat, smat);
-
- /* copy rot/scale part to output matrix*/
- Mat4CpyMat3(mat, tmat);
-
- /* copy location to matrix */
- mat[3][0] = loc[0];
- mat[3][1] = loc[1];
- mat[3][2] = loc[2];
-}
-
-/* make a 4x4 matrix out of 3 transform components */
-/* matrices are made in the order: scale * rot * loc */
-void LocEulOSizeToMat4(float mat[4][4], float loc[3], float eul[3], float size[3], short rotOrder)
-{
- float rmat[3][3], smat[3][3], tmat[3][3];
-
- /* initialise new matrix */
- Mat4One(mat);
-
- /* make rotation + scaling part */
- EulOToMat3(eul, rotOrder, rmat);
- SizeToMat3(size, smat);
- Mat3MulMat3(tmat, rmat, smat);
-
- /* copy rot/scale part to output matrix*/
- Mat4CpyMat3(mat, tmat);
-
- /* copy location to matrix */
- mat[3][0] = loc[0];
- mat[3][1] = loc[1];
- mat[3][2] = loc[2];
-}
-
-
-/* make a 4x4 matrix out of 3 transform components */
-/* matrices are made in the order: scale * rot * loc */
-void LocQuatSizeToMat4(float mat[4][4], float loc[3], float quat[4], float size[3])
-{
- float rmat[3][3], smat[3][3], tmat[3][3];
-
- /* initialise new matrix */
- Mat4One(mat);
-
- /* make rotation + scaling part */
- QuatToMat3(quat, rmat);
- SizeToMat3(size, smat);
- Mat3MulMat3(tmat, rmat, smat);
-
- /* copy rot/scale part to output matrix*/
- Mat4CpyMat3(mat, tmat);
-
- /* copy location to matrix */
- mat[3][0] = loc[0];
- mat[3][1] = loc[1];
- mat[3][2] = loc[2];
-}
-
-/********************************************************/
-
-/* Tangents */
-
-/* For normal map tangents we need to detect uv boundaries, and only average
- * tangents in case the uvs are connected. Alternative would be to store 1
- * tangent per face rather than 4 per face vertex, but that's not compatible
- * with games */
-
-
-/* from BKE_mesh.h */
-#define STD_UV_CONNECT_LIMIT 0.0001f
-
-void sum_or_add_vertex_tangent(void *arena, VertexTangent **vtang, float *tang, float *uv)
-{
- VertexTangent *vt;
-
- /* find a tangent with connected uvs */
- for(vt= *vtang; vt; vt=vt->next) {
- if(fabs(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabs(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT) {
- VecAddf(vt->tang, vt->tang, tang);
- return;
- }
- }
-
- /* if not found, append a new one */
- vt= BLI_memarena_alloc((MemArena *)arena, sizeof(VertexTangent));
- VecCopyf(vt->tang, tang);
- vt->uv[0]= uv[0];
- vt->uv[1]= uv[1];
-
- if(*vtang)
- vt->next= *vtang;
- *vtang= vt;
-}
-
-float *find_vertex_tangent(VertexTangent *vtang, float *uv)
-{
- VertexTangent *vt;
- static float nulltang[3] = {0.0f, 0.0f, 0.0f};
-
- for(vt= vtang; vt; vt=vt->next)
- if(fabs(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabs(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT)
- return vt->tang;
-
- return nulltang; /* shouldn't happen, except for nan or so */
-}
-
-void tangent_from_uv(float *uv1, float *uv2, float *uv3, float *co1, float *co2, float *co3, float *n, float *tang)
-{
- float tangv[3], ct[3], e1[3], e2[3], s1, t1, s2, t2, det;
-
- s1= uv2[0] - uv1[0];
- s2= uv3[0] - uv1[0];
- t1= uv2[1] - uv1[1];
- t2= uv3[1] - uv1[1];
- det= 1.0f / (s1 * t2 - s2 * t1);
-
- /* normals in render are inversed... */
- VecSubf(e1, co1, co2);
- VecSubf(e2, co1, co3);
- tang[0] = (t2*e1[0] - t1*e2[0])*det;
- tang[1] = (t2*e1[1] - t1*e2[1])*det;
- tang[2] = (t2*e1[2] - t1*e2[2])*det;
- tangv[0] = (s1*e2[0] - s2*e1[0])*det;
- tangv[1] = (s1*e2[1] - s2*e1[1])*det;
- tangv[2] = (s1*e2[2] - s2*e1[2])*det;
- Crossf(ct, tang, tangv);
-
- /* check flip */
- if ((ct[0]*n[0] + ct[1]*n[1] + ct[2]*n[2]) < 0.0f)
- VecNegf(tang);
-}
-
-/* used for zoom values*/
-float power_of_2(float val) {
- return (float)pow(2, ceil(log(val) / log(2)));
-}
diff --git a/source/blender/blenlib/intern/math_base.c b/source/blender/blenlib/intern/math_base.c
index ca7b95cb3f1..f3fe09c088f 100644
--- a/source/blender/blenlib/intern/math_base.c
+++ b/source/blender/blenlib/intern/math_base.c
@@ -35,14 +35,12 @@
/* A few small defines. Keep'em local! */
#define SMALL_NUMBER 1.e-8
-#if 0
float sqrt3f(float f)
{
if(f==0.0) return 0;
if(f<0) return (float)(-exp(log(-f)/3));
else return (float)(exp(log(f)/3));
}
-#endif
double sqrt3d(double d)
{
@@ -51,7 +49,6 @@ double sqrt3d(double d)
else return exp(log(d)/3);
}
-#if 0
float saacos(float fac)
{
if(fac<= -1.0f) return (float)M_PI;
@@ -96,7 +93,6 @@ float interpf(float target, float origin, float fac)
{
return (fac*target) + (1.0f-fac)*origin;
}
-#endif
/* useful to calculate an even width shell, by taking the angle between 2 planes.
* The return value is a scale on the offset.
@@ -107,11 +103,9 @@ float shell_angle_to_dist(const float angle)
return (angle < SMALL_NUMBER) ? 1.0f : fabsf(1.0f / cosf(angle * (M_PI/180.0f)));
}
-#if 0
/* used for zoom values*/
float power_of_2(float val)
{
return (float)pow(2, ceil(log(val) / log(2)));
}
-#endif
diff --git a/source/blender/blenlib/intern/math_color.c b/source/blender/blenlib/intern/math_color.c
index 3b3801a197f..7ae380a1dde 100644
--- a/source/blender/blenlib/intern/math_color.c
+++ b/source/blender/blenlib/intern/math_color.c
@@ -32,7 +32,6 @@
#include "BLI_math.h"
-#if 0
void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b)
{
int i;
@@ -311,5 +310,4 @@ int constrain_rgb(float *r, float *g, float *b)
return 0; /* Color within RGB gamut */
}
-#endif
diff --git a/source/blender/blenlib/intern/math_geom.c b/source/blender/blenlib/intern/math_geom.c
index 30dce25fea3..d22326f8ee4 100644
--- a/source/blender/blenlib/intern/math_geom.c
+++ b/source/blender/blenlib/intern/math_geom.c
@@ -1533,7 +1533,6 @@ void map_to_sphere(float *u, float *v,float x, float y, float z)
/* from BKE_mesh.h */
#define STD_UV_CONNECT_LIMIT 0.0001f
-#if 0
void sum_or_add_vertex_tangent(void *arena, VertexTangent **vtang, float *tang, float *uv)
{
VertexTangent *vt;
@@ -1594,5 +1593,4 @@ void tangent_from_uv(float *uv1, float *uv2, float *uv3, float *co1, float *co2,
if ((ct[0]*n[0] + ct[1]*n[1] + ct[2]*n[2]) < 0.0f)
negate_v3(tang);
}
-#endif
diff --git a/source/blender/blenlib/intern/math_rotation.c b/source/blender/blenlib/intern/math_rotation.c
index ea7851858fe..084db725409 100644
--- a/source/blender/blenlib/intern/math_rotation.c
+++ b/source/blender/blenlib/intern/math_rotation.c
@@ -269,6 +269,50 @@ void mat4_to_quat(float *q, float m[][4])
mat3_to_quat(q,mat);
}
+void mat3_to_quat_is_ok(float q[4], float wmat[3][3])
+{
+ float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
+
+ /* work on a copy */
+ copy_m3_m3(mat, wmat);
+ normalize_m3(mat);
+
+ /* rotate z-axis of matrix to z-axis */
+
+ nor[0] = mat[2][1]; /* cross product with (0,0,1) */
+ nor[1] = -mat[2][0];
+ nor[2] = 0.0;
+ normalize_v3(nor);
+
+ co= mat[2][2];
+ angle= 0.5f*saacos(co);
+
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q1[0]= co;
+ q1[1]= -nor[0]*si; /* negative here, but why? */
+ q1[2]= -nor[1]*si;
+ q1[3]= -nor[2]*si;
+
+ /* rotate back x-axis from mat, using inverse q1 */
+ quat_to_mat3( matr,q1);
+ invert_m3_m3(matn, matr);
+ mul_m3_v3(matn, mat[0]);
+
+ /* and align x-axes */
+ angle= (float)(0.5*atan2(mat[0][1], mat[0][0]));
+
+ co= (float)cos(angle);
+ si= (float)sin(angle);
+ q2[0]= co;
+ q2[1]= 0.0f;
+ q2[2]= 0.0f;
+ q2[3]= si;
+
+ mul_qt_qtqt(q, q1, q2);
+}
+
+
void normalize_qt(float *q)
{
float len;
@@ -891,7 +935,6 @@ void rotate_eul(float *beul, char axis, float ang)
}
-#if 0
/* exported to transform.c */
/* order independent! */
void compatible_eul(float *eul, float *oldrot)
@@ -955,7 +998,6 @@ void compatible_eul(float *eul, float *oldrot)
}
#endif
}
-#endif
/* uses 2 methods to retrieve eulers, and picks the closest */
/* XYZ order */
diff --git a/source/blender/editors/space_view3d/view3d_edit.c b/source/blender/editors/space_view3d/view3d_edit.c
index 1cbb7d0ab56..49f2ece0bc4 100644
--- a/source/blender/editors/space_view3d/view3d_edit.c
+++ b/source/blender/editors/space_view3d/view3d_edit.c
@@ -1881,8 +1881,7 @@ static int view3d_clipping_exec(bContext *C, wmOperator *op)
/* then plane equations */
for(val=0; val<4; val++) {
- CalcNormFloat(rv3d->clipbb->vec[val], rv3d->clipbb->vec[val==3?0:val+1], rv3d->clipbb->vec[val+4],
- rv3d->clip[val]);
+ CalcNormFloat(rv3d->clipbb->vec[val], rv3d->clipbb->vec[val==3?0:val+1], rv3d->clipbb->vec[val+4], rv3d->clip[val]);
rv3d->clip[val][3]= - rv3d->clip[val][0]*rv3d->clipbb->vec[val][0]
- rv3d->clip[val][1]*rv3d->clipbb->vec[val][1]
diff --git a/source/gameengine/Converter/BL_BlenderDataConversion.cpp b/source/gameengine/Converter/BL_BlenderDataConversion.cpp
index 2b3838d4dfe..881f4cc2517 100644
--- a/source/gameengine/Converter/BL_BlenderDataConversion.cpp
+++ b/source/gameengine/Converter/BL_BlenderDataConversion.cpp
@@ -821,11 +821,9 @@ RAS_MeshObject* BL_ConvertMesh(Mesh* mesh, Object* blenderobj, KX_Scene* scene,
float fno[3];
if(mface->v4)
- CalcNormFloat4(mvert[mface->v1].co, mvert[mface->v2].co,
- mvert[mface->v3].co, mvert[mface->v4].co, fno);
+ CalcNormFloat4(mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co, fno);
else
- CalcNormFloat(mvert[mface->v1].co, mvert[mface->v2].co,
- mvert[mface->v3].co, fno);
+ CalcNormFloat(mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, fno);
no0 = no1 = no2 = no3 = MT_Vector3(fno);
}