Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--source/blender/blenlib/BLI_linklist.h3
-rw-r--r--source/blender/blenlib/BLI_math_base.h3
-rw-r--r--source/blender/blenlib/BLI_math_inline.h3
-rw-r--r--source/blender/blenlib/BLI_math_matrix.h3
-rw-r--r--source/blender/blenlib/intern/BLI_linklist.c32
-rw-r--r--source/blender/blenlib/intern/math_matrix.c455
-rw-r--r--source/blender/blenlib/intern/noise.c11
7 files changed, 505 insertions, 5 deletions
diff --git a/source/blender/blenlib/BLI_linklist.h b/source/blender/blenlib/BLI_linklist.h
index 2ce40cf6231..b10d48e3ee6 100644
--- a/source/blender/blenlib/BLI_linklist.h
+++ b/source/blender/blenlib/BLI_linklist.h
@@ -47,11 +47,14 @@ typedef struct LinkNode {
int BLI_linklist_length (struct LinkNode *list);
int BLI_linklist_index (struct LinkNode *list, void *ptr);
+struct LinkNode *BLI_linklist_find (struct LinkNode *list, int index);
+
void BLI_linklist_reverse (struct LinkNode **listp);
void BLI_linklist_prepend (struct LinkNode **listp, void *ptr);
void BLI_linklist_append (struct LinkNode **listp, void *ptr);
void BLI_linklist_prepend_arena (struct LinkNode **listp, void *ptr, struct MemArena *ma);
+void BLI_linklist_insert_after (struct LinkNode **listp, void *ptr);
void BLI_linklist_free (struct LinkNode *list, LinkNodeFreeFP freefunc);
void BLI_linklist_apply (struct LinkNode *list, LinkNodeApplyFP applyfunc, void *userdata);
diff --git a/source/blender/blenlib/BLI_math_base.h b/source/blender/blenlib/BLI_math_base.h
index c143c44c594..bb20cb7c8e1 100644
--- a/source/blender/blenlib/BLI_math_base.h
+++ b/source/blender/blenlib/BLI_math_base.h
@@ -115,6 +115,9 @@ extern "C" {
#ifndef fmodf
#define fmodf(a, b) ((float)fmod(a, b))
#endif
+#ifndef hypotf
+#define hypotf(a, b) ((float)hypot(a, b))
+#endif
#ifdef WIN32
#ifndef FREE_WINDOWS
diff --git a/source/blender/blenlib/BLI_math_inline.h b/source/blender/blenlib/BLI_math_inline.h
index c762144a4b8..d002c0880b2 100644
--- a/source/blender/blenlib/BLI_math_inline.h
+++ b/source/blender/blenlib/BLI_math_inline.h
@@ -38,11 +38,14 @@ extern "C" {
#ifdef BLI_MATH_INLINE
#ifdef _MSC_VER
#define MINLINE static __forceinline
+#define MALWAYS_INLINE MINLINE
#else
#define MINLINE static inline
+#define MALWAYS_INLINE static __attribute__((always_inline))
#endif
#else
#define MINLINE
+#define MALWAYS_INLINE
#endif
#ifdef __cplusplus
diff --git a/source/blender/blenlib/BLI_math_matrix.h b/source/blender/blenlib/BLI_math_matrix.h
index 31cefb21e7a..77ebcb24975 100644
--- a/source/blender/blenlib/BLI_math_matrix.h
+++ b/source/blender/blenlib/BLI_math_matrix.h
@@ -122,6 +122,9 @@ float determinant_m3(
float g, float h, float i);
float determinant_m4(float A[4][4]);
+void svd_m4(float U[4][4], float s[4], float V[4][4], float A[4][4]);
+void pseudoinverse_m4_m4(float Ainv[4][4], float A[4][4], float epsilon);
+
/****************************** Transformations ******************************/
void scale_m3_fl(float R[3][3], float scale);
diff --git a/source/blender/blenlib/intern/BLI_linklist.c b/source/blender/blenlib/intern/BLI_linklist.c
index afa4d273090..c903e66057e 100644
--- a/source/blender/blenlib/intern/BLI_linklist.c
+++ b/source/blender/blenlib/intern/BLI_linklist.c
@@ -45,18 +45,28 @@ int BLI_linklist_length(LinkNode *list) {
}
}
-int BLI_linklist_index(struct LinkNode *list, void *ptr)
+int BLI_linklist_index(LinkNode *list, void *ptr)
{
int index;
- for (index = 0; list; list= list->next, index++) {
+ for (index = 0; list; list= list->next, index++)
if (list->link == ptr)
return index;
- }
return -1;
}
+LinkNode *BLI_linklist_find(LinkNode *list, int index)
+{
+ int i;
+
+ for (i = 0; list; list= list->next, i++)
+ if (i == index)
+ return list;
+
+ return NULL;
+}
+
void BLI_linklist_reverse(LinkNode **listp) {
LinkNode *rhead= NULL, *cur= *listp;
@@ -105,6 +115,22 @@ void BLI_linklist_prepend_arena(LinkNode **listp, void *ptr, MemArena *ma) {
*listp= nlink;
}
+void BLI_linklist_insert_after(LinkNode **listp, void *ptr) {
+ LinkNode *nlink= MEM_mallocN(sizeof(*nlink), "nlink");
+ LinkNode *node = *listp;
+
+ nlink->link = ptr;
+
+ if(node) {
+ nlink->next = node->next;
+ node->next = nlink;
+ }
+ else {
+ nlink->next = NULL;
+ *listp = nlink;
+ }
+}
+
void BLI_linklist_free(LinkNode *list, LinkNodeFreeFP freefunc) {
while (list) {
LinkNode *next= list->next;
diff --git a/source/blender/blenlib/intern/math_matrix.c b/source/blender/blenlib/intern/math_matrix.c
index 396ae7ca5ee..6e8f4622488 100644
--- a/source/blender/blenlib/intern/math_matrix.c
+++ b/source/blender/blenlib/intern/math_matrix.c
@@ -1149,3 +1149,458 @@ void print_m4(char *str, float m[][4])
printf("%f %f %f %f\n",m[0][3],m[1][3],m[2][3],m[3][3]);
printf("\n");
}
+
+/*********************************** SVD ************************************
+ * from TNT matrix library
+
+ * Compute the Single Value Decomposition of an arbitrary matrix A
+ * That is compute the 3 matrices U,W,V with U column orthogonal (m,n)
+ * ,W a diagonal matrix and V an orthogonal square matrix s.t.
+ * A = U.W.Vt. From this decomposition it is trivial to compute the
+ * (pseudo-inverse) of A as Ainv = V.Winv.tranpose(U).
+ */
+
+void svd_m4(float U[4][4], float s[4], float V[4][4], float A_[4][4])
+{
+ float A[4][4];
+ float work1[4], work2[4];
+ int m = 4;
+ int n = 4;
+ int maxiter = 200;
+ int nu = minf(m,n);
+
+ float *work = work1;
+ float *e = work2;
+ float eps;
+
+ int i=0, j=0, k=0, p, pp, iter;
+
+ // Reduce A to bidiagonal form, storing the diagonal elements
+ // in s and the super-diagonal elements in e.
+
+ int nct = minf(m-1,n);
+ int nrt = maxf(0,minf(n-2,m));
+
+ copy_m4_m4(A, A_);
+ zero_m4(U);
+ zero_v4(s);
+
+ for (k = 0; k < maxf(nct,nrt); k++) {
+ if (k < nct) {
+
+ // Compute the transformation for the k-th column and
+ // place the k-th diagonal in s[k].
+ // Compute 2-norm of k-th column without under/overflow.
+ s[k] = 0;
+ for (i = k; i < m; i++) {
+ s[k] = hypotf(s[k],A[i][k]);
+ }
+ if (s[k] != 0.0f) {
+ float invsk;
+ if (A[k][k] < 0.0f) {
+ s[k] = -s[k];
+ }
+ invsk = 1.0f/s[k];
+ for (i = k; i < m; i++) {
+ A[i][k] *= invsk;
+ }
+ A[k][k] += 1.0f;
+ }
+ s[k] = -s[k];
+ }
+ for (j = k+1; j < n; j++) {
+ if ((k < nct) && (s[k] != 0.0f)) {
+
+ // Apply the transformation.
+
+ float t = 0;
+ for (i = k; i < m; i++) {
+ t += A[i][k]*A[i][j];
+ }
+ t = -t/A[k][k];
+ for (i = k; i < m; i++) {
+ A[i][j] += t*A[i][k];
+ }
+ }
+
+ // Place the k-th row of A into e for the
+ // subsequent calculation of the row transformation.
+
+ e[j] = A[k][j];
+ }
+ if (k < nct) {
+
+ // Place the transformation in U for subsequent back
+ // multiplication.
+
+ for (i = k; i < m; i++)
+ U[i][k] = A[i][k];
+ }
+ if (k < nrt) {
+
+ // Compute the k-th row transformation and place the
+ // k-th super-diagonal in e[k].
+ // Compute 2-norm without under/overflow.
+ e[k] = 0;
+ for (i = k+1; i < n; i++) {
+ e[k] = hypotf(e[k],e[i]);
+ }
+ if (e[k] != 0.0f) {
+ float invek;
+ if (e[k+1] < 0.0f) {
+ e[k] = -e[k];
+ }
+ invek = 1.0f/e[k];
+ for (i = k+1; i < n; i++) {
+ e[i] *= invek;
+ }
+ e[k+1] += 1.0f;
+ }
+ e[k] = -e[k];
+ if ((k+1 < m) & (e[k] != 0.0f)) {
+ float invek1;
+
+ // Apply the transformation.
+
+ for (i = k+1; i < m; i++) {
+ work[i] = 0.0f;
+ }
+ for (j = k+1; j < n; j++) {
+ for (i = k+1; i < m; i++) {
+ work[i] += e[j]*A[i][j];
+ }
+ }
+ invek1 = 1.0f/e[k+1];
+ for (j = k+1; j < n; j++) {
+ float t = -e[j]*invek1;
+ for (i = k+1; i < m; i++) {
+ A[i][j] += t*work[i];
+ }
+ }
+ }
+
+ // Place the transformation in V for subsequent
+ // back multiplication.
+
+ for (i = k+1; i < n; i++)
+ V[i][k] = e[i];
+ }
+ }
+
+ // Set up the final bidiagonal matrix or order p.
+
+ p = minf(n,m+1);
+ if (nct < n) {
+ s[nct] = A[nct][nct];
+ }
+ if (m < p) {
+ s[p-1] = 0.0f;
+ }
+ if (nrt+1 < p) {
+ e[nrt] = A[nrt][p-1];
+ }
+ e[p-1] = 0.0f;
+
+ // If required, generate U.
+
+ for (j = nct; j < nu; j++) {
+ for (i = 0; i < m; i++) {
+ U[i][j] = 0.0f;
+ }
+ U[j][j] = 1.0f;
+ }
+ for (k = nct-1; k >= 0; k--) {
+ if (s[k] != 0.0f) {
+ for (j = k+1; j < nu; j++) {
+ float t = 0;
+ for (i = k; i < m; i++) {
+ t += U[i][k]*U[i][j];
+ }
+ t = -t/U[k][k];
+ for (i = k; i < m; i++) {
+ U[i][j] += t*U[i][k];
+ }
+ }
+ for (i = k; i < m; i++ ) {
+ U[i][k] = -U[i][k];
+ }
+ U[k][k] = 1.0f + U[k][k];
+ for (i = 0; i < k-1; i++) {
+ U[i][k] = 0.0f;
+ }
+ } else {
+ for (i = 0; i < m; i++) {
+ U[i][k] = 0.0f;
+ }
+ U[k][k] = 1.0f;
+ }
+ }
+
+ // If required, generate V.
+
+ for (k = n-1; k >= 0; k--) {
+ if ((k < nrt) & (e[k] != 0.0f)) {
+ for (j = k+1; j < nu; j++) {
+ float t = 0;
+ for (i = k+1; i < n; i++) {
+ t += V[i][k]*V[i][j];
+ }
+ t = -t/V[k+1][k];
+ for (i = k+1; i < n; i++) {
+ V[i][j] += t*V[i][k];
+ }
+ }
+ }
+ for (i = 0; i < n; i++) {
+ V[i][k] = 0.0f;
+ }
+ V[k][k] = 1.0f;
+ }
+
+ // Main iteration loop for the singular values.
+
+ pp = p-1;
+ iter = 0;
+ eps = powf(2.0f,-52.0f);
+ while (p > 0) {
+ int kase=0;
+ k=0;
+
+ // Test for maximum iterations to avoid infinite loop
+ if(maxiter == 0)
+ break;
+ maxiter--;
+
+ // This section of the program inspects for
+ // negligible elements in the s and e arrays. On
+ // completion the variables kase and k are set as follows.
+
+ // kase = 1 if s(p) and e[k-1] are negligible and k<p
+ // kase = 2 if s(k) is negligible and k<p
+ // kase = 3 if e[k-1] is negligible, k<p, and
+ // s(k), ..., s(p) are not negligible (qr step).
+ // kase = 4 if e(p-1) is negligible (convergence).
+
+ for (k = p-2; k >= -1; k--) {
+ if (k == -1) {
+ break;
+ }
+ if (fabsf(e[k]) <= eps*(fabsf(s[k]) + fabsf(s[k+1]))) {
+ e[k] = 0.0f;
+ break;
+ }
+ }
+ if (k == p-2) {
+ kase = 4;
+ } else {
+ int ks;
+ for (ks = p-1; ks >= k; ks--) {
+ float t;
+ if (ks == k) {
+ break;
+ }
+ t = (ks != p ? fabsf(e[ks]) : 0.f) +
+ (ks != k+1 ? fabsf(e[ks-1]) : 0.0f);
+ if (fabsf(s[ks]) <= eps*t) {
+ s[ks] = 0.0f;
+ break;
+ }
+ }
+ if (ks == k) {
+ kase = 3;
+ } else if (ks == p-1) {
+ kase = 1;
+ } else {
+ kase = 2;
+ k = ks;
+ }
+ }
+ k++;
+
+ // Perform the task indicated by kase.
+
+ switch (kase) {
+
+ // Deflate negligible s(p).
+
+ case 1: {
+ float f = e[p-2];
+ e[p-2] = 0.0f;
+ for (j = p-2; j >= k; j--) {
+ float t = hypotf(s[j],f);
+ float invt = 1.0f/t;
+ float cs = s[j]*invt;
+ float sn = f*invt;
+ s[j] = t;
+ if (j != k) {
+ f = -sn*e[j-1];
+ e[j-1] = cs*e[j-1];
+ }
+
+ for (i = 0; i < n; i++) {
+ t = cs*V[i][j] + sn*V[i][p-1];
+ V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
+ V[i][j] = t;
+ }
+ }
+ }
+ break;
+
+ // Split at negligible s(k).
+
+ case 2: {
+ float f = e[k-1];
+ e[k-1] = 0.0f;
+ for (j = k; j < p; j++) {
+ float t = hypotf(s[j],f);
+ float invt = 1.0f/t;
+ float cs = s[j]*invt;
+ float sn = f*invt;
+ s[j] = t;
+ f = -sn*e[j];
+ e[j] = cs*e[j];
+
+ for (i = 0; i < m; i++) {
+ t = cs*U[i][j] + sn*U[i][k-1];
+ U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
+ U[i][j] = t;
+ }
+ }
+ }
+ break;
+
+ // Perform one qr step.
+
+ case 3: {
+
+ // Calculate the shift.
+
+ float scale = maxf(maxf(maxf(maxf(
+ fabsf(s[p-1]),fabsf(s[p-2])),fabsf(e[p-2])),
+ fabsf(s[k])),fabsf(e[k]));
+ float invscale = 1.0f/scale;
+ float sp = s[p-1]*invscale;
+ float spm1 = s[p-2]*invscale;
+ float epm1 = e[p-2]*invscale;
+ float sk = s[k]*invscale;
+ float ek = e[k]*invscale;
+ float b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)*0.5f;
+ float c = (sp*epm1)*(sp*epm1);
+ float shift = 0.0f;
+ float f, g;
+ if ((b != 0.0f) || (c != 0.0f)) {
+ shift = sqrtf(b*b + c);
+ if (b < 0.0f) {
+ shift = -shift;
+ }
+ shift = c/(b + shift);
+ }
+ f = (sk + sp)*(sk - sp) + shift;
+ g = sk*ek;
+
+ // Chase zeros.
+
+ for (j = k; j < p-1; j++) {
+ float t = hypotf(f,g);
+ /* division by zero checks added to avoid NaN (brecht) */
+ float cs = (t == 0.0f)? 0.0f: f/t;
+ float sn = (t == 0.0f)? 0.0f: g/t;
+ if (j != k) {
+ e[j-1] = t;
+ }
+ f = cs*s[j] + sn*e[j];
+ e[j] = cs*e[j] - sn*s[j];
+ g = sn*s[j+1];
+ s[j+1] = cs*s[j+1];
+
+ for (i = 0; i < n; i++) {
+ t = cs*V[i][j] + sn*V[i][j+1];
+ V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
+ V[i][j] = t;
+ }
+
+ t = hypotf(f,g);
+ /* division by zero checks added to avoid NaN (brecht) */
+ cs = (t == 0.0f)? 0.0f: f/t;
+ sn = (t == 0.0f)? 0.0f: g/t;
+ s[j] = t;
+ f = cs*e[j] + sn*s[j+1];
+ s[j+1] = -sn*e[j] + cs*s[j+1];
+ g = sn*e[j+1];
+ e[j+1] = cs*e[j+1];
+ if (j < m-1) {
+ for (i = 0; i < m; i++) {
+ t = cs*U[i][j] + sn*U[i][j+1];
+ U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
+ U[i][j] = t;
+ }
+ }
+ }
+ e[p-2] = f;
+ iter = iter + 1;
+ }
+ break;
+
+ // Convergence.
+
+ case 4: {
+
+ // Make the singular values positive.
+
+ if (s[k] <= 0.0f) {
+ s[k] = (s[k] < 0.0f ? -s[k] : 0.0f);
+
+ for (i = 0; i <= pp; i++)
+ V[i][k] = -V[i][k];
+ }
+
+ // Order the singular values.
+
+ while (k < pp) {
+ float t;
+ if (s[k] >= s[k+1]) {
+ break;
+ }
+ t = s[k];
+ s[k] = s[k+1];
+ s[k+1] = t;
+ if (k < n-1) {
+ for (i = 0; i < n; i++) {
+ t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
+ }
+ }
+ if (k < m-1) {
+ for (i = 0; i < m; i++) {
+ t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
+ }
+ }
+ k++;
+ }
+ iter = 0;
+ p--;
+ }
+ break;
+ }
+ }
+}
+
+void pseudoinverse_m4_m4(float Ainv[4][4], float A[4][4], float epsilon)
+{
+ /* compute moon-penrose pseudo inverse of matrix, singular values
+ below epsilon are ignored for stability (truncated SVD) */
+ float V[4][4], W[4], Wm[4][4], U[4][4];
+ int i;
+
+ transpose_m4(A);
+ svd_m4(V, W, U, A);
+ transpose_m4(U);
+ transpose_m4(V);
+
+ zero_m4(Wm);
+ for(i=0; i<4; i++)
+ Wm[i][i]= (W[i] < epsilon)? 0.0f: 1.0f/W[i];
+
+ transpose_m4(V);
+
+ mul_serie_m4(Ainv, U, Wm, V, 0, 0, 0, 0, 0);
+}
diff --git a/source/blender/blenlib/intern/noise.c b/source/blender/blenlib/intern/noise.c
index d6b8582ef26..141e5438bc9 100644
--- a/source/blender/blenlib/intern/noise.c
+++ b/source/blender/blenlib/intern/noise.c
@@ -199,8 +199,15 @@ float hashvectf[768]= {
/* IMPROVED PERLIN NOISE */
/**************************/
-#define lerp(t, a, b) ((a)+(t)*((b)-(a)))
-#define npfade(t) ((t)*(t)*(t)*((t)*((t)*6-15)+10))
+static float lerp(float t, float a, float b)
+{
+ return (a+t*(b-a));
+}
+
+static float npfade(float t)
+{
+ return (t*t*t*(t*(t*6.0f-15.0f)+10.0f));
+}
static float grad(int hash, float x, float y, float z)
{