Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--intern/cycles/blender/blender_shader.cpp8
-rw-r--r--intern/cycles/kernel/CMakeLists.txt2
-rw-r--r--intern/cycles/kernel/kernel_emission.h4
-rw-r--r--intern/cycles/kernel/kernel_light.h500
-rw-r--r--intern/cycles/kernel/kernel_light_background.h448
-rw-r--r--intern/cycles/kernel/kernel_light_common.h159
-rw-r--r--intern/cycles/kernel/kernel_montecarlo.h10
-rw-r--r--intern/cycles/kernel/kernel_types.h27
-rw-r--r--intern/cycles/kernel/shaders/node_sky_texture.osl123
-rw-r--r--intern/cycles/kernel/svm/svm_sky.h301
-rw-r--r--intern/cycles/kernel/svm/svm_types.h2
-rw-r--r--intern/cycles/render/CMakeLists.txt2
-rw-r--r--intern/cycles/render/image_sky.cpp95
-rw-r--r--intern/cycles/render/image_sky.h49
-rw-r--r--intern/cycles/render/light.cpp109
-rw-r--r--intern/cycles/render/nodes.cpp199
-rw-r--r--intern/cycles/render/nodes.h9
-rw-r--r--intern/cycles/util/CMakeLists.txt1
-rw-r--r--intern/cycles/util/util_sky_model.h24
-rw-r--r--intern/cycles/util/util_sky_nishita.cpp371
-rw-r--r--source/blender/editors/space_node/drawnode.c29
-rw-r--r--source/blender/makesdna/DNA_node_types.h14
-rw-r--r--source/blender/makesrna/intern/rna_nodetree.c55
-rw-r--r--source/blender/nodes/shader/nodes/node_shader_tex_sky.c11
24 files changed, 1847 insertions, 705 deletions
diff --git a/intern/cycles/blender/blender_shader.cpp b/intern/cycles/blender/blender_shader.cpp
index f207d8ae07f..19d2730dc93 100644
--- a/intern/cycles/blender/blender_shader.cpp
+++ b/intern/cycles/blender/blender_shader.cpp
@@ -813,6 +813,14 @@ static ShaderNode *add_node(Scene *scene,
sky->sun_direction = normalize(get_float3(b_sky_node.sun_direction()));
sky->turbidity = b_sky_node.turbidity();
sky->ground_albedo = b_sky_node.ground_albedo();
+ sky->sun_disc = b_sky_node.sun_disc();
+ sky->sun_size = b_sky_node.sun_size();
+ sky->sun_elevation = b_sky_node.sun_elevation();
+ sky->sun_rotation = b_sky_node.sun_rotation();
+ sky->altitude = b_sky_node.altitude();
+ sky->air_density = b_sky_node.air_density();
+ sky->dust_density = b_sky_node.dust_density();
+ sky->ozone_density = b_sky_node.ozone_density();
BL::TexMapping b_texture_mapping(b_sky_node.texture_mapping());
get_tex_mapping(&sky->tex_mapping, b_texture_mapping);
node = sky;
diff --git a/intern/cycles/kernel/CMakeLists.txt b/intern/cycles/kernel/CMakeLists.txt
index 2e839a616e9..35339abff45 100644
--- a/intern/cycles/kernel/CMakeLists.txt
+++ b/intern/cycles/kernel/CMakeLists.txt
@@ -113,6 +113,8 @@ set(SRC_HEADERS
kernel_id_passes.h
kernel_jitter.h
kernel_light.h
+ kernel_light_background.h
+ kernel_light_common.h
kernel_math.h
kernel_montecarlo.h
kernel_passes.h
diff --git a/intern/cycles/kernel/kernel_emission.h b/intern/cycles/kernel/kernel_emission.h
index 71b176a0a8f..4ac07d86dda 100644
--- a/intern/cycles/kernel/kernel_emission.h
+++ b/intern/cycles/kernel/kernel_emission.h
@@ -326,9 +326,7 @@ ccl_device_noinline_cpu float3 indirect_background(KernelGlobals *kg,
/* Background MIS weights. */
# ifdef __BACKGROUND_MIS__
/* Check if background light exists or if we should skip pdf. */
- int res_x = kernel_data.integrator.pdf_background_res_x;
-
- if (!(state->flag & PATH_RAY_MIS_SKIP) && res_x) {
+ if (!(state->flag & PATH_RAY_MIS_SKIP) && kernel_data.background.use_mis) {
/* multiple importance sampling, get background light pdf for ray
* direction, and compute weight with respect to BSDF pdf */
float pdf = background_light_pdf(kg, ray->P, ray->D);
diff --git a/intern/cycles/kernel/kernel_light.h b/intern/cycles/kernel/kernel_light.h
index 04472212d0c..0448d0165b9 100644
--- a/intern/cycles/kernel/kernel_light.h
+++ b/intern/cycles/kernel/kernel_light.h
@@ -14,6 +14,8 @@
* limitations under the License.
*/
+#include "kernel_light_background.h"
+
CCL_NAMESPACE_BEGIN
/* Light Sample result */
@@ -33,500 +35,6 @@ typedef struct LightSample {
LightType type; /* type of light */
} LightSample;
-/* Area light sampling */
-
-/* Uses the following paper:
- *
- * Carlos Urena et al.
- * An Area-Preserving Parametrization for Spherical Rectangles.
- *
- * https://www.solidangle.com/research/egsr2013_spherical_rectangle.pdf
- *
- * Note: light_p is modified when sample_coord is true.
- */
-ccl_device_inline float rect_light_sample(float3 P,
- float3 *light_p,
- float3 axisu,
- float3 axisv,
- float randu,
- float randv,
- bool sample_coord)
-{
- /* In our name system we're using P for the center,
- * which is o in the paper.
- */
-
- float3 corner = *light_p - axisu * 0.5f - axisv * 0.5f;
- float axisu_len, axisv_len;
- /* Compute local reference system R. */
- float3 x = normalize_len(axisu, &axisu_len);
- float3 y = normalize_len(axisv, &axisv_len);
- float3 z = cross(x, y);
- /* Compute rectangle coords in local reference system. */
- float3 dir = corner - P;
- float z0 = dot(dir, z);
- /* Flip 'z' to make it point against Q. */
- if (z0 > 0.0f) {
- z *= -1.0f;
- z0 *= -1.0f;
- }
- float x0 = dot(dir, x);
- float y0 = dot(dir, y);
- float x1 = x0 + axisu_len;
- float y1 = y0 + axisv_len;
- /* Compute internal angles (gamma_i). */
- float4 diff = make_float4(x0, y1, x1, y0) - make_float4(x1, y0, x0, y1);
- float4 nz = make_float4(y0, x1, y1, x0) * diff;
- nz = nz / sqrt(z0 * z0 * diff * diff + nz * nz);
- float g0 = safe_acosf(-nz.x * nz.y);
- float g1 = safe_acosf(-nz.y * nz.z);
- float g2 = safe_acosf(-nz.z * nz.w);
- float g3 = safe_acosf(-nz.w * nz.x);
- /* Compute predefined constants. */
- float b0 = nz.x;
- float b1 = nz.z;
- float b0sq = b0 * b0;
- float k = M_2PI_F - g2 - g3;
- /* Compute solid angle from internal angles. */
- float S = g0 + g1 - k;
-
- if (sample_coord) {
- /* Compute cu. */
- float au = randu * S + k;
- float fu = (cosf(au) * b0 - b1) / sinf(au);
- float cu = 1.0f / sqrtf(fu * fu + b0sq) * (fu > 0.0f ? 1.0f : -1.0f);
- cu = clamp(cu, -1.0f, 1.0f);
- /* Compute xu. */
- float xu = -(cu * z0) / max(sqrtf(1.0f - cu * cu), 1e-7f);
- xu = clamp(xu, x0, x1);
- /* Compute yv. */
- float z0sq = z0 * z0;
- float y0sq = y0 * y0;
- float y1sq = y1 * y1;
- float d = sqrtf(xu * xu + z0sq);
- float h0 = y0 / sqrtf(d * d + y0sq);
- float h1 = y1 / sqrtf(d * d + y1sq);
- float hv = h0 + randv * (h1 - h0), hv2 = hv * hv;
- float yv = (hv2 < 1.0f - 1e-6f) ? (hv * d) / sqrtf(1.0f - hv2) : y1;
-
- /* Transform (xu, yv, z0) to world coords. */
- *light_p = P + xu * x + yv * y + z0 * z;
- }
-
- /* return pdf */
- if (S != 0.0f)
- return 1.0f / S;
- else
- return 0.0f;
-}
-
-ccl_device_inline float3 ellipse_sample(float3 ru, float3 rv, float randu, float randv)
-{
- to_unit_disk(&randu, &randv);
- return ru * randu + rv * randv;
-}
-
-ccl_device float3 disk_light_sample(float3 v, float randu, float randv)
-{
- float3 ru, rv;
-
- make_orthonormals(v, &ru, &rv);
-
- return ellipse_sample(ru, rv, randu, randv);
-}
-
-ccl_device float3 distant_light_sample(float3 D, float radius, float randu, float randv)
-{
- return normalize(D + disk_light_sample(D, randu, randv) * radius);
-}
-
-ccl_device float3
-sphere_light_sample(float3 P, float3 center, float radius, float randu, float randv)
-{
- return disk_light_sample(normalize(P - center), randu, randv) * radius;
-}
-
-ccl_device float spot_light_attenuation(float3 dir,
- float spot_angle,
- float spot_smooth,
- LightSample *ls)
-{
- float3 I = ls->Ng;
-
- float attenuation = dot(dir, I);
-
- if (attenuation <= spot_angle) {
- attenuation = 0.0f;
- }
- else {
- float t = attenuation - spot_angle;
-
- if (t < spot_smooth && spot_smooth != 0.0f)
- attenuation *= smoothstepf(t / spot_smooth);
- }
-
- return attenuation;
-}
-
-ccl_device float lamp_light_pdf(KernelGlobals *kg, const float3 Ng, const float3 I, float t)
-{
- float cos_pi = dot(Ng, I);
-
- if (cos_pi <= 0.0f)
- return 0.0f;
-
- return t * t / cos_pi;
-}
-
-/* Background Light */
-
-#ifdef __BACKGROUND_MIS__
-
-ccl_device float3 background_map_sample(KernelGlobals *kg, float randu, float randv, float *pdf)
-{
- /* for the following, the CDF values are actually a pair of floats, with the
- * function value as X and the actual CDF as Y. The last entry's function
- * value is the CDF total. */
- int res_x = kernel_data.integrator.pdf_background_res_x;
- int res_y = kernel_data.integrator.pdf_background_res_y;
- int cdf_width = res_x + 1;
-
- /* this is basically std::lower_bound as used by pbrt */
- int first = 0;
- int count = res_y;
-
- while (count > 0) {
- int step = count >> 1;
- int middle = first + step;
-
- if (kernel_tex_fetch(__light_background_marginal_cdf, middle).y < randv) {
- first = middle + 1;
- count -= step + 1;
- }
- else
- count = step;
- }
-
- int index_v = max(0, first - 1);
- kernel_assert(index_v >= 0 && index_v < res_y);
-
- float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
- float2 cdf_next_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v + 1);
- float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res_y);
-
- /* importance-sampled V direction */
- float dv = inverse_lerp(cdf_v.y, cdf_next_v.y, randv);
- float v = (index_v + dv) / res_y;
-
- /* this is basically std::lower_bound as used by pbrt */
- first = 0;
- count = res_x;
- while (count > 0) {
- int step = count >> 1;
- int middle = first + step;
-
- if (kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + middle).y <
- randu) {
- first = middle + 1;
- count -= step + 1;
- }
- else
- count = step;
- }
-
- int index_u = max(0, first - 1);
- kernel_assert(index_u >= 0 && index_u < res_x);
-
- float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf,
- index_v * cdf_width + index_u);
- float2 cdf_next_u = kernel_tex_fetch(__light_background_conditional_cdf,
- index_v * cdf_width + index_u + 1);
- float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf,
- index_v * cdf_width + res_x);
-
- /* importance-sampled U direction */
- float du = inverse_lerp(cdf_u.y, cdf_next_u.y, randu);
- float u = (index_u + du) / res_x;
-
- /* compute pdf */
- float sin_theta = sinf(M_PI_F * v);
- float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
-
- if (sin_theta == 0.0f || denom == 0.0f)
- *pdf = 0.0f;
- else
- *pdf = (cdf_u.x * cdf_v.x) / denom;
-
- /* compute direction */
- return equirectangular_to_direction(u, v);
-}
-
-/* TODO(sergey): Same as above, after the release we should consider using
- * 'noinline' for all devices.
- */
-ccl_device float background_map_pdf(KernelGlobals *kg, float3 direction)
-{
- float2 uv = direction_to_equirectangular(direction);
- int res_x = kernel_data.integrator.pdf_background_res_x;
- int res_y = kernel_data.integrator.pdf_background_res_y;
- int cdf_width = res_x + 1;
-
- float sin_theta = sinf(uv.y * M_PI_F);
-
- if (sin_theta == 0.0f)
- return 0.0f;
-
- int index_u = clamp(float_to_int(uv.x * res_x), 0, res_x - 1);
- int index_v = clamp(float_to_int(uv.y * res_y), 0, res_y - 1);
-
- /* pdfs in V direction */
- float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf,
- index_v * cdf_width + res_x);
- float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res_y);
-
- float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
-
- if (denom == 0.0f)
- return 0.0f;
-
- /* pdfs in U direction */
- float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf,
- index_v * cdf_width + index_u);
- float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
-
- return (cdf_u.x * cdf_v.x) / denom;
-}
-
-ccl_device_inline bool background_portal_data_fetch_and_check_side(
- KernelGlobals *kg, float3 P, int index, float3 *lightpos, float3 *dir)
-{
- int portal = kernel_data.integrator.portal_offset + index;
- const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
-
- *lightpos = make_float3(klight->co[0], klight->co[1], klight->co[2]);
- *dir = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]);
-
- /* Check whether portal is on the right side. */
- if (dot(*dir, P - *lightpos) > 1e-4f)
- return true;
-
- return false;
-}
-
-ccl_device_inline float background_portal_pdf(
- KernelGlobals *kg, float3 P, float3 direction, int ignore_portal, bool *is_possible)
-{
- float portal_pdf = 0.0f;
-
- int num_possible = 0;
- for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
- if (p == ignore_portal)
- continue;
-
- float3 lightpos, dir;
- if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
- continue;
-
- /* There's a portal that could be sampled from this position. */
- if (is_possible) {
- *is_possible = true;
- }
- num_possible++;
-
- int portal = kernel_data.integrator.portal_offset + p;
- const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
- float3 axisu = make_float3(
- klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
- float3 axisv = make_float3(
- klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
- bool is_round = (klight->area.invarea < 0.0f);
-
- if (!ray_quad_intersect(P,
- direction,
- 1e-4f,
- FLT_MAX,
- lightpos,
- axisu,
- axisv,
- dir,
- NULL,
- NULL,
- NULL,
- NULL,
- is_round))
- continue;
-
- if (is_round) {
- float t;
- float3 D = normalize_len(lightpos - P, &t);
- portal_pdf += fabsf(klight->area.invarea) * lamp_light_pdf(kg, dir, -D, t);
- }
- else {
- portal_pdf += rect_light_sample(P, &lightpos, axisu, axisv, 0.0f, 0.0f, false);
- }
- }
-
- if (ignore_portal >= 0) {
- /* We have skipped a portal that could be sampled as well. */
- num_possible++;
- }
-
- return (num_possible > 0) ? portal_pdf / num_possible : 0.0f;
-}
-
-ccl_device int background_num_possible_portals(KernelGlobals *kg, float3 P)
-{
- int num_possible_portals = 0;
- for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
- float3 lightpos, dir;
- if (background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
- num_possible_portals++;
- }
- return num_possible_portals;
-}
-
-ccl_device float3 background_portal_sample(KernelGlobals *kg,
- float3 P,
- float randu,
- float randv,
- int num_possible,
- int *sampled_portal,
- float *pdf)
-{
- /* Pick a portal, then re-normalize randv. */
- randv *= num_possible;
- int portal = (int)randv;
- randv -= portal;
-
- /* TODO(sergey): Some smarter way of finding portal to sample
- * is welcome.
- */
- for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
- /* Search for the sampled portal. */
- float3 lightpos, dir;
- if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
- continue;
-
- if (portal == 0) {
- /* p is the portal to be sampled. */
- int portal = kernel_data.integrator.portal_offset + p;
- const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
- float3 axisu = make_float3(
- klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
- float3 axisv = make_float3(
- klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
- bool is_round = (klight->area.invarea < 0.0f);
-
- float3 D;
- if (is_round) {
- lightpos += ellipse_sample(axisu * 0.5f, axisv * 0.5f, randu, randv);
- float t;
- D = normalize_len(lightpos - P, &t);
- *pdf = fabsf(klight->area.invarea) * lamp_light_pdf(kg, dir, -D, t);
- }
- else {
- *pdf = rect_light_sample(P, &lightpos, axisu, axisv, randu, randv, true);
- D = normalize(lightpos - P);
- }
-
- *pdf /= num_possible;
- *sampled_portal = p;
- return D;
- }
-
- portal--;
- }
-
- return make_float3(0.0f, 0.0f, 0.0f);
-}
-
-ccl_device_inline float3
-background_light_sample(KernelGlobals *kg, float3 P, float randu, float randv, float *pdf)
-{
- /* Probability of sampling portals instead of the map. */
- float portal_sampling_pdf = kernel_data.integrator.portal_pdf;
-
- /* Check if there are portals in the scene which we can sample. */
- if (portal_sampling_pdf > 0.0f) {
- int num_portals = background_num_possible_portals(kg, P);
- if (num_portals > 0) {
- if (portal_sampling_pdf == 1.0f || randu < portal_sampling_pdf) {
- if (portal_sampling_pdf < 1.0f) {
- randu /= portal_sampling_pdf;
- }
- int portal;
- float3 D = background_portal_sample(kg, P, randu, randv, num_portals, &portal, pdf);
- if (num_portals > 1) {
- /* Ignore the chosen portal, its pdf is already included. */
- *pdf += background_portal_pdf(kg, P, D, portal, NULL);
- }
- /* We could also have sampled the map, so combine with MIS. */
- if (portal_sampling_pdf < 1.0f) {
- float cdf_pdf = background_map_pdf(kg, D);
- *pdf = (portal_sampling_pdf * (*pdf) + (1.0f - portal_sampling_pdf) * cdf_pdf);
- }
- return D;
- }
- else {
- /* Sample map, but with nonzero portal_sampling_pdf for MIS. */
- randu = (randu - portal_sampling_pdf) / (1.0f - portal_sampling_pdf);
- }
- }
- else {
- /* We can't sample a portal.
- * Check if we can sample the map instead.
- */
- if (portal_sampling_pdf == 1.0f) {
- /* Use uniform as a fallback if we can't sample the map. */
- *pdf = 1.0f / M_4PI_F;
- return sample_uniform_sphere(randu, randv);
- }
- else {
- portal_sampling_pdf = 0.0f;
- }
- }
- }
-
- float3 D = background_map_sample(kg, randu, randv, pdf);
- /* Use MIS if portals could be sampled as well. */
- if (portal_sampling_pdf > 0.0f) {
- float portal_pdf = background_portal_pdf(kg, P, D, -1, NULL);
- *pdf = (portal_sampling_pdf * portal_pdf + (1.0f - portal_sampling_pdf) * (*pdf));
- }
- return D;
-}
-
-ccl_device float background_light_pdf(KernelGlobals *kg, float3 P, float3 direction)
-{
- /* Probability of sampling portals instead of the map. */
- float portal_sampling_pdf = kernel_data.integrator.portal_pdf;
-
- float portal_pdf = 0.0f, map_pdf = 0.0f;
- if (portal_sampling_pdf > 0.0f) {
- /* Evaluate PDF of sampling this direction by portal sampling. */
- bool is_possible = false;
- portal_pdf = background_portal_pdf(kg, P, direction, -1, &is_possible) * portal_sampling_pdf;
- if (!is_possible) {
- /* Portal sampling is not possible here because all portals point to the wrong side.
- * If map sampling is possible, it would be used instead,
- * otherwise fallback sampling is used. */
- if (portal_sampling_pdf == 1.0f) {
- return kernel_data.integrator.pdf_lights / M_4PI_F;
- }
- else {
- /* Force map sampling. */
- portal_sampling_pdf = 0.0f;
- }
- }
- }
- if (portal_sampling_pdf < 1.0f) {
- /* Evaluate PDF of sampling this direction by map sampling. */
- map_pdf = background_map_pdf(kg, direction) * (1.0f - portal_sampling_pdf);
- }
- return (portal_pdf + map_pdf) * kernel_data.integrator.pdf_lights;
-}
-#endif
-
/* Regular Light */
ccl_device_inline bool lamp_light_sample(
@@ -594,7 +102,7 @@ ccl_device_inline bool lamp_light_sample(
/* spot light attenuation */
float3 dir = make_float3(klight->spot.dir[0], klight->spot.dir[1], klight->spot.dir[2]);
ls->eval_fac *= spot_light_attenuation(
- dir, klight->spot.spot_angle, klight->spot.spot_smooth, ls);
+ dir, klight->spot.spot_angle, klight->spot.spot_smooth, ls->Ng);
if (ls->eval_fac == 0.0f) {
return false;
}
@@ -732,7 +240,7 @@ ccl_device bool lamp_light_eval(
/* spot light attenuation */
float3 dir = make_float3(klight->spot.dir[0], klight->spot.dir[1], klight->spot.dir[2]);
ls->eval_fac *= spot_light_attenuation(
- dir, klight->spot.spot_angle, klight->spot.spot_smooth, ls);
+ dir, klight->spot.spot_angle, klight->spot.spot_smooth, ls->Ng);
if (ls->eval_fac == 0.0f)
return false;
diff --git a/intern/cycles/kernel/kernel_light_background.h b/intern/cycles/kernel/kernel_light_background.h
new file mode 100644
index 00000000000..30e336f0f80
--- /dev/null
+++ b/intern/cycles/kernel/kernel_light_background.h
@@ -0,0 +1,448 @@
+/*
+ * Copyright 2011-2020 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel_light_common.h"
+
+CCL_NAMESPACE_BEGIN
+
+/* Background Light */
+
+#ifdef __BACKGROUND_MIS__
+
+ccl_device float3 background_map_sample(KernelGlobals *kg, float randu, float randv, float *pdf)
+{
+ /* for the following, the CDF values are actually a pair of floats, with the
+ * function value as X and the actual CDF as Y. The last entry's function
+ * value is the CDF total. */
+ int res_x = kernel_data.background.map_res_x;
+ int res_y = kernel_data.background.map_res_y;
+ int cdf_width = res_x + 1;
+
+ /* this is basically std::lower_bound as used by pbrt */
+ int first = 0;
+ int count = res_y;
+
+ while (count > 0) {
+ int step = count >> 1;
+ int middle = first + step;
+
+ if (kernel_tex_fetch(__light_background_marginal_cdf, middle).y < randv) {
+ first = middle + 1;
+ count -= step + 1;
+ }
+ else
+ count = step;
+ }
+
+ int index_v = max(0, first - 1);
+ kernel_assert(index_v >= 0 && index_v < res_y);
+
+ float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
+ float2 cdf_next_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v + 1);
+ float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res_y);
+
+ /* importance-sampled V direction */
+ float dv = inverse_lerp(cdf_v.y, cdf_next_v.y, randv);
+ float v = (index_v + dv) / res_y;
+
+ /* this is basically std::lower_bound as used by pbrt */
+ first = 0;
+ count = res_x;
+ while (count > 0) {
+ int step = count >> 1;
+ int middle = first + step;
+
+ if (kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + middle).y <
+ randu) {
+ first = middle + 1;
+ count -= step + 1;
+ }
+ else
+ count = step;
+ }
+
+ int index_u = max(0, first - 1);
+ kernel_assert(index_u >= 0 && index_u < res_x);
+
+ float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf,
+ index_v * cdf_width + index_u);
+ float2 cdf_next_u = kernel_tex_fetch(__light_background_conditional_cdf,
+ index_v * cdf_width + index_u + 1);
+ float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf,
+ index_v * cdf_width + res_x);
+
+ /* importance-sampled U direction */
+ float du = inverse_lerp(cdf_u.y, cdf_next_u.y, randu);
+ float u = (index_u + du) / res_x;
+
+ /* compute pdf */
+ float sin_theta = sinf(M_PI_F * v);
+ float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
+
+ if (sin_theta == 0.0f || denom == 0.0f)
+ *pdf = 0.0f;
+ else
+ *pdf = (cdf_u.x * cdf_v.x) / denom;
+
+ /* compute direction */
+ return equirectangular_to_direction(u, v);
+}
+
+/* TODO(sergey): Same as above, after the release we should consider using
+ * 'noinline' for all devices.
+ */
+ccl_device float background_map_pdf(KernelGlobals *kg, float3 direction)
+{
+ float2 uv = direction_to_equirectangular(direction);
+ int res_x = kernel_data.background.map_res_x;
+ int res_y = kernel_data.background.map_res_y;
+ int cdf_width = res_x + 1;
+
+ float sin_theta = sinf(uv.y * M_PI_F);
+
+ if (sin_theta == 0.0f)
+ return 0.0f;
+
+ int index_u = clamp(float_to_int(uv.x * res_x), 0, res_x - 1);
+ int index_v = clamp(float_to_int(uv.y * res_y), 0, res_y - 1);
+
+ /* pdfs in V direction */
+ float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf,
+ index_v * cdf_width + res_x);
+ float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res_y);
+
+ float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
+
+ if (denom == 0.0f)
+ return 0.0f;
+
+ /* pdfs in U direction */
+ float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf,
+ index_v * cdf_width + index_u);
+ float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
+
+ return (cdf_u.x * cdf_v.x) / denom;
+}
+
+ccl_device_inline bool background_portal_data_fetch_and_check_side(
+ KernelGlobals *kg, float3 P, int index, float3 *lightpos, float3 *dir)
+{
+ int portal = kernel_data.background.portal_offset + index;
+ const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
+
+ *lightpos = make_float3(klight->co[0], klight->co[1], klight->co[2]);
+ *dir = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]);
+
+ /* Check whether portal is on the right side. */
+ if (dot(*dir, P - *lightpos) > 1e-4f)
+ return true;
+
+ return false;
+}
+
+ccl_device_inline float background_portal_pdf(
+ KernelGlobals *kg, float3 P, float3 direction, int ignore_portal, bool *is_possible)
+{
+ float portal_pdf = 0.0f;
+
+ int num_possible = 0;
+ for (int p = 0; p < kernel_data.background.num_portals; p++) {
+ if (p == ignore_portal)
+ continue;
+
+ float3 lightpos, dir;
+ if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
+ continue;
+
+ /* There's a portal that could be sampled from this position. */
+ if (is_possible) {
+ *is_possible = true;
+ }
+ num_possible++;
+
+ int portal = kernel_data.background.portal_offset + p;
+ const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
+ float3 axisu = make_float3(
+ klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
+ float3 axisv = make_float3(
+ klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
+ bool is_round = (klight->area.invarea < 0.0f);
+
+ if (!ray_quad_intersect(P,
+ direction,
+ 1e-4f,
+ FLT_MAX,
+ lightpos,
+ axisu,
+ axisv,
+ dir,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ is_round))
+ continue;
+
+ if (is_round) {
+ float t;
+ float3 D = normalize_len(lightpos - P, &t);
+ portal_pdf += fabsf(klight->area.invarea) * lamp_light_pdf(kg, dir, -D, t);
+ }
+ else {
+ portal_pdf += rect_light_sample(P, &lightpos, axisu, axisv, 0.0f, 0.0f, false);
+ }
+ }
+
+ if (ignore_portal >= 0) {
+ /* We have skipped a portal that could be sampled as well. */
+ num_possible++;
+ }
+
+ return (num_possible > 0) ? portal_pdf / num_possible : 0.0f;
+}
+
+ccl_device int background_num_possible_portals(KernelGlobals *kg, float3 P)
+{
+ int num_possible_portals = 0;
+ for (int p = 0; p < kernel_data.background.num_portals; p++) {
+ float3 lightpos, dir;
+ if (background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
+ num_possible_portals++;
+ }
+ return num_possible_portals;
+}
+
+ccl_device float3 background_portal_sample(KernelGlobals *kg,
+ float3 P,
+ float randu,
+ float randv,
+ int num_possible,
+ int *sampled_portal,
+ float *pdf)
+{
+ /* Pick a portal, then re-normalize randv. */
+ randv *= num_possible;
+ int portal = (int)randv;
+ randv -= portal;
+
+ /* TODO(sergey): Some smarter way of finding portal to sample
+ * is welcome.
+ */
+ for (int p = 0; p < kernel_data.background.num_portals; p++) {
+ /* Search for the sampled portal. */
+ float3 lightpos, dir;
+ if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
+ continue;
+
+ if (portal == 0) {
+ /* p is the portal to be sampled. */
+ int portal = kernel_data.background.portal_offset + p;
+ const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
+ float3 axisu = make_float3(
+ klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
+ float3 axisv = make_float3(
+ klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
+ bool is_round = (klight->area.invarea < 0.0f);
+
+ float3 D;
+ if (is_round) {
+ lightpos += ellipse_sample(axisu * 0.5f, axisv * 0.5f, randu, randv);
+ float t;
+ D = normalize_len(lightpos - P, &t);
+ *pdf = fabsf(klight->area.invarea) * lamp_light_pdf(kg, dir, -D, t);
+ }
+ else {
+ *pdf = rect_light_sample(P, &lightpos, axisu, axisv, randu, randv, true);
+ D = normalize(lightpos - P);
+ }
+
+ *pdf /= num_possible;
+ *sampled_portal = p;
+ return D;
+ }
+
+ portal--;
+ }
+
+ return make_float3(0.0f, 0.0f, 0.0f);
+}
+
+ccl_device_inline float3 background_sun_sample(KernelGlobals *kg,
+ float randu,
+ float randv,
+ float *pdf)
+{
+ float3 D;
+ const float3 N = float4_to_float3(kernel_data.background.sun);
+ const float angle = kernel_data.background.sun.w;
+ sample_uniform_cone(N, angle, randu, randv, &D, pdf);
+ return D;
+}
+
+ccl_device_inline float background_sun_pdf(KernelGlobals *kg, float3 D)
+{
+ const float3 N = float4_to_float3(kernel_data.background.sun);
+ const float angle = kernel_data.background.sun.w;
+ return pdf_uniform_cone(N, D, angle);
+}
+
+ccl_device_inline float3
+background_light_sample(KernelGlobals *kg, float3 P, float randu, float randv, float *pdf)
+{
+ float portal_method_pdf = kernel_data.background.portal_weight;
+ float sun_method_pdf = kernel_data.background.sun_weight;
+ float map_method_pdf = kernel_data.background.map_weight;
+
+ int num_portals = 0;
+ if (portal_method_pdf > 0.0f) {
+ /* Check if there are portals in the scene which we can sample. */
+ num_portals = background_num_possible_portals(kg, P);
+ if (num_portals == 0) {
+ portal_method_pdf = 0.0f;
+ }
+ }
+
+ float pdf_fac = (portal_method_pdf + sun_method_pdf + map_method_pdf);
+ if (pdf_fac == 0.0f) {
+ /* Use uniform as a fallback if we can't use any strategy. */
+ *pdf = 1.0f / M_4PI_F;
+ return sample_uniform_sphere(randu, randv);
+ }
+
+ pdf_fac = 1.0f / pdf_fac;
+ portal_method_pdf *= pdf_fac;
+ sun_method_pdf *= pdf_fac;
+ map_method_pdf *= pdf_fac;
+
+ /* We have 100% in total and split it between the three categories.
+ * Therefore, we pick portals if randu is between 0 and portal_method_pdf,
+ * sun if randu is between portal_method_pdf and (portal_method_pdf + sun_method_pdf)
+ * and map if randu is between (portal_method_pdf + sun_method_pdf) and 1. */
+ float sun_method_cdf = portal_method_pdf + sun_method_pdf;
+
+ int method = 0;
+ float3 D;
+ if (randu < portal_method_pdf) {
+ method = 0;
+ /* Rescale randu. */
+ if (portal_method_pdf != 1.0f) {
+ randu /= portal_method_pdf;
+ }
+
+ /* Sample a portal. */
+ int portal;
+ D = background_portal_sample(kg, P, randu, randv, num_portals, &portal, pdf);
+ if (num_portals > 1) {
+ /* Ignore the chosen portal, its pdf is already included. */
+ *pdf += background_portal_pdf(kg, P, D, portal, NULL);
+ }
+
+ /* Skip MIS if this is the only method. */
+ if (portal_method_pdf == 1.0f) {
+ return D;
+ }
+ *pdf *= portal_method_pdf;
+ }
+ else if (randu < sun_method_cdf) {
+ method = 1;
+ /* Rescale randu. */
+ if (sun_method_pdf != 1.0f) {
+ randu = (randu - portal_method_pdf) / sun_method_pdf;
+ }
+
+ D = background_sun_sample(kg, randu, randv, pdf);
+
+ /* Skip MIS if this is the only method. */
+ if (sun_method_pdf == 1.0f) {
+ return D;
+ }
+ *pdf *= sun_method_pdf;
+ }
+ else {
+ method = 2;
+ /* Rescale randu. */
+ if (map_method_pdf != 1.0f) {
+ randu = (randu - sun_method_cdf) / map_method_pdf;
+ }
+
+ D = background_map_sample(kg, randu, randv, pdf);
+
+ /* Skip MIS if this is the only method. */
+ if (map_method_pdf == 1.0f) {
+ return D;
+ }
+ *pdf *= map_method_pdf;
+ }
+
+ /* MIS weighting. */
+ if (method != 0 && portal_method_pdf != 0.0f) {
+ *pdf += portal_method_pdf * background_portal_pdf(kg, P, D, -1, NULL);
+ }
+ if (method != 1 && sun_method_pdf != 0.0f) {
+ *pdf += sun_method_pdf * background_sun_pdf(kg, D);
+ }
+ if (method != 2 && map_method_pdf != 0.0f) {
+ *pdf += map_method_pdf * background_map_pdf(kg, D);
+ }
+ return D;
+}
+
+ccl_device float background_light_pdf(KernelGlobals *kg, float3 P, float3 direction)
+{
+ float portal_method_pdf = kernel_data.background.portal_weight;
+ float sun_method_pdf = kernel_data.background.sun_weight;
+ float map_method_pdf = kernel_data.background.map_weight;
+
+ float portal_pdf = 0.0f;
+ /* Portals are a special case here since we need to compute their pdf in order
+ * to find out if we can sample them. */
+ if (portal_method_pdf > 0.0f) {
+ /* Evaluate PDF of sampling this direction by portal sampling. */
+ bool is_possible = false;
+ portal_pdf = background_portal_pdf(kg, P, direction, -1, &is_possible);
+ if (!is_possible) {
+ /* Portal sampling is not possible here because all portals point to the wrong side.
+ * If other methods can be used instead, do so, otherwise uniform sampling is used as a
+ * fallback. */
+ portal_method_pdf = 0.0f;
+ }
+ }
+
+ float pdf_fac = (portal_method_pdf + sun_method_pdf + map_method_pdf);
+ if (pdf_fac == 0.0f) {
+ /* Use uniform as a fallback if we can't use any strategy. */
+ return kernel_data.integrator.pdf_lights / M_4PI_F;
+ }
+
+ pdf_fac = 1.0f / pdf_fac;
+ portal_method_pdf *= pdf_fac;
+ sun_method_pdf *= pdf_fac;
+ map_method_pdf *= pdf_fac;
+
+ float pdf = portal_pdf * portal_method_pdf;
+ if (sun_method_pdf != 0.0f) {
+ pdf += background_sun_pdf(kg, direction) * sun_method_pdf;
+ }
+ if (map_method_pdf != 0.0f) {
+ pdf += background_map_pdf(kg, direction) * map_method_pdf;
+ }
+
+ return pdf * kernel_data.integrator.pdf_lights;
+}
+
+#endif
+
+CCL_NAMESPACE_END \ No newline at end of file
diff --git a/intern/cycles/kernel/kernel_light_common.h b/intern/cycles/kernel/kernel_light_common.h
new file mode 100644
index 00000000000..39503a4b479
--- /dev/null
+++ b/intern/cycles/kernel/kernel_light_common.h
@@ -0,0 +1,159 @@
+/*
+ * Copyright 2011-2020 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Area light sampling */
+
+/* Uses the following paper:
+ *
+ * Carlos Urena et al.
+ * An Area-Preserving Parametrization for Spherical Rectangles.
+ *
+ * https://www.solidangle.com/research/egsr2013_spherical_rectangle.pdf
+ *
+ * Note: light_p is modified when sample_coord is true.
+ */
+ccl_device_inline float rect_light_sample(float3 P,
+ float3 *light_p,
+ float3 axisu,
+ float3 axisv,
+ float randu,
+ float randv,
+ bool sample_coord)
+{
+ /* In our name system we're using P for the center,
+ * which is o in the paper.
+ */
+
+ float3 corner = *light_p - axisu * 0.5f - axisv * 0.5f;
+ float axisu_len, axisv_len;
+ /* Compute local reference system R. */
+ float3 x = normalize_len(axisu, &axisu_len);
+ float3 y = normalize_len(axisv, &axisv_len);
+ float3 z = cross(x, y);
+ /* Compute rectangle coords in local reference system. */
+ float3 dir = corner - P;
+ float z0 = dot(dir, z);
+ /* Flip 'z' to make it point against Q. */
+ if (z0 > 0.0f) {
+ z *= -1.0f;
+ z0 *= -1.0f;
+ }
+ float x0 = dot(dir, x);
+ float y0 = dot(dir, y);
+ float x1 = x0 + axisu_len;
+ float y1 = y0 + axisv_len;
+ /* Compute internal angles (gamma_i). */
+ float4 diff = make_float4(x0, y1, x1, y0) - make_float4(x1, y0, x0, y1);
+ float4 nz = make_float4(y0, x1, y1, x0) * diff;
+ nz = nz / sqrt(z0 * z0 * diff * diff + nz * nz);
+ float g0 = safe_acosf(-nz.x * nz.y);
+ float g1 = safe_acosf(-nz.y * nz.z);
+ float g2 = safe_acosf(-nz.z * nz.w);
+ float g3 = safe_acosf(-nz.w * nz.x);
+ /* Compute predefined constants. */
+ float b0 = nz.x;
+ float b1 = nz.z;
+ float b0sq = b0 * b0;
+ float k = M_2PI_F - g2 - g3;
+ /* Compute solid angle from internal angles. */
+ float S = g0 + g1 - k;
+
+ if (sample_coord) {
+ /* Compute cu. */
+ float au = randu * S + k;
+ float fu = (cosf(au) * b0 - b1) / sinf(au);
+ float cu = 1.0f / sqrtf(fu * fu + b0sq) * (fu > 0.0f ? 1.0f : -1.0f);
+ cu = clamp(cu, -1.0f, 1.0f);
+ /* Compute xu. */
+ float xu = -(cu * z0) / max(sqrtf(1.0f - cu * cu), 1e-7f);
+ xu = clamp(xu, x0, x1);
+ /* Compute yv. */
+ float z0sq = z0 * z0;
+ float y0sq = y0 * y0;
+ float y1sq = y1 * y1;
+ float d = sqrtf(xu * xu + z0sq);
+ float h0 = y0 / sqrtf(d * d + y0sq);
+ float h1 = y1 / sqrtf(d * d + y1sq);
+ float hv = h0 + randv * (h1 - h0), hv2 = hv * hv;
+ float yv = (hv2 < 1.0f - 1e-6f) ? (hv * d) / sqrtf(1.0f - hv2) : y1;
+
+ /* Transform (xu, yv, z0) to world coords. */
+ *light_p = P + xu * x + yv * y + z0 * z;
+ }
+
+ /* return pdf */
+ if (S != 0.0f)
+ return 1.0f / S;
+ else
+ return 0.0f;
+}
+
+ccl_device_inline float3 ellipse_sample(float3 ru, float3 rv, float randu, float randv)
+{
+ to_unit_disk(&randu, &randv);
+ return ru * randu + rv * randv;
+}
+
+ccl_device float3 disk_light_sample(float3 v, float randu, float randv)
+{
+ float3 ru, rv;
+
+ make_orthonormals(v, &ru, &rv);
+
+ return ellipse_sample(ru, rv, randu, randv);
+}
+
+ccl_device float3 distant_light_sample(float3 D, float radius, float randu, float randv)
+{
+ return normalize(D + disk_light_sample(D, randu, randv) * radius);
+}
+
+ccl_device float3
+sphere_light_sample(float3 P, float3 center, float radius, float randu, float randv)
+{
+ return disk_light_sample(normalize(P - center), randu, randv) * radius;
+}
+
+ccl_device float spot_light_attenuation(float3 dir, float spot_angle, float spot_smooth, float3 N)
+{
+ float attenuation = dot(dir, N);
+
+ if (attenuation <= spot_angle) {
+ attenuation = 0.0f;
+ }
+ else {
+ float t = attenuation - spot_angle;
+
+ if (t < spot_smooth && spot_smooth != 0.0f)
+ attenuation *= smoothstepf(t / spot_smooth);
+ }
+
+ return attenuation;
+}
+
+ccl_device float lamp_light_pdf(KernelGlobals *kg, const float3 Ng, const float3 I, float t)
+{
+ float cos_pi = dot(Ng, I);
+
+ if (cos_pi <= 0.0f)
+ return 0.0f;
+
+ return t * t / cos_pi;
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_montecarlo.h b/intern/cycles/kernel/kernel_montecarlo.h
index 5c776e06547..0edcc1a5a14 100644
--- a/intern/cycles/kernel/kernel_montecarlo.h
+++ b/intern/cycles/kernel/kernel_montecarlo.h
@@ -98,6 +98,16 @@ ccl_device_inline void sample_uniform_cone(
*pdf = M_1_2PI_F / (1.0f - zMin);
}
+ccl_device_inline float pdf_uniform_cone(const float3 N, float3 D, float angle)
+{
+ float zMin = cosf(angle);
+ float z = dot(N, D);
+ if (z > zMin) {
+ return M_1_2PI_F / (1.0f - zMin);
+ }
+ return 0.0f;
+}
+
/* sample uniform point on the surface of a sphere */
ccl_device float3 sample_uniform_sphere(float u1, float u2)
{
diff --git a/intern/cycles/kernel/kernel_types.h b/intern/cycles/kernel/kernel_types.h
index 0a0cf1bd6c0..a692d7a844f 100644
--- a/intern/cycles/kernel/kernel_types.h
+++ b/intern/cycles/kernel/kernel_types.h
@@ -1291,6 +1291,24 @@ typedef struct KernelBackground {
float ao_factor;
float ao_distance;
float ao_bounces_factor;
+
+ /* portal sampling */
+ float portal_weight;
+ int num_portals;
+ int portal_offset;
+
+ /* sun sampling */
+ float sun_weight;
+ /* xyz store direction, w the angle. float4 instead of float3 is used
+ * to ensure consistent padding/alignment across devices. */
+ float4 sun;
+
+ /* map sampling */
+ float map_weight;
+ int map_res_x;
+ int map_res_y;
+
+ int use_mis;
} KernelBackground;
static_assert_align(KernelBackground, 16);
@@ -1302,15 +1320,8 @@ typedef struct KernelIntegrator {
int num_all_lights;
float pdf_triangles;
float pdf_lights;
- int pdf_background_res_x;
- int pdf_background_res_y;
float light_inv_rr_threshold;
- /* light portals */
- float portal_pdf;
- int num_portals;
- int portal_offset;
-
/* bounces */
int min_bounce;
int max_bounce;
@@ -1372,7 +1383,7 @@ typedef struct KernelIntegrator {
int max_closures;
- int pad1;
+ int pad1, pad2;
} KernelIntegrator;
static_assert_align(KernelIntegrator, 16);
diff --git a/intern/cycles/kernel/shaders/node_sky_texture.osl b/intern/cycles/kernel/shaders/node_sky_texture.osl
index 4def237a2e0..08bc8f85120 100644
--- a/intern/cycles/kernel/shaders/node_sky_texture.osl
+++ b/intern/cycles/kernel/shaders/node_sky_texture.osl
@@ -44,13 +44,13 @@ float sky_perez_function(float lam[9], float theta, float gamma)
(1.0 + lam[2] * exp(lam[3] * gamma) + lam[4] * cgamma * cgamma);
}
-color sky_radiance_old(normal dir,
- float sunphi,
- float suntheta,
- color radiance,
- float config_x[9],
- float config_y[9],
- float config_z[9])
+color sky_radiance_preetham(normal dir,
+ float sunphi,
+ float suntheta,
+ color radiance,
+ float config_x[9],
+ float config_y[9],
+ float config_z[9])
{
/* convert vector to spherical coordinates */
vector spherical = sky_spherical_coordinates(dir);
@@ -88,13 +88,13 @@ float sky_radiance_internal(float config[9], float theta, float gamma)
(config[2] + config[3] * expM + config[5] * rayM + config[6] * mieM + config[7] * zenith);
}
-color sky_radiance_new(normal dir,
- float sunphi,
- float suntheta,
- color radiance,
- float config_x[9],
- float config_y[9],
- float config_z[9])
+color sky_radiance_hosek(normal dir,
+ float sunphi,
+ float suntheta,
+ color radiance,
+ float config_x[9],
+ float config_y[9],
+ float config_z[9])
{
/* convert vector to spherical coordinates */
vector spherical = sky_spherical_coordinates(dir);
@@ -116,16 +116,103 @@ color sky_radiance_new(normal dir,
return xyz_to_rgb(x, y, z) * (M_2PI / 683);
}
+/* Nishita improved */
+vector geographical_to_direction(float lat, float lon)
+{
+ return vector(cos(lat) * cos(lon), cos(lat) * sin(lon), sin(lat));
+}
+
+color sky_radiance_nishita(vector dir, float nishita_data[9], string filename)
+{
+ /* definitions */
+ float sun_elevation = nishita_data[6];
+ float sun_rotation = nishita_data[7];
+ float angular_diameter = nishita_data[8];
+ int sun_disc = angular_diameter > 0;
+ float alpha = 1.0;
+ color xyz;
+ /* convert dir to spherical coordinates */
+ vector direction = sky_spherical_coordinates(dir);
+
+ /* render above the horizon */
+ if (dir[2] >= 0.0) {
+ /* definitions */
+ vector sun_dir = geographical_to_direction(sun_elevation, sun_rotation + M_PI_2);
+ float sun_dir_angle = acos(dot(dir, sun_dir));
+ float half_angular = angular_diameter / 2.0;
+ float dir_elevation = M_PI_2 - direction[0];
+
+ /* if ray inside sun disc render it, otherwise render sky */
+ if (sun_dir_angle < half_angular && sun_disc == 1) {
+ /* get 3 pixels data */
+ color pixel_bottom = color(nishita_data[0], nishita_data[1], nishita_data[2]);
+ color pixel_top = color(nishita_data[3], nishita_data[4], nishita_data[5]);
+ float y;
+
+ /* sun interpolation */
+ if (sun_elevation - half_angular > 0.0) {
+ if ((sun_elevation + half_angular) > 0.0) {
+ y = ((dir_elevation - sun_elevation) / angular_diameter) + 0.5;
+ xyz = mix(pixel_bottom, pixel_top, y);
+ }
+ }
+ else {
+ if (sun_elevation + half_angular > 0.0) {
+ y = dir_elevation / (sun_elevation + half_angular);
+ xyz = mix(pixel_bottom, pixel_top, y);
+ }
+ }
+ /* limb darkening, coefficient is 0.6f */
+ float angle_fraction = sun_dir_angle / half_angular;
+ float limb_darkening = (1.0 - 0.6 * (1.0 - sqrt(1.0 - angle_fraction * angle_fraction)));
+ xyz *= limb_darkening;
+ }
+ /* sky */
+ else {
+ /* sky interpolation */
+ float x = (direction[1] + M_PI + sun_rotation) / M_2PI;
+ float y = 1.0 - (dir_elevation / M_PI_2);
+ if (x > 1.0) {
+ x = x - 1.0;
+ }
+ xyz = (color)texture(filename, x, y, "wrap", "clamp", "interp", "linear", "alpha", alpha);
+ }
+ }
+ /* ground */
+ else {
+ if (dir[2] < -0.4) {
+ xyz = color(0, 0, 0);
+ }
+ else {
+ /* black ground fade */
+ float mul = pow(1.0 + dir[2] * 2.5, 3.0);
+ /* interpolation */
+ float x = (direction[1] + M_PI + sun_rotation) / M_2PI;
+ float y = 1.5;
+ if (x > 1.0) {
+ x = x - 1.0;
+ }
+ xyz = (color)texture(
+ filename, x, y, "wrap", "periodic", "interp", "linear", "alpha", alpha) *
+ mul;
+ }
+ }
+ /* convert to RGB and adjust strength */
+ return xyz_to_rgb(xyz[0], xyz[1], xyz[2]) * 120000.0;
+}
+
shader node_sky_texture(int use_mapping = 0,
matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
vector Vector = P,
string type = "hosek_wilkie",
float theta = 0.0,
float phi = 0.0,
+ string filename = "",
color radiance = color(0.0, 0.0, 0.0),
float config_x[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
float config_y[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
float config_z[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ float nishita_data[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
output color Color = color(0.0, 0.0, 0.0))
{
vector p = Vector;
@@ -133,8 +220,10 @@ shader node_sky_texture(int use_mapping = 0,
if (use_mapping)
p = transform(mapping, p);
+ if (type == "nishita_improved")
+ Color = sky_radiance_nishita(p, nishita_data, filename);
if (type == "hosek_wilkie")
- Color = sky_radiance_new(p, phi, theta, radiance, config_x, config_y, config_z);
- else
- Color = sky_radiance_old(p, phi, theta, radiance, config_x, config_y, config_z);
+ Color = sky_radiance_hosek(p, phi, theta, radiance, config_x, config_y, config_z);
+ if (type == "preetham")
+ Color = sky_radiance_preetham(p, phi, theta, radiance, config_x, config_y, config_z);
}
diff --git a/intern/cycles/kernel/svm/svm_sky.h b/intern/cycles/kernel/svm/svm_sky.h
index 50fe0c8232f..e877bd9a5c8 100644
--- a/intern/cycles/kernel/svm/svm_sky.h
+++ b/intern/cycles/kernel/svm/svm_sky.h
@@ -37,16 +37,16 @@ ccl_device float sky_perez_function(float *lam, float theta, float gamma)
(1.0f + lam[2] * expf(lam[3] * gamma) + lam[4] * cgamma * cgamma);
}
-ccl_device float3 sky_radiance_old(KernelGlobals *kg,
- float3 dir,
- float sunphi,
- float suntheta,
- float radiance_x,
- float radiance_y,
- float radiance_z,
- float *config_x,
- float *config_y,
- float *config_z)
+ccl_device float3 sky_radiance_preetham(KernelGlobals *kg,
+ float3 dir,
+ float sunphi,
+ float suntheta,
+ float radiance_x,
+ float radiance_y,
+ float radiance_z,
+ float *config_x,
+ float *config_y,
+ float *config_z)
{
/* convert vector to spherical coordinates */
float2 spherical = direction_to_spherical(dir);
@@ -90,16 +90,16 @@ ccl_device float sky_radiance_internal(float *configuration, float theta, float
configuration[6] * mieM + configuration[7] * zenith);
}
-ccl_device float3 sky_radiance_new(KernelGlobals *kg,
- float3 dir,
- float sunphi,
- float suntheta,
- float radiance_x,
- float radiance_y,
- float radiance_z,
- float *config_x,
- float *config_y,
- float *config_z)
+ccl_device float3 sky_radiance_hosek(KernelGlobals *kg,
+ float3 dir,
+ float sunphi,
+ float suntheta,
+ float radiance_x,
+ float radiance_y,
+ float radiance_z,
+ float *config_x,
+ float *config_y,
+ float *config_z)
{
/* convert vector to spherical coordinates */
float2 spherical = direction_to_spherical(dir);
@@ -121,93 +121,206 @@ ccl_device float3 sky_radiance_new(KernelGlobals *kg,
return xyz_to_rgb(kg, make_float3(x, y, z)) * (M_2PI_F / 683);
}
+/* Nishita improved sky model */
+ccl_device float3 geographical_to_direction(float lat, float lon)
+{
+ return make_float3(cos(lat) * cos(lon), cos(lat) * sin(lon), sin(lat));
+}
+
+ccl_device float3 sky_radiance_nishita(KernelGlobals *kg,
+ float3 dir,
+ float *nishita_data,
+ uint texture_id)
+{
+ /* definitions */
+ float sun_elevation = nishita_data[6];
+ float sun_rotation = nishita_data[7];
+ float angular_diameter = nishita_data[8];
+ bool sun_disc = (angular_diameter > 0.0f);
+ float3 xyz;
+ /* convert dir to spherical coordinates */
+ float2 direction = direction_to_spherical(dir);
+
+ /* render above the horizon */
+ if (dir.z >= 0.0f) {
+ /* definitions */
+ float3 sun_dir = geographical_to_direction(sun_elevation, sun_rotation + M_PI_2_F);
+ float sun_dir_angle = acos(dot(dir, sun_dir));
+ float half_angular = angular_diameter / 2.0f;
+ float dir_elevation = M_PI_2_F - direction.x;
+
+ /* if ray inside sun disc render it, otherwise render sky */
+ if (sun_disc && sun_dir_angle < half_angular) {
+ /* get 3 pixels data */
+ float3 pixel_bottom = make_float3(nishita_data[0], nishita_data[1], nishita_data[2]);
+ float3 pixel_top = make_float3(nishita_data[3], nishita_data[4], nishita_data[5]);
+ float y;
+
+ /* sun interpolation */
+ if (sun_elevation - half_angular > 0.0f) {
+ if (sun_elevation + half_angular > 0.0f) {
+ y = ((dir_elevation - sun_elevation) / angular_diameter) + 0.5f;
+ xyz = interp(pixel_bottom, pixel_top, y);
+ }
+ }
+ else {
+ if (sun_elevation + half_angular > 0.0f) {
+ y = dir_elevation / (sun_elevation + half_angular);
+ xyz = interp(pixel_bottom, pixel_top, y);
+ }
+ }
+ /* limb darkening, coefficient is 0.6f */
+ float limb_darkening = (1.0f -
+ 0.6f * (1.0f - sqrtf(1.0f - sqr(sun_dir_angle / half_angular))));
+ xyz *= limb_darkening;
+ }
+ /* sky */
+ else {
+ /* sky interpolation */
+ float x = (direction.y + M_PI_F + sun_rotation) / M_2PI_F;
+ float y = dir_elevation / M_PI_2_F;
+ if (x > 1.0f) {
+ x -= 1.0f;
+ }
+ xyz = float4_to_float3(kernel_tex_image_interp(kg, texture_id, x, y));
+ }
+ }
+ /* ground */
+ else {
+ if (dir.z < -0.4f) {
+ xyz = make_float3(0.0f, 0.0f, 0.0f);
+ }
+ else {
+ /* black ground fade */
+ float fade = 1.0f + dir.z * 2.5f;
+ fade = sqr(fade) * fade;
+ /* interpolation */
+ float x = (direction.y + M_PI_F + sun_rotation) / M_2PI_F;
+ if (x > 1.0f) {
+ x -= 1.0f;
+ }
+ xyz = float4_to_float3(kernel_tex_image_interp(kg, texture_id, x, -0.5)) * fade;
+ }
+ }
+
+ /* convert to rgb and adjust strength */
+ return xyz_to_rgb(kg, xyz) * 120000.0f;
+}
+
ccl_device void svm_node_tex_sky(
KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset)
{
- /* Define variables */
- float sunphi, suntheta, radiance_x, radiance_y, radiance_z;
- float config_x[9], config_y[9], config_z[9];
-
/* Load data */
uint dir_offset = node.y;
uint out_offset = node.z;
int sky_model = node.w;
- float4 data = read_node_float(kg, offset);
- sunphi = data.x;
- suntheta = data.y;
- radiance_x = data.z;
- radiance_y = data.w;
-
- data = read_node_float(kg, offset);
- radiance_z = data.x;
- config_x[0] = data.y;
- config_x[1] = data.z;
- config_x[2] = data.w;
-
- data = read_node_float(kg, offset);
- config_x[3] = data.x;
- config_x[4] = data.y;
- config_x[5] = data.z;
- config_x[6] = data.w;
-
- data = read_node_float(kg, offset);
- config_x[7] = data.x;
- config_x[8] = data.y;
- config_y[0] = data.z;
- config_y[1] = data.w;
-
- data = read_node_float(kg, offset);
- config_y[2] = data.x;
- config_y[3] = data.y;
- config_y[4] = data.z;
- config_y[5] = data.w;
-
- data = read_node_float(kg, offset);
- config_y[6] = data.x;
- config_y[7] = data.y;
- config_y[8] = data.z;
- config_z[0] = data.w;
-
- data = read_node_float(kg, offset);
- config_z[1] = data.x;
- config_z[2] = data.y;
- config_z[3] = data.z;
- config_z[4] = data.w;
-
- data = read_node_float(kg, offset);
- config_z[5] = data.x;
- config_z[6] = data.y;
- config_z[7] = data.z;
- config_z[8] = data.w;
-
float3 dir = stack_load_float3(stack, dir_offset);
float3 f;
- /* Compute Sky */
- if (sky_model == 0) {
- f = sky_radiance_old(kg,
- dir,
- sunphi,
- suntheta,
- radiance_x,
- radiance_y,
- radiance_z,
- config_x,
- config_y,
- config_z);
+ /* Preetham and Hosek share the same data */
+ if (sky_model == 0 || sky_model == 1) {
+ /* Define variables */
+ float sunphi, suntheta, radiance_x, radiance_y, radiance_z;
+ float config_x[9], config_y[9], config_z[9];
+
+ float4 data = read_node_float(kg, offset);
+ sunphi = data.x;
+ suntheta = data.y;
+ radiance_x = data.z;
+ radiance_y = data.w;
+
+ data = read_node_float(kg, offset);
+ radiance_z = data.x;
+ config_x[0] = data.y;
+ config_x[1] = data.z;
+ config_x[2] = data.w;
+
+ data = read_node_float(kg, offset);
+ config_x[3] = data.x;
+ config_x[4] = data.y;
+ config_x[5] = data.z;
+ config_x[6] = data.w;
+
+ data = read_node_float(kg, offset);
+ config_x[7] = data.x;
+ config_x[8] = data.y;
+ config_y[0] = data.z;
+ config_y[1] = data.w;
+
+ data = read_node_float(kg, offset);
+ config_y[2] = data.x;
+ config_y[3] = data.y;
+ config_y[4] = data.z;
+ config_y[5] = data.w;
+
+ data = read_node_float(kg, offset);
+ config_y[6] = data.x;
+ config_y[7] = data.y;
+ config_y[8] = data.z;
+ config_z[0] = data.w;
+
+ data = read_node_float(kg, offset);
+ config_z[1] = data.x;
+ config_z[2] = data.y;
+ config_z[3] = data.z;
+ config_z[4] = data.w;
+
+ data = read_node_float(kg, offset);
+ config_z[5] = data.x;
+ config_z[6] = data.y;
+ config_z[7] = data.z;
+ config_z[8] = data.w;
+
+ /* Compute Sky */
+ if (sky_model == 0) {
+ f = sky_radiance_preetham(kg,
+ dir,
+ sunphi,
+ suntheta,
+ radiance_x,
+ radiance_y,
+ radiance_z,
+ config_x,
+ config_y,
+ config_z);
+ }
+ else {
+ f = sky_radiance_hosek(kg,
+ dir,
+ sunphi,
+ suntheta,
+ radiance_x,
+ radiance_y,
+ radiance_z,
+ config_x,
+ config_y,
+ config_z);
+ }
}
+ /* Nishita */
else {
- f = sky_radiance_new(kg,
- dir,
- sunphi,
- suntheta,
- radiance_x,
- radiance_y,
- radiance_z,
- config_x,
- config_y,
- config_z);
+ /* Define variables */
+ float nishita_data[9];
+
+ float4 data = read_node_float(kg, offset);
+ nishita_data[0] = data.x;
+ nishita_data[1] = data.y;
+ nishita_data[2] = data.z;
+ nishita_data[3] = data.w;
+
+ data = read_node_float(kg, offset);
+ nishita_data[4] = data.x;
+ nishita_data[5] = data.y;
+ nishita_data[6] = data.z;
+ nishita_data[7] = data.w;
+
+ data = read_node_float(kg, offset);
+ nishita_data[8] = data.x;
+ uint texture_id = __float_as_uint(data.y);
+
+ /* Compute Sky */
+ f = sky_radiance_nishita(kg, dir, nishita_data, texture_id);
}
stack_store_float3(stack, out_offset, f);
diff --git a/intern/cycles/kernel/svm/svm_types.h b/intern/cycles/kernel/svm/svm_types.h
index e913d9e0489..f1ebb37e23e 100644
--- a/intern/cycles/kernel/svm/svm_types.h
+++ b/intern/cycles/kernel/svm/svm_types.h
@@ -414,7 +414,7 @@ typedef enum NodeWaveProfile {
NODE_WAVE_PROFILE_TRI,
} NodeWaveProfile;
-typedef enum NodeSkyType { NODE_SKY_OLD, NODE_SKY_NEW } NodeSkyType;
+typedef enum NodeSkyType { NODE_SKY_PREETHAM, NODE_SKY_HOSEK, NODE_SKY_NISHITA } NodeSkyType;
typedef enum NodeGradientType {
NODE_BLEND_LINEAR,
diff --git a/intern/cycles/render/CMakeLists.txt b/intern/cycles/render/CMakeLists.txt
index 472b5a0c101..e37a0407976 100644
--- a/intern/cycles/render/CMakeLists.txt
+++ b/intern/cycles/render/CMakeLists.txt
@@ -24,6 +24,7 @@ set(SRC
hair.cpp
image.cpp
image_oiio.cpp
+ image_sky.cpp
image_vdb.cpp
integrator.cpp
jitter.cpp
@@ -64,6 +65,7 @@ set(SRC_HEADERS
hair.h
image.h
image_oiio.h
+ image_sky.h
image_vdb.h
integrator.h
light.h
diff --git a/intern/cycles/render/image_sky.cpp b/intern/cycles/render/image_sky.cpp
new file mode 100644
index 00000000000..3e7b491f609
--- /dev/null
+++ b/intern/cycles/render/image_sky.cpp
@@ -0,0 +1,95 @@
+/*
+ * Copyright 2011-2020 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "render/image_sky.h"
+
+#include "util/util_image.h"
+#include "util/util_logging.h"
+#include "util/util_path.h"
+#include "util/util_sky_model.h"
+
+CCL_NAMESPACE_BEGIN
+
+SkyLoader::SkyLoader(
+ float sun_elevation, int altitude, float air_density, float dust_density, float ozone_density)
+ : sun_elevation(sun_elevation),
+ altitude(altitude),
+ air_density(air_density),
+ dust_density(dust_density),
+ ozone_density(ozone_density)
+{
+}
+
+SkyLoader::~SkyLoader(){};
+
+bool SkyLoader::load_metadata(ImageMetaData &metadata)
+{
+ metadata.width = 512;
+ metadata.height = 128;
+ metadata.channels = 3;
+ metadata.depth = 1;
+ metadata.type = IMAGE_DATA_TYPE_FLOAT4;
+ metadata.compress_as_srgb = false;
+ return true;
+}
+
+bool SkyLoader::load_pixels(const ImageMetaData &metadata,
+ void *pixels,
+ const size_t /*pixels_size*/,
+ const bool /*associate_alpha*/)
+{
+ /* definitions */
+ int width = metadata.width;
+ int height = metadata.height;
+ float *pixel_data = (float *)pixels;
+ float altitude_f = (float)altitude;
+
+ /* precompute sky texture */
+ const int num_chunks = TaskScheduler::num_threads();
+ const int chunk_size = height / num_chunks;
+ TaskPool pool;
+ for (int chunk = 0; chunk < num_chunks; chunk++) {
+ const int chunk_start = chunk * chunk_size;
+ const int chunk_end = (chunk + 1 < num_chunks) ? (chunk + 1) * chunk_size : height;
+ pool.push(function_bind(&nishita_skymodel_precompute_texture,
+ pixel_data,
+ metadata.channels,
+ chunk_start,
+ chunk_end,
+ width,
+ height,
+ sun_elevation,
+ altitude_f,
+ air_density,
+ dust_density,
+ ozone_density));
+ }
+ pool.wait_work();
+
+ return true;
+}
+
+string SkyLoader::name() const
+{
+ return "sky_nishita";
+}
+
+bool SkyLoader::equals(const ImageLoader & /*other*/) const
+{
+ return false;
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/render/image_sky.h b/intern/cycles/render/image_sky.h
new file mode 100644
index 00000000000..cf4a3e8942c
--- /dev/null
+++ b/intern/cycles/render/image_sky.h
@@ -0,0 +1,49 @@
+/*
+ * Copyright 2011-2020 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "render/image.h"
+
+CCL_NAMESPACE_BEGIN
+
+class SkyLoader : public ImageLoader {
+ private:
+ float sun_elevation;
+ int altitude;
+ float air_density;
+ float dust_density;
+ float ozone_density;
+
+ public:
+ SkyLoader(float sun_elevation,
+ int altitude,
+ float air_density,
+ float dust_density,
+ float ozone_density);
+ ~SkyLoader();
+
+ bool load_metadata(ImageMetaData &metadata) override;
+
+ bool load_pixels(const ImageMetaData &metadata,
+ void *pixels,
+ const size_t /*pixels_size*/,
+ const bool /*associate_alpha*/) override;
+
+ string name() const override;
+
+ bool equals(const ImageLoader & /*other*/) const override;
+};
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/render/light.cpp b/intern/cycles/render/light.cpp
index cb7474017fa..225cedfef55 100644
--- a/intern/cycles/render/light.cpp
+++ b/intern/cycles/render/light.cpp
@@ -450,6 +450,7 @@ void LightManager::device_update_distribution(Device *,
/* update device */
KernelIntegrator *kintegrator = &dscene->data.integrator;
+ KernelBackground *kbackground = &dscene->data.background;
KernelFilm *kfilm = &dscene->data.film;
kintegrator->use_direct_light = (totarea > 0.0f);
@@ -493,15 +494,18 @@ void LightManager::device_update_distribution(Device *,
/* Portals */
if (num_portals > 0) {
- kintegrator->portal_offset = light_index;
- kintegrator->num_portals = num_portals;
- kintegrator->portal_pdf = background_mis ? 0.5f : 1.0f;
+ kbackground->portal_offset = light_index;
+ kbackground->num_portals = num_portals;
+ kbackground->portal_weight = 1.0f;
}
else {
- kintegrator->num_portals = 0;
- kintegrator->portal_offset = 0;
- kintegrator->portal_pdf = 0.0f;
+ kbackground->num_portals = 0;
+ kbackground->portal_offset = 0;
+ kbackground->portal_weight = 0.0f;
}
+
+ /* Map */
+ kbackground->map_weight = background_mis ? 1.0f : 0.0f;
}
else {
dscene->light_distribution.free();
@@ -511,9 +515,12 @@ void LightManager::device_update_distribution(Device *,
kintegrator->pdf_triangles = 0.0f;
kintegrator->pdf_lights = 0.0f;
kintegrator->use_lamp_mis = false;
- kintegrator->num_portals = 0;
- kintegrator->portal_offset = 0;
- kintegrator->portal_pdf = 0.0f;
+
+ kbackground->num_portals = 0;
+ kbackground->portal_offset = 0;
+ kbackground->portal_weight = 0.0f;
+ kbackground->sun_weight = 0.0f;
+ kbackground->map_weight = 0.0f;
kfilm->pass_shadow_scale = 1.0f;
}
@@ -562,7 +569,7 @@ void LightManager::device_update_background(Device *device,
Scene *scene,
Progress &progress)
{
- KernelIntegrator *kintegrator = &dscene->data.integrator;
+ KernelBackground *kbackground = &dscene->data.background;
Light *background_light = NULL;
/* find background light */
@@ -575,31 +582,79 @@ void LightManager::device_update_background(Device *device,
/* no background light found, signal renderer to skip sampling */
if (!background_light || !background_light->is_enabled) {
- kintegrator->pdf_background_res_x = 0;
- kintegrator->pdf_background_res_y = 0;
+ kbackground->map_res_x = 0;
+ kbackground->map_res_y = 0;
+ kbackground->map_weight = 0.0f;
+ kbackground->sun_weight = 0.0f;
+ kbackground->use_mis = (kbackground->portal_weight > 0.0f);
return;
}
progress.set_status("Updating Lights", "Importance map");
- assert(kintegrator->use_direct_light);
+ assert(dscene->data.integrator.use_direct_light);
+
+ int2 environment_res = make_int2(0, 0);
+ Shader *shader = scene->background->get_shader(scene);
+ int num_suns = 0;
+ foreach (ShaderNode *node, shader->graph->nodes) {
+ if (node->type == EnvironmentTextureNode::node_type) {
+ EnvironmentTextureNode *env = (EnvironmentTextureNode *)node;
+ ImageMetaData metadata;
+ if (!env->handle.empty()) {
+ ImageMetaData metadata = env->handle.metadata();
+ environment_res.x = max(environment_res.x, metadata.width);
+ environment_res.y = max(environment_res.y, metadata.height);
+ }
+ }
+ if (node->type == SkyTextureNode::node_type) {
+ SkyTextureNode *sky = (SkyTextureNode *)node;
+ if (sky->type == NODE_SKY_NISHITA && sky->sun_disc) {
+ /* Ensure that the input coordinates aren't transformed before they reach the node.
+ * If that is the case, the logic used for sampling the sun's location does not work
+ * and we have to fall back to map-based sampling. */
+ const ShaderInput *vec_in = sky->input("Vector");
+ if (vec_in && vec_in->link && vec_in->link->parent) {
+ ShaderNode *vec_src = vec_in->link->parent;
+ if ((vec_src->type != TextureCoordinateNode::node_type) ||
+ (vec_in->link != vec_src->output("Generated"))) {
+ environment_res.x = max(environment_res.x, 4096);
+ environment_res.y = max(environment_res.y, 2048);
+ continue;
+ }
+ }
+
+ float latitude = sky->sun_elevation;
+ float longitude = M_2PI_F - sky->sun_rotation + M_PI_2_F;
+ float half_angle = sky->sun_size * 0.5f;
+ kbackground->sun = make_float4(cosf(latitude) * cosf(longitude),
+ cosf(latitude) * sinf(longitude),
+ sinf(latitude),
+ half_angle);
+ kbackground->sun_weight = 4.0f;
+ environment_res.x = max(environment_res.x, 512);
+ environment_res.y = max(environment_res.y, 256);
+ num_suns++;
+ }
+ }
+ }
+
+ /* If there's more than one sun, fall back to map sampling instead. */
+ if (num_suns != 1) {
+ kbackground->sun_weight = 0.0f;
+ environment_res.x = max(environment_res.x, 4096);
+ environment_res.y = max(environment_res.y, 2048);
+ }
+
+ /* Enable MIS for background sampling if any strategy is active. */
+ kbackground->use_mis = (kbackground->portal_weight + kbackground->map_weight +
+ kbackground->sun_weight) > 0.0f;
/* get the resolution from the light's size (we stuff it in there) */
int2 res = make_int2(background_light->map_resolution, background_light->map_resolution / 2);
/* If the resolution isn't set manually, try to find an environment texture. */
if (res.x == 0) {
- Shader *shader = scene->background->get_shader(scene);
- foreach (ShaderNode *node, shader->graph->nodes) {
- if (node->type == EnvironmentTextureNode::node_type) {
- EnvironmentTextureNode *env = (EnvironmentTextureNode *)node;
- ImageMetaData metadata;
- if (!env->handle.empty()) {
- ImageMetaData metadata = env->handle.metadata();
- res.x = max(res.x, metadata.width);
- res.y = max(res.y, metadata.height);
- }
- }
- }
+ res = environment_res;
if (res.x > 0 && res.y > 0) {
VLOG(2) << "Automatically set World MIS resolution to " << res.x << " by " << res.y << "\n";
}
@@ -609,8 +664,8 @@ void LightManager::device_update_background(Device *device,
res = make_int2(1024, 512);
VLOG(2) << "Setting World MIS resolution to default\n";
}
- kintegrator->pdf_background_res_x = res.x;
- kintegrator->pdf_background_res_y = res.y;
+ kbackground->map_res_x = res.x;
+ kbackground->map_res_y = res.y;
vector<float3> pixels;
shade_background_pixels(device, dscene, res.x, res.y, pixels, progress);
diff --git a/intern/cycles/render/nodes.cpp b/intern/cycles/render/nodes.cpp
index cdcaeb246dd..ab392839e52 100644
--- a/intern/cycles/render/nodes.cpp
+++ b/intern/cycles/render/nodes.cpp
@@ -19,6 +19,7 @@
#include "render/constant_fold.h"
#include "render/film.h"
#include "render/image.h"
+#include "render/image_sky.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
@@ -630,7 +631,7 @@ typedef struct SunSky {
/* Parameter */
float radiance_x, radiance_y, radiance_z;
- float config_x[9], config_y[9], config_z[9];
+ float config_x[9], config_y[9], config_z[9], nishita_data[9];
} SunSky;
/* Preetham model */
@@ -640,7 +641,7 @@ static float sky_perez_function(float lam[6], float theta, float gamma)
(1.0f + lam[2] * expf(lam[3] * gamma) + lam[4] * cosf(gamma) * cosf(gamma));
}
-static void sky_texture_precompute_old(SunSky *sunsky, float3 dir, float turbidity)
+static void sky_texture_precompute_preetham(SunSky *sunsky, float3 dir, float turbidity)
{
/*
* We re-use the SunSky struct of the new model, to avoid extra variables
@@ -703,10 +704,10 @@ static void sky_texture_precompute_old(SunSky *sunsky, float3 dir, float turbidi
}
/* Hosek / Wilkie */
-static void sky_texture_precompute_new(SunSky *sunsky,
- float3 dir,
- float turbidity,
- float ground_albedo)
+static void sky_texture_precompute_hosek(SunSky *sunsky,
+ float3 dir,
+ float turbidity,
+ float ground_albedo)
{
/* Calculate Sun Direction and save coordinates */
float2 spherical = sky_spherical_coordinates(dir);
@@ -743,6 +744,34 @@ static void sky_texture_precompute_new(SunSky *sunsky,
arhosekskymodelstate_free(sky_state);
}
+/* Nishita improved */
+static void sky_texture_precompute_nishita(SunSky *sunsky,
+ bool sun_disc,
+ float sun_size,
+ float sun_elevation,
+ float sun_rotation,
+ int altitude,
+ float air_density,
+ float dust_density)
+{
+ /* sample 2 sun pixels */
+ float pixel_bottom[3];
+ float pixel_top[3];
+ float altitude_f = (float)altitude;
+ nishita_skymodel_precompute_sun(
+ sun_elevation, sun_size, altitude_f, air_density, dust_density, pixel_bottom, pixel_top);
+ /* send data to svm_sky */
+ sunsky->nishita_data[0] = pixel_bottom[0];
+ sunsky->nishita_data[1] = pixel_bottom[1];
+ sunsky->nishita_data[2] = pixel_bottom[2];
+ sunsky->nishita_data[3] = pixel_top[0];
+ sunsky->nishita_data[4] = pixel_top[1];
+ sunsky->nishita_data[5] = pixel_top[2];
+ sunsky->nishita_data[6] = sun_elevation;
+ sunsky->nishita_data[7] = M_2PI_F - sun_rotation;
+ sunsky->nishita_data[8] = sun_disc ? sun_size : 0.0f;
+}
+
NODE_DEFINE(SkyTextureNode)
{
NodeType *type = NodeType::add("sky_texture", create, NodeType::SHADER);
@@ -750,13 +779,22 @@ NODE_DEFINE(SkyTextureNode)
TEXTURE_MAPPING_DEFINE(SkyTextureNode);
static NodeEnum type_enum;
- type_enum.insert("preetham", NODE_SKY_OLD);
- type_enum.insert("hosek_wilkie", NODE_SKY_NEW);
- SOCKET_ENUM(type, "Type", type_enum, NODE_SKY_NEW);
+ type_enum.insert("preetham", NODE_SKY_PREETHAM);
+ type_enum.insert("hosek_wilkie", NODE_SKY_HOSEK);
+ type_enum.insert("nishita_improved", NODE_SKY_NISHITA);
+ SOCKET_ENUM(type, "Type", type_enum, NODE_SKY_NISHITA);
SOCKET_VECTOR(sun_direction, "Sun Direction", make_float3(0.0f, 0.0f, 1.0f));
SOCKET_FLOAT(turbidity, "Turbidity", 2.2f);
SOCKET_FLOAT(ground_albedo, "Ground Albedo", 0.3f);
+ SOCKET_BOOLEAN(sun_disc, "Sun Disc", true);
+ SOCKET_FLOAT(sun_size, "Sun Size", 0.009512f);
+ SOCKET_FLOAT(sun_elevation, "Sun Elevation", M_PI_2_F);
+ SOCKET_FLOAT(sun_rotation, "Sun Rotation", 0.0f);
+ SOCKET_INT(altitude, "Altitude", 0);
+ SOCKET_FLOAT(air_density, "Air", 1.0f);
+ SOCKET_FLOAT(dust_density, "Dust", 1.0f);
+ SOCKET_FLOAT(ozone_density, "Ozone", 1.0f);
SOCKET_IN_POINT(
vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
@@ -776,10 +814,32 @@ void SkyTextureNode::compile(SVMCompiler &compiler)
ShaderOutput *color_out = output("Color");
SunSky sunsky;
- if (type == NODE_SKY_OLD)
- sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
- else if (type == NODE_SKY_NEW)
- sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
+ if (type == NODE_SKY_PREETHAM)
+ sky_texture_precompute_preetham(&sunsky, sun_direction, turbidity);
+ else if (type == NODE_SKY_HOSEK)
+ sky_texture_precompute_hosek(&sunsky, sun_direction, turbidity, ground_albedo);
+ else if (type == NODE_SKY_NISHITA) {
+ sky_texture_precompute_nishita(&sunsky,
+ sun_disc,
+ sun_size,
+ sun_elevation,
+ sun_rotation,
+ altitude,
+ air_density,
+ dust_density);
+ /* precomputed texture image parameters */
+ ImageManager *image_manager = compiler.scene->image_manager;
+ ImageParams impar;
+ impar.interpolation = INTERPOLATION_LINEAR;
+ impar.extension = EXTENSION_EXTEND;
+
+ /* precompute sky texture */
+ if (handle.empty()) {
+ SkyLoader *loader = new SkyLoader(
+ sun_elevation, altitude, air_density, dust_density, ozone_density);
+ handle = image_manager->add_image(loader, impar);
+ }
+ }
else
assert(false);
@@ -787,38 +847,52 @@ void SkyTextureNode::compile(SVMCompiler &compiler)
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_SKY, vector_offset, compiler.stack_assign(color_out), type);
- compiler.add_node(__float_as_uint(sunsky.phi),
- __float_as_uint(sunsky.theta),
- __float_as_uint(sunsky.radiance_x),
- __float_as_uint(sunsky.radiance_y));
- compiler.add_node(__float_as_uint(sunsky.radiance_z),
- __float_as_uint(sunsky.config_x[0]),
- __float_as_uint(sunsky.config_x[1]),
- __float_as_uint(sunsky.config_x[2]));
- compiler.add_node(__float_as_uint(sunsky.config_x[3]),
- __float_as_uint(sunsky.config_x[4]),
- __float_as_uint(sunsky.config_x[5]),
- __float_as_uint(sunsky.config_x[6]));
- compiler.add_node(__float_as_uint(sunsky.config_x[7]),
- __float_as_uint(sunsky.config_x[8]),
- __float_as_uint(sunsky.config_y[0]),
- __float_as_uint(sunsky.config_y[1]));
- compiler.add_node(__float_as_uint(sunsky.config_y[2]),
- __float_as_uint(sunsky.config_y[3]),
- __float_as_uint(sunsky.config_y[4]),
- __float_as_uint(sunsky.config_y[5]));
- compiler.add_node(__float_as_uint(sunsky.config_y[6]),
- __float_as_uint(sunsky.config_y[7]),
- __float_as_uint(sunsky.config_y[8]),
- __float_as_uint(sunsky.config_z[0]));
- compiler.add_node(__float_as_uint(sunsky.config_z[1]),
- __float_as_uint(sunsky.config_z[2]),
- __float_as_uint(sunsky.config_z[3]),
- __float_as_uint(sunsky.config_z[4]));
- compiler.add_node(__float_as_uint(sunsky.config_z[5]),
- __float_as_uint(sunsky.config_z[6]),
- __float_as_uint(sunsky.config_z[7]),
- __float_as_uint(sunsky.config_z[8]));
+ /* nishita doesn't need this data */
+ if (type != NODE_SKY_NISHITA) {
+ compiler.add_node(__float_as_uint(sunsky.phi),
+ __float_as_uint(sunsky.theta),
+ __float_as_uint(sunsky.radiance_x),
+ __float_as_uint(sunsky.radiance_y));
+ compiler.add_node(__float_as_uint(sunsky.radiance_z),
+ __float_as_uint(sunsky.config_x[0]),
+ __float_as_uint(sunsky.config_x[1]),
+ __float_as_uint(sunsky.config_x[2]));
+ compiler.add_node(__float_as_uint(sunsky.config_x[3]),
+ __float_as_uint(sunsky.config_x[4]),
+ __float_as_uint(sunsky.config_x[5]),
+ __float_as_uint(sunsky.config_x[6]));
+ compiler.add_node(__float_as_uint(sunsky.config_x[7]),
+ __float_as_uint(sunsky.config_x[8]),
+ __float_as_uint(sunsky.config_y[0]),
+ __float_as_uint(sunsky.config_y[1]));
+ compiler.add_node(__float_as_uint(sunsky.config_y[2]),
+ __float_as_uint(sunsky.config_y[3]),
+ __float_as_uint(sunsky.config_y[4]),
+ __float_as_uint(sunsky.config_y[5]));
+ compiler.add_node(__float_as_uint(sunsky.config_y[6]),
+ __float_as_uint(sunsky.config_y[7]),
+ __float_as_uint(sunsky.config_y[8]),
+ __float_as_uint(sunsky.config_z[0]));
+ compiler.add_node(__float_as_uint(sunsky.config_z[1]),
+ __float_as_uint(sunsky.config_z[2]),
+ __float_as_uint(sunsky.config_z[3]),
+ __float_as_uint(sunsky.config_z[4]));
+ compiler.add_node(__float_as_uint(sunsky.config_z[5]),
+ __float_as_uint(sunsky.config_z[6]),
+ __float_as_uint(sunsky.config_z[7]),
+ __float_as_uint(sunsky.config_z[8]));
+ }
+ else {
+ compiler.add_node(__float_as_uint(sunsky.nishita_data[0]),
+ __float_as_uint(sunsky.nishita_data[1]),
+ __float_as_uint(sunsky.nishita_data[2]),
+ __float_as_uint(sunsky.nishita_data[3]));
+ compiler.add_node(__float_as_uint(sunsky.nishita_data[4]),
+ __float_as_uint(sunsky.nishita_data[5]),
+ __float_as_uint(sunsky.nishita_data[6]),
+ __float_as_uint(sunsky.nishita_data[7]));
+ compiler.add_node(__float_as_uint(sunsky.nishita_data[8]), handle.svm_slot(), 0, 0);
+ }
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
@@ -828,10 +902,32 @@ void SkyTextureNode::compile(OSLCompiler &compiler)
tex_mapping.compile(compiler);
SunSky sunsky;
- if (type == NODE_SKY_OLD)
- sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
- else if (type == NODE_SKY_NEW)
- sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
+ if (type == NODE_SKY_PREETHAM)
+ sky_texture_precompute_preetham(&sunsky, sun_direction, turbidity);
+ else if (type == NODE_SKY_HOSEK)
+ sky_texture_precompute_hosek(&sunsky, sun_direction, turbidity, ground_albedo);
+ else if (type == NODE_SKY_NISHITA) {
+ sky_texture_precompute_nishita(&sunsky,
+ sun_disc,
+ sun_size,
+ sun_elevation,
+ sun_rotation,
+ altitude,
+ air_density,
+ dust_density);
+ /* precomputed texture image parameters */
+ ImageManager *image_manager = compiler.scene->image_manager;
+ ImageParams impar;
+ impar.interpolation = INTERPOLATION_LINEAR;
+ impar.extension = EXTENSION_EXTEND;
+
+ /* precompute sky texture */
+ if (handle.empty()) {
+ SkyLoader *loader = new SkyLoader(
+ sun_elevation, altitude, air_density, dust_density, ozone_density);
+ handle = image_manager->add_image(loader, impar);
+ }
+ }
else
assert(false);
@@ -843,6 +939,11 @@ void SkyTextureNode::compile(OSLCompiler &compiler)
compiler.parameter_array("config_x", sunsky.config_x, 9);
compiler.parameter_array("config_y", sunsky.config_y, 9);
compiler.parameter_array("config_z", sunsky.config_z, 9);
+ compiler.parameter_array("nishita_data", sunsky.nishita_data, 9);
+ /* nishita texture */
+ if (type == NODE_SKY_NISHITA) {
+ compiler.parameter_texture("filename", handle.svm_slot());
+ }
compiler.add(this, "node_sky_texture");
}
diff --git a/intern/cycles/render/nodes.h b/intern/cycles/render/nodes.h
index 83c3ad071ae..846ba7423e5 100644
--- a/intern/cycles/render/nodes.h
+++ b/intern/cycles/render/nodes.h
@@ -168,7 +168,16 @@ class SkyTextureNode : public TextureNode {
float3 sun_direction;
float turbidity;
float ground_albedo;
+ bool sun_disc;
+ float sun_size;
+ float sun_elevation;
+ float sun_rotation;
+ int altitude;
+ float air_density;
+ float dust_density;
+ float ozone_density;
float3 vector;
+ ImageHandle handle;
};
class OutputNode : public ShaderNode {
diff --git a/intern/cycles/util/CMakeLists.txt b/intern/cycles/util/CMakeLists.txt
index c1f71461dfd..16d47d57e69 100644
--- a/intern/cycles/util/CMakeLists.txt
+++ b/intern/cycles/util/CMakeLists.txt
@@ -100,6 +100,7 @@ set(SRC_HEADERS
util_sky_model.cpp
util_sky_model.h
util_sky_model_data.h
+ util_sky_nishita.cpp
util_avxf.h
util_avxb.h
util_semaphore.h
diff --git a/intern/cycles/util/util_sky_model.h b/intern/cycles/util/util_sky_model.h
index 84340614b2c..36f1079a16d 100644
--- a/intern/cycles/util/util_sky_model.h
+++ b/intern/cycles/util/util_sky_model.h
@@ -298,6 +298,8 @@ HINT #1: if you want to model the sky of an earth-like planet that orbits
previous paragraph.
*/
+#include "util/util_types.h"
+
CCL_NAMESPACE_BEGIN
#ifndef _SKY_MODEL_H_
@@ -426,4 +428,26 @@ double arhosekskymodel_solar_radiance(ArHosekSkyModelState *state,
#endif // _SKY_MODEL_H_
+/* Nishita improved sky model */
+
+void nishita_skymodel_precompute_texture(float *pixels,
+ int stride,
+ int start_y,
+ int end_y,
+ int width,
+ int height,
+ float sun_elevation,
+ float altitude,
+ float air_density,
+ float dust_density,
+ float ozone_density);
+
+void nishita_skymodel_precompute_sun(float sun_elevation,
+ float angular_diameter,
+ float altitude,
+ float air_density,
+ float dust_density,
+ float *pixel_bottom,
+ float *pixel_top);
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/util/util_sky_nishita.cpp b/intern/cycles/util/util_sky_nishita.cpp
new file mode 100644
index 00000000000..92397804d43
--- /dev/null
+++ b/intern/cycles/util/util_sky_nishita.cpp
@@ -0,0 +1,371 @@
+/*
+ * Copyright 2011-2020 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "util/util_math.h"
+#include "util/util_sky_model.h"
+
+CCL_NAMESPACE_BEGIN
+
+/* Constants */
+static const float rayleigh_scale = 8000.0f; // Rayleigh scale height (m)
+static const float mie_scale = 1200.0f; // Mie scale height (m)
+static const float mie_coeff = 2e-5f; // Mie scattering coefficient
+static const float mie_G = 0.76f; // aerosols anisotropy
+static const float earth_radius = 6360000.0f; // radius of Earth (m)
+static const float atmosphere_radius = 6420000.0f; // radius of atmosphere (m)
+static const int steps = 32; // segments per primary ray
+static const int steps_light = 16; // segments per sun connection ray
+static const int num_wavelengths = 21; // number of wavelengths
+/* irradiance at top of atmosphere */
+static const float irradiance[] = {
+ 1.45756829855592995315f, 1.56596305559738380175f, 1.65148449067670455293f,
+ 1.71496242737209314555f, 1.75797983805020541226f, 1.78256407885924539336f,
+ 1.79095108475838560302f, 1.78541550133410664714f, 1.76815554864306845317f,
+ 1.74122069647250410362f, 1.70647127164943679389f, 1.66556087452739887134f,
+ 1.61993437242451854274f, 1.57083597368892080581f, 1.51932335059305478886f,
+ 1.46628494965214395407f, 1.41245852740172450623f, 1.35844961970384092709f,
+ 1.30474913844739281998f, 1.25174963272610817455f, 1.19975998755420620867f};
+/* Rayleigh scattering coefficient */
+static const float rayleigh_coeff[] = {
+ 0.00005424820087636473f, 0.00004418549866505454f, 0.00003635151910165377f,
+ 0.00003017929012024763f, 0.00002526320226989157f, 0.00002130859310621843f,
+ 0.00001809838025320633f, 0.00001547057129129042f, 0.00001330284977336850f,
+ 0.00001150184784075764f, 0.00000999557429990163f, 0.00000872799973630707f,
+ 0.00000765513700977967f, 0.00000674217203751443f, 0.00000596134125832052f,
+ 0.00000529034598065810f, 0.00000471115687557433f, 0.00000420910481110487f,
+ 0.00000377218381260133f, 0.00000339051255477280f, 0.00000305591531679811f};
+/* Ozone absorption coefficient */
+static const float ozone_coeff[] = {
+ 0.00000000325126849861f, 0.00000000585395365047f, 0.00000001977191155085f,
+ 0.00000007309568762914f, 0.00000020084561514287f, 0.00000040383958096161f,
+ 0.00000063551335912363f, 0.00000096707041180970f, 0.00000154797400424410f,
+ 0.00000209038647223331f, 0.00000246128056164565f, 0.00000273551299461512f,
+ 0.00000215125863128643f, 0.00000159051840791988f, 0.00000112356197979857f,
+ 0.00000073527551487574f, 0.00000046450130357806f, 0.00000033096079921048f,
+ 0.00000022512612292678f, 0.00000014879129266490f, 0.00000016828623364192f};
+/* CIE XYZ color matching functions */
+static const float cmf_xyz[][3] = {{0.00136800000f, 0.00003900000f, 0.00645000100f},
+ {0.01431000000f, 0.00039600000f, 0.06785001000f},
+ {0.13438000000f, 0.00400000000f, 0.64560000000f},
+ {0.34828000000f, 0.02300000000f, 1.74706000000f},
+ {0.29080000000f, 0.06000000000f, 1.66920000000f},
+ {0.09564000000f, 0.13902000000f, 0.81295010000f},
+ {0.00490000000f, 0.32300000000f, 0.27200000000f},
+ {0.06327000000f, 0.71000000000f, 0.07824999000f},
+ {0.29040000000f, 0.95400000000f, 0.02030000000f},
+ {0.59450000000f, 0.99500000000f, 0.00390000000f},
+ {0.91630000000f, 0.87000000000f, 0.00165000100f},
+ {1.06220000000f, 0.63100000000f, 0.00080000000f},
+ {0.85444990000f, 0.38100000000f, 0.00019000000f},
+ {0.44790000000f, 0.17500000000f, 0.00002000000f},
+ {0.16490000000f, 0.06100000000f, 0.00000000000f},
+ {0.04677000000f, 0.01700000000f, 0.00000000000f},
+ {0.01135916000f, 0.00410200000f, 0.00000000000f},
+ {0.00289932700f, 0.00104700000f, 0.00000000000f},
+ {0.00069007860f, 0.00024920000f, 0.00000000000f},
+ {0.00016615050f, 0.00006000000f, 0.00000000000f},
+ {0.00004150994f, 0.00001499000f, 0.00000000000f}};
+
+static float3 geographical_to_direction(float lat, float lon)
+{
+ return make_float3(cosf(lat) * cosf(lon), cosf(lat) * sinf(lon), sinf(lat));
+}
+
+static float3 spec_to_xyz(float *spectrum)
+{
+ float3 xyz = make_float3(0.0f, 0.0f, 0.0f);
+ for (int i = 0; i < num_wavelengths; i++) {
+ xyz.x += cmf_xyz[i][0] * spectrum[i];
+ xyz.y += cmf_xyz[i][1] * spectrum[i];
+ xyz.z += cmf_xyz[i][2] * spectrum[i];
+ }
+ return xyz * (20 * 683 * 1e-9f);
+}
+
+/* Atmosphere volume models */
+
+static float density_rayleigh(float height)
+{
+ return expf(-height / rayleigh_scale);
+}
+
+static float density_mie(float height)
+{
+ return expf(-height / mie_scale);
+}
+
+static float density_ozone(float height)
+{
+ float den = 0.0f;
+ if (height >= 10000.0f && height < 25000.0f)
+ den = 1.0f / 15000.0f * height - 2.0f / 3.0f;
+ else if (height >= 25000 && height < 40000)
+ den = -(1.0f / 15000.0f * height - 8.0f / 3.0f);
+ return den;
+}
+
+static float phase_rayleigh(float mu)
+{
+ return 3.0f / (16.0f * M_PI_F) * (1.0f + sqr(mu));
+}
+
+static float phase_mie(float mu)
+{
+ static const float sqr_G = mie_G * mie_G;
+
+ return (3.0f * (1.0f - sqr_G) * (1.0f + sqr(mu))) /
+ (8.0f * M_PI_F * (2.0f + sqr_G) * powf((1.0f + sqr_G - 2.0f * mie_G * mu), 1.5));
+}
+
+/* Intersection helpers */
+static bool surface_intersection(float3 pos, float3 dir)
+{
+ if (dir.z >= 0)
+ return false;
+ float t = dot(dir, -pos) / len_squared(dir);
+ float D = pos.x * pos.x - 2.0f * (-pos.x) * dir.x * t + dir.x * t * dir.x * t + pos.y * pos.y -
+ 2.0f * (-pos.y) * dir.y * t + (dir.y * t) * (dir.y * t) + pos.z * pos.z -
+ 2.0f * (-pos.z) * dir.z * t + dir.z * t * dir.z * t;
+ return (D <= sqr(earth_radius));
+}
+
+static float3 atmosphere_intersection(float3 pos, float3 dir)
+{
+ float b = -2.0f * dot(dir, -pos);
+ float c = len_squared(pos) - sqr(atmosphere_radius);
+ float t = (-b + sqrtf(b * b - 4.0f * c)) / 2.0f;
+ return make_float3(pos.x + dir.x * t, pos.y + dir.y * t, pos.z + dir.z * t);
+}
+
+static float3 ray_optical_depth(float3 ray_origin, float3 ray_dir)
+{
+ /* This code computes the optical depth along a ray through the atmosphere. */
+ float3 ray_end = atmosphere_intersection(ray_origin, ray_dir);
+ float ray_length = distance(ray_origin, ray_end);
+
+ /* To compute the optical depth, we step along the ray in segments and
+ * accumulate the optical depth along each segment. */
+ float segment_length = ray_length / steps_light;
+ float3 segment = segment_length * ray_dir;
+
+ /* Instead of tracking the transmission spectrum across all wavelengths directly,
+ * we use the fact that the density always has the same spectrum for each type of
+ * scattering, so we split the density into a constant spectrum and a factor and
+ * only track the factors. */
+ float3 optical_depth = make_float3(0.0f, 0.0f, 0.0f);
+
+ /* The density of each segment is evaluated at its middle. */
+ float3 P = ray_origin + 0.5f * segment;
+ for (int i = 0; i < steps_light; i++) {
+ /* Compute height above sea level. */
+ float height = len(P) - earth_radius;
+
+ /* Accumulate optical depth of this segment (density is assumed to be constant along it). */
+ float3 density = make_float3(
+ density_rayleigh(height), density_mie(height), density_ozone(height));
+ optical_depth += segment_length * density;
+
+ /* Advance along ray. */
+ P += segment;
+ }
+
+ return optical_depth;
+}
+
+/* Single Scattering implementation */
+static void single_scattering(float3 ray_dir,
+ float3 sun_dir,
+ float3 ray_origin,
+ float air_density,
+ float dust_density,
+ float ozone_density,
+ float *r_spectrum)
+{
+ /* This code computes single-inscattering along a ray through the atmosphere. */
+ float3 ray_end = atmosphere_intersection(ray_origin, ray_dir);
+ float ray_length = distance(ray_origin, ray_end);
+
+ /* To compute the inscattering, we step along the ray in segments and accumulate
+ * the inscattering as well as the optical depth along each segment. */
+ float segment_length = ray_length / steps;
+ float3 segment = segment_length * ray_dir;
+
+ /* Instead of tracking the transmission spectrum across all wavelengths directly,
+ * we use the fact that the density always has the same spectrum for each type of
+ * scattering, so we split the density into a constant spectrum and a factor and
+ * only track the factors. */
+ float3 optical_depth = make_float3(0.0f, 0.0f, 0.0f);
+
+ /* Zero out light accumulation. */
+ for (int wl = 0; wl < num_wavelengths; wl++) {
+ r_spectrum[wl] = 0.0f;
+ }
+
+ /* Compute phase function for scattering and the density scale factor. */
+ float mu = dot(ray_dir, sun_dir);
+ float3 phase_function = make_float3(phase_rayleigh(mu), phase_mie(mu), 0.0f);
+ float3 density_scale = make_float3(air_density, dust_density, ozone_density);
+
+ /* The density and in-scattering of each segment is evaluated at its middle. */
+ float3 P = ray_origin + 0.5f * segment;
+ for (int i = 0; i < steps; i++) {
+ /* Compute height above sea level. */
+ float height = len(P) - earth_radius;
+
+ /* Evaluate and accumulate optical depth along the ray. */
+ float3 density = density_scale * make_float3(density_rayleigh(height),
+ density_mie(height),
+ density_ozone(height));
+ optical_depth += segment_length * density;
+
+ /* If the earth isn't in the way, evaluate inscattering from the sun. */
+ if (!surface_intersection(P, sun_dir)) {
+ float3 light_optical_depth = density_scale * ray_optical_depth(P, sun_dir);
+ float3 total_optical_depth = optical_depth + light_optical_depth;
+
+ /* attenuation of light */
+ for (int wl = 0; wl < num_wavelengths; wl++) {
+ float3 extinction_density = total_optical_depth * make_float3(rayleigh_coeff[wl],
+ 1.11f * mie_coeff,
+ ozone_coeff[wl]);
+ float attenuation = expf(-reduce_add(extinction_density));
+
+ float3 scattering_density = density * make_float3(rayleigh_coeff[wl], mie_coeff, 0.0f);
+
+ /* The total inscattered radiance from one segment is:
+ * Tr(A<->B) * Tr(B<->C) * sigma_s * phase * L * segment_length
+ *
+ * These terms are:
+ * Tr(A<->B): Transmission from start to scattering position (tracked in optical_depth)
+ * Tr(B<->C): Transmission from scattering position to light (computed in
+ * ray_optical_depth) sigma_s: Scattering density phase: Phase function of the scattering
+ * type (Rayleigh or Mie) L: Radiance coming from the light source segment_length: The
+ * length of the segment
+ *
+ * The code here is just that, with a bit of additional optimization to not store full
+ * spectra for the optical depth.
+ */
+ r_spectrum[wl] += attenuation * reduce_add(phase_function * scattering_density) *
+ irradiance[wl] * segment_length;
+ }
+ }
+
+ /* Advance along ray. */
+ P += segment;
+ }
+}
+
+/* calculate texture array */
+void nishita_skymodel_precompute_texture(float *pixels,
+ int stride,
+ int start_y,
+ int end_y,
+ int width,
+ int height,
+ float sun_elevation,
+ float altitude,
+ float air_density,
+ float dust_density,
+ float ozone_density)
+{
+ /* calculate texture pixels */
+ float spectrum[num_wavelengths];
+ int half_width = width / 2;
+ float3 cam_pos = make_float3(0, 0, earth_radius + altitude);
+ float3 sun_dir = geographical_to_direction(sun_elevation, 0.0f);
+
+ float latitude_step = M_PI_2_F / height;
+ float longitude_step = M_2PI_F / width;
+
+ for (int y = start_y; y < end_y; y++) {
+ float latitude = latitude_step * y;
+
+ float *pixel_row = pixels + (y * width) * stride;
+ for (int x = 0; x < half_width; x++) {
+ float longitude = longitude_step * x - M_PI_F;
+
+ float3 dir = geographical_to_direction(latitude, longitude);
+ single_scattering(dir, sun_dir, cam_pos, air_density, dust_density, ozone_density, spectrum);
+ float3 xyz = spec_to_xyz(spectrum);
+
+ pixel_row[x * stride + 0] = xyz.x;
+ pixel_row[x * stride + 1] = xyz.y;
+ pixel_row[x * stride + 2] = xyz.z;
+ int mirror_x = width - x - 1;
+ pixel_row[mirror_x * stride + 0] = xyz.x;
+ pixel_row[mirror_x * stride + 1] = xyz.y;
+ pixel_row[mirror_x * stride + 2] = xyz.z;
+ }
+ }
+}
+
+/* Sun disc */
+static void sun_radiation(float3 cam_dir,
+ float altitude,
+ float air_density,
+ float dust_density,
+ float solid_angle,
+ float *r_spectrum)
+{
+ float3 cam_pos = make_float3(0, 0, earth_radius + altitude);
+ float3 optical_depth = ray_optical_depth(cam_pos, cam_dir);
+
+ /* Compute final spectrum. */
+ for (int i = 0; i < num_wavelengths; i++) {
+ /* Combine spectra and the optical depth into transmittance. */
+ float transmittance = rayleigh_coeff[i] * optical_depth.x * air_density +
+ 1.11f * mie_coeff * optical_depth.y * dust_density;
+ r_spectrum[i] = (irradiance[i] / solid_angle) * expf(-transmittance);
+ }
+}
+
+void nishita_skymodel_precompute_sun(float sun_elevation,
+ float angular_diameter,
+ float altitude,
+ float air_density,
+ float dust_density,
+ float *pixel_bottom,
+ float *pixel_top)
+{
+ /* definitions */
+ float half_angular = angular_diameter / 2.0f;
+ float solid_angle = M_2PI_F * (1.0f - cosf(half_angular));
+ float spectrum[num_wavelengths];
+ float bottom = sun_elevation - half_angular;
+ float top = sun_elevation + half_angular;
+ float elevation_bottom, elevation_top;
+ float3 pix_bottom, pix_top, sun_dir;
+
+ /* compute 2 pixels for sun disc */
+ elevation_bottom = (bottom > 0.0f) ? bottom : 0.0f;
+ elevation_top = (top > 0.0f) ? top : 0.0f;
+ sun_dir = geographical_to_direction(elevation_bottom, 0.0f);
+ sun_radiation(sun_dir, altitude, air_density, dust_density, solid_angle, spectrum);
+ pix_bottom = spec_to_xyz(spectrum);
+ sun_dir = geographical_to_direction(elevation_top, 0.0f);
+ sun_radiation(sun_dir, altitude, air_density, dust_density, solid_angle, spectrum);
+ pix_top = spec_to_xyz(spectrum);
+
+ /* store pixels */
+ pixel_bottom[0] = pix_bottom.x;
+ pixel_bottom[1] = pix_bottom.y;
+ pixel_bottom[2] = pix_bottom.z;
+ pixel_top[0] = pix_top.x;
+ pixel_top[1] = pix_top.y;
+ pixel_top[2] = pix_top.z;
+}
+
+CCL_NAMESPACE_END
diff --git a/source/blender/editors/space_node/drawnode.c b/source/blender/editors/space_node/drawnode.c
index 01ac3a80871..ab50158c8bc 100644
--- a/source/blender/editors/space_node/drawnode.c
+++ b/source/blender/editors/space_node/drawnode.c
@@ -849,12 +849,35 @@ static void node_shader_buts_tex_environment_ex(uiLayout *layout, bContext *C, P
static void node_shader_buts_tex_sky(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr)
{
uiItemR(layout, ptr, "sky_type", DEFAULT_FLAGS, "", ICON_NONE);
- uiItemR(layout, ptr, "sun_direction", DEFAULT_FLAGS, "", ICON_NONE);
- uiItemR(layout, ptr, "turbidity", DEFAULT_FLAGS, NULL, ICON_NONE);
- if (RNA_enum_get(ptr, "sky_type") == SHD_SKY_NEW) {
+ if (RNA_enum_get(ptr, "sky_type") == SHD_SKY_PREETHAM) {
+ uiItemR(layout, ptr, "sun_direction", DEFAULT_FLAGS, "", ICON_NONE);
+ uiItemR(layout, ptr, "turbidity", DEFAULT_FLAGS, NULL, ICON_NONE);
+ }
+ if (RNA_enum_get(ptr, "sky_type") == SHD_SKY_HOSEK) {
+ uiItemR(layout, ptr, "sun_direction", DEFAULT_FLAGS, "", ICON_NONE);
+ uiItemR(layout, ptr, "turbidity", DEFAULT_FLAGS, NULL, ICON_NONE);
uiItemR(layout, ptr, "ground_albedo", DEFAULT_FLAGS, NULL, ICON_NONE);
}
+ if (RNA_enum_get(ptr, "sky_type") == SHD_SKY_NISHITA) {
+ uiItemR(layout, ptr, "sun_disc", DEFAULT_FLAGS, NULL, 0);
+
+ if (RNA_boolean_get(ptr, "sun_disc")) {
+ uiItemR(layout, ptr, "sun_size", DEFAULT_FLAGS, NULL, ICON_NONE);
+ }
+
+ uiLayout *col;
+ col = uiLayoutColumn(layout, true);
+ uiItemR(col, ptr, "sun_elevation", DEFAULT_FLAGS, NULL, ICON_NONE);
+ uiItemR(col, ptr, "sun_rotation", DEFAULT_FLAGS, NULL, ICON_NONE);
+
+ uiItemR(layout, ptr, "altitude", DEFAULT_FLAGS, NULL, ICON_NONE);
+
+ col = uiLayoutColumn(layout, true);
+ uiItemR(col, ptr, "air_density", DEFAULT_FLAGS, NULL, ICON_NONE);
+ uiItemR(col, ptr, "dust_density", DEFAULT_FLAGS, NULL, ICON_NONE);
+ uiItemR(col, ptr, "ozone_density", DEFAULT_FLAGS, NULL, ICON_NONE);
+ }
}
static void node_shader_buts_tex_gradient(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr)
diff --git a/source/blender/makesdna/DNA_node_types.h b/source/blender/makesdna/DNA_node_types.h
index 4ff0e531168..993aad92564 100644
--- a/source/blender/makesdna/DNA_node_types.h
+++ b/source/blender/makesdna/DNA_node_types.h
@@ -844,6 +844,15 @@ typedef struct NodeTexSky {
float sun_direction[3];
float turbidity;
float ground_albedo;
+ float sun_size;
+ float sun_elevation;
+ float sun_rotation;
+ int altitude;
+ float air_density;
+ float dust_density;
+ float ozone_density;
+ char sun_disc;
+ char _pad[3];
} NodeTexSky;
typedef struct NodeTexImage {
@@ -1171,8 +1180,9 @@ enum {
};
/* sky texture */
-#define SHD_SKY_OLD 0
-#define SHD_SKY_NEW 1
+#define SHD_SKY_PREETHAM 0
+#define SHD_SKY_HOSEK 1
+#define SHD_SKY_NISHITA 2
/* environment texture */
#define SHD_PROJ_EQUIRECTANGULAR 0
diff --git a/source/blender/makesrna/intern/rna_nodetree.c b/source/blender/makesrna/intern/rna_nodetree.c
index 32999c91fad..13dee92c1cb 100644
--- a/source/blender/makesrna/intern/rna_nodetree.c
+++ b/source/blender/makesrna/intern/rna_nodetree.c
@@ -4405,8 +4405,9 @@ static void def_sh_tex(StructRNA *srna)
static void def_sh_tex_sky(StructRNA *srna)
{
static const EnumPropertyItem prop_sky_type[] = {
- {SHD_SKY_OLD, "PREETHAM", 0, "Preetham", ""},
- {SHD_SKY_NEW, "HOSEK_WILKIE", 0, "Hosek / Wilkie", ""},
+ {SHD_SKY_PREETHAM, "PREETHAM", 0, "Preetham", "Preetham 1999"},
+ {SHD_SKY_HOSEK, "HOSEK_WILKIE", 0, "Hosek / Wilkie", "Hosek / Wilkie 2012"},
+ {SHD_SKY_NISHITA, "NISHITA", 0, "Nishita", "Nishita 1993 improved"},
{0, NULL, 0, NULL, NULL},
};
static float default_dir[3] = {0.0f, 0.0f, 1.0f};
@@ -4419,7 +4420,7 @@ static void def_sh_tex_sky(StructRNA *srna)
prop = RNA_def_property(srna, "sky_type", PROP_ENUM, PROP_NONE);
RNA_def_property_enum_sdna(prop, NULL, "sky_model");
RNA_def_property_enum_items(prop, prop_sky_type);
- RNA_def_property_ui_text(prop, "Sky Type", "");
+ RNA_def_property_ui_text(prop, "Sky Type", "Which sky model should be used");
RNA_def_property_update(prop, 0, "rna_Node_update");
prop = RNA_def_property(srna, "sun_direction", PROP_FLOAT, PROP_DIRECTION);
@@ -4439,6 +4440,54 @@ static void def_sh_tex_sky(StructRNA *srna)
RNA_def_property_ui_text(
prop, "Ground Albedo", "Ground color that is subtly reflected in the sky");
RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "sun_disc", PROP_BOOLEAN, PROP_NONE);
+ RNA_def_property_ui_text(prop, "Sun Disc", "Include the sun itself in the output");
+ RNA_def_property_boolean_sdna(prop, NULL, "sun_disc", 1);
+ RNA_def_property_boolean_default(prop, true);
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "sun_size", PROP_FLOAT, PROP_ANGLE);
+ RNA_def_property_ui_text(prop, "Sun Size", "Size of sun disc (angular diameter)");
+ RNA_def_property_range(prop, 0.0f, M_PI_2);
+ RNA_def_property_float_default(prop, DEG2RADF(0.545));
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "sun_elevation", PROP_FLOAT, PROP_ANGLE);
+ RNA_def_property_ui_text(prop, "Sun Elevation", "Angle between sun and horizon");
+ RNA_def_property_range(prop, -M_PI_2, M_PI_2);
+ RNA_def_property_float_default(prop, M_PI_2);
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "sun_rotation", PROP_FLOAT, PROP_ANGLE);
+ RNA_def_property_ui_text(prop, "Sun Rotation", "Rotation of sun around zenith");
+ RNA_def_property_range(prop, 0.0f, 2.0f * M_PI);
+ RNA_def_property_float_default(prop, 0.0f);
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "altitude", PROP_INT, PROP_NONE);
+ RNA_def_property_ui_text(prop, "Altitude", "Altitude height from sea level in meters");
+ RNA_def_property_range(prop, 0, 60000);
+ RNA_def_property_int_default(prop, 0);
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "air_density", PROP_FLOAT, PROP_FACTOR);
+ RNA_def_property_ui_text(prop, "Air", "Density of air molecules (Rayleigh scattering)");
+ RNA_def_property_range(prop, 0.0f, 10.0f);
+ RNA_def_property_float_default(prop, 1.0f);
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "dust_density", PROP_FLOAT, PROP_FACTOR);
+ RNA_def_property_ui_text(prop, "Dust", "Density of dust and water molecules (Mie scattering)");
+ RNA_def_property_range(prop, 0.0f, 10.0f);
+ RNA_def_property_float_default(prop, 1.0f);
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
+
+ prop = RNA_def_property(srna, "ozone_density", PROP_FLOAT, PROP_FACTOR);
+ RNA_def_property_ui_text(prop, "Ozone", "Density of Ozone layer (Ozone absorption)");
+ RNA_def_property_range(prop, 0.0f, 10.0f);
+ RNA_def_property_float_default(prop, 1.0f);
+ RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
}
static const EnumPropertyItem sh_tex_prop_interpolation_items[] = {
diff --git a/source/blender/nodes/shader/nodes/node_shader_tex_sky.c b/source/blender/nodes/shader/nodes/node_shader_tex_sky.c
index cb91e086cf4..0daa948c139 100644
--- a/source/blender/nodes/shader/nodes/node_shader_tex_sky.c
+++ b/source/blender/nodes/shader/nodes/node_shader_tex_sky.c
@@ -41,8 +41,15 @@ static void node_shader_init_tex_sky(bNodeTree *UNUSED(ntree), bNode *node)
tex->sun_direction[2] = 1.0f;
tex->turbidity = 2.2f;
tex->ground_albedo = 0.3f;
- tex->sky_model = SHD_SKY_NEW;
-
+ tex->sun_disc = true;
+ tex->sun_size = DEG2RADF(0.545);
+ tex->sun_elevation = M_PI_2;
+ tex->sun_rotation = 0.0f;
+ tex->altitude = 0;
+ tex->air_density = 1.0f;
+ tex->dust_density = 1.0f;
+ tex->ozone_density = 1.0f;
+ tex->sky_model = SHD_SKY_NISHITA;
node->storage = tex;
}