Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--source/blender/blenkernel/BKE_attribute.hh16
-rw-r--r--source/blender/blenkernel/intern/attribute_access.cc31
-rw-r--r--source/blender/blenlib/BLI_index_range.hh10
-rw-r--r--source/blender/blenlib/BLI_math_rotation.hh9
-rw-r--r--source/blender/blenlib/intern/math_rotation.cc13
-rw-r--r--source/blender/blenlib/tests/BLI_index_range_test.cc6
-rw-r--r--source/blender/geometry/CMakeLists.txt2
-rw-r--r--source/blender/geometry/GEO_fillet_curves.hh23
-rw-r--r--source/blender/geometry/intern/fillet_curves.cc561
-rw-r--r--source/blender/geometry/intern/subdivide_curves.cc58
-rw-r--r--source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc600
11 files changed, 722 insertions, 607 deletions
diff --git a/source/blender/blenkernel/BKE_attribute.hh b/source/blender/blenkernel/BKE_attribute.hh
index 05ab4f1f1f1..108993d91c0 100644
--- a/source/blender/blenkernel/BKE_attribute.hh
+++ b/source/blender/blenkernel/BKE_attribute.hh
@@ -666,6 +666,22 @@ class MutableAttributeAccessor : public AttributeAccessor {
void remove_anonymous();
};
+struct AttributeTransferData {
+ /* Expect that if an attribute exists, it is stored as a contiguous array internally anyway. */
+ GVArraySpan src;
+ AttributeMetaData meta_data;
+ bke::GSpanAttributeWriter dst;
+};
+/**
+ * Retrieve attribute arrays and writers for attributes that should be transferred between
+ * data-blocks of the same type.
+ */
+Vector<AttributeTransferData> retrieve_attributes_for_transfer(
+ const bke::AttributeAccessor &src_attributes,
+ bke::MutableAttributeAccessor &dst_attributes,
+ eAttrDomainMask domain_mask,
+ const Set<std::string> &skip = {});
+
bool allow_procedural_attribute_access(StringRef attribute_name);
extern const char *no_procedural_access_message;
diff --git a/source/blender/blenkernel/intern/attribute_access.cc b/source/blender/blenkernel/intern/attribute_access.cc
index ac1ee19927c..a834b77d65e 100644
--- a/source/blender/blenkernel/intern/attribute_access.cc
+++ b/source/blender/blenkernel/intern/attribute_access.cc
@@ -1011,6 +1011,37 @@ GSpanAttributeWriter MutableAttributeAccessor::lookup_or_add_for_write_only_span
return {};
}
+Vector<AttributeTransferData> retrieve_attributes_for_transfer(
+ const bke::AttributeAccessor &src_attributes,
+ bke::MutableAttributeAccessor &dst_attributes,
+ const eAttrDomainMask domain_mask,
+ const Set<std::string> &skip)
+{
+ Vector<AttributeTransferData> attributes;
+ src_attributes.for_all(
+ [&](const bke::AttributeIDRef &id, const bke::AttributeMetaData meta_data) {
+ if (!(ATTR_DOMAIN_AS_MASK(meta_data.domain) & domain_mask)) {
+ return true;
+ }
+ if (id.is_named() && skip.contains(id.name())) {
+ return true;
+ }
+ if (!id.should_be_kept()) {
+ return true;
+ }
+
+ GVArray src = src_attributes.lookup(id, meta_data.domain);
+ BLI_assert(src);
+ bke::GSpanAttributeWriter dst = dst_attributes.lookup_or_add_for_write_only_span(
+ id, meta_data.domain, meta_data.data_type);
+ BLI_assert(dst);
+ attributes.append({std::move(src), meta_data, std::move(dst)});
+
+ return true;
+ });
+ return attributes;
+}
+
} // namespace blender::bke
/** \} */
diff --git a/source/blender/blenlib/BLI_index_range.hh b/source/blender/blenlib/BLI_index_range.hh
index bd0a7e5bb7a..6fcc560d856 100644
--- a/source/blender/blenlib/BLI_index_range.hh
+++ b/source/blender/blenlib/BLI_index_range.hh
@@ -198,6 +198,16 @@ class IndexRange {
}
/**
+ * Get the element one before the beginning. The returned value is undefined when the range is
+ * empty, and the range must start after zero already.
+ */
+ constexpr int64_t one_before_start() const
+ {
+ BLI_assert(start_ > 0);
+ return start_ - 1;
+ }
+
+ /**
* Get the element one after the end. The returned value is undefined when the range is empty.
*/
constexpr int64_t one_after_last() const
diff --git a/source/blender/blenlib/BLI_math_rotation.hh b/source/blender/blenlib/BLI_math_rotation.hh
index e8b746b34df..50a062162ad 100644
--- a/source/blender/blenlib/BLI_math_rotation.hh
+++ b/source/blender/blenlib/BLI_math_rotation.hh
@@ -15,4 +15,13 @@ namespace blender::math {
*/
float3 rotate_direction_around_axis(const float3 &direction, const float3 &axis, float angle);
+/**
+ * Rotate any arbitrary \a vector around the \a center position, with a unit-length \a axis
+ * and the specified \a angle.
+ */
+float3 rotate_around_axis(const float3 &vector,
+ const float3 &center,
+ const float3 &axis,
+ float angle);
+
} // namespace blender::math
diff --git a/source/blender/blenlib/intern/math_rotation.cc b/source/blender/blenlib/intern/math_rotation.cc
index 74300d55954..091e8af85d9 100644
--- a/source/blender/blenlib/intern/math_rotation.cc
+++ b/source/blender/blenlib/intern/math_rotation.cc
@@ -23,4 +23,17 @@ float3 rotate_direction_around_axis(const float3 &direction, const float3 &axis,
return axis_scaled + diff * std::cos(angle) + cross * std::sin(angle);
}
+float3 rotate_around_axis(const float3 &vector,
+ const float3 &center,
+ const float3 &axis,
+ const float angle)
+
+{
+ float3 result = vector - center;
+ float mat[3][3];
+ axis_angle_normalized_to_mat3(mat, axis, angle);
+ mul_m3_v3(mat, result);
+ return result + center;
+}
+
} // namespace blender::math
diff --git a/source/blender/blenlib/tests/BLI_index_range_test.cc b/source/blender/blenlib/tests/BLI_index_range_test.cc
index 10f6784cd44..f5b994d409a 100644
--- a/source/blender/blenlib/tests/BLI_index_range_test.cc
+++ b/source/blender/blenlib/tests/BLI_index_range_test.cc
@@ -105,6 +105,12 @@ TEST(index_range, OneAfterEnd)
EXPECT_EQ(range.one_after_last(), 8);
}
+TEST(index_range, OneBeforeStart)
+{
+ IndexRange range = IndexRange(5, 3);
+ EXPECT_EQ(range.one_before_start(), 4);
+}
+
TEST(index_range, Start)
{
IndexRange range = IndexRange(6, 2);
diff --git a/source/blender/geometry/CMakeLists.txt b/source/blender/geometry/CMakeLists.txt
index df66a806c16..da83d9e8957 100644
--- a/source/blender/geometry/CMakeLists.txt
+++ b/source/blender/geometry/CMakeLists.txt
@@ -16,6 +16,7 @@ set(INC
set(SRC
intern/add_curves_on_mesh.cc
+ intern/fillet_curves.cc
intern/mesh_merge_by_distance.cc
intern/mesh_primitive_cuboid.cc
intern/mesh_to_curve_convert.cc
@@ -29,6 +30,7 @@ set(SRC
intern/uv_parametrizer.c
GEO_add_curves_on_mesh.hh
+ GEO_fillet_curves.hh
GEO_mesh_merge_by_distance.hh
GEO_mesh_primitive_cuboid.hh
GEO_mesh_to_curve.hh
diff --git a/source/blender/geometry/GEO_fillet_curves.hh b/source/blender/geometry/GEO_fillet_curves.hh
new file mode 100644
index 00000000000..1f832f8b6cc
--- /dev/null
+++ b/source/blender/geometry/GEO_fillet_curves.hh
@@ -0,0 +1,23 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#pragma once
+
+#include "BLI_function_ref.hh"
+#include "BLI_index_mask.hh"
+
+#include "BKE_curves.hh"
+
+namespace blender::geometry {
+
+bke::CurvesGeometry fillet_curves_poly(const bke::CurvesGeometry &src_curves,
+ IndexMask curve_selection,
+ const VArray<float> &radius,
+ const VArray<int> &counts,
+ bool limit_radius);
+
+bke::CurvesGeometry fillet_curves_bezier(const bke::CurvesGeometry &src_curves,
+ IndexMask curve_selection,
+ const VArray<float> &radius,
+ bool limit_radius);
+
+} // namespace blender::geometry
diff --git a/source/blender/geometry/intern/fillet_curves.cc b/source/blender/geometry/intern/fillet_curves.cc
new file mode 100644
index 00000000000..2cca91f40ae
--- /dev/null
+++ b/source/blender/geometry/intern/fillet_curves.cc
@@ -0,0 +1,561 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BKE_attribute_math.hh"
+#include "BKE_curves.hh"
+#include "BKE_curves_utils.hh"
+#include "BKE_geometry_set.hh"
+
+#include "BLI_devirtualize_parameters.hh"
+#include "BLI_math_geom.h"
+#include "BLI_math_rotation.hh"
+#include "BLI_task.hh"
+
+#include "GEO_fillet_curves.hh"
+
+namespace blender::geometry {
+
+/**
+ * Return a range used to retrieve values from an array of values stored per point, but with an
+ * extra element at the end of each curve. This is useful for offsets within curves, where it is
+ * convenient to store the first 0 and have the last offset be the total result curve size.
+ */
+static IndexRange curve_dst_offsets(const IndexRange points, const int curve_index)
+{
+ return {curve_index + points.start(), points.size() + 1};
+}
+
+template<typename T>
+static void threaded_slice_fill(const Span<T> src, const Span<int> offsets, MutableSpan<T> dst)
+{
+ threading::parallel_for(src.index_range(), 512, [&](IndexRange range) {
+ for (const int i : range) {
+ dst.slice(bke::offsets_to_range(offsets, i)).fill(src[i]);
+ }
+ });
+}
+
+template<typename T>
+static void duplicate_fillet_point_data(const bke::CurvesGeometry &src_curves,
+ const bke::CurvesGeometry &dst_curves,
+ const IndexMask curve_selection,
+ const Span<int> point_offsets,
+ const Span<T> src,
+ MutableSpan<T> dst)
+{
+ threading::parallel_for(curve_selection.index_range(), 512, [&](IndexRange range) {
+ for (const int curve_i : curve_selection.slice(range)) {
+ const IndexRange src_points = src_curves.points_for_curve(curve_i);
+ const IndexRange dst_points = dst_curves.points_for_curve(curve_i);
+ const Span<int> offsets = point_offsets.slice(curve_dst_offsets(src_points, curve_i));
+ threaded_slice_fill(src.slice(src_points), offsets, dst.slice(dst_points));
+ }
+ });
+}
+
+static void duplicate_fillet_point_data(const bke::CurvesGeometry &src_curves,
+ const bke::CurvesGeometry &dst_curves,
+ const IndexMask selection,
+ const Span<int> point_offsets,
+ const GSpan src,
+ GMutableSpan dst)
+{
+ attribute_math::convert_to_static_type(dst.type(), [&](auto dummy) {
+ using T = decltype(dummy);
+ duplicate_fillet_point_data(
+ src_curves, dst_curves, selection, point_offsets, src.typed<T>(), dst.typed<T>());
+ });
+}
+
+static void calculate_result_offsets(const bke::CurvesGeometry &src_curves,
+ const IndexMask selection,
+ const Span<IndexRange> unselected_ranges,
+ const VArray<float> &radii,
+ const VArray<int> &counts,
+ const Span<bool> cyclic,
+ MutableSpan<int> dst_curve_offsets,
+ MutableSpan<int> dst_point_offsets)
+{
+ /* Fill the offsets array with the curve point counts, then accumulate them to form offsets. */
+ bke::curves::fill_curve_counts(src_curves, unselected_ranges, dst_curve_offsets);
+ threading::parallel_for(selection.index_range(), 512, [&](IndexRange range) {
+ for (const int curve_i : selection.slice(range)) {
+ const IndexRange src_points = src_curves.points_for_curve(curve_i);
+ const IndexRange offsets_range = curve_dst_offsets(src_points, curve_i);
+
+ MutableSpan<int> point_offsets = dst_point_offsets.slice(offsets_range);
+ MutableSpan<int> point_counts = point_offsets.drop_back(1);
+
+ counts.materialize_compressed(src_points, point_counts);
+ for (int &count : point_counts) {
+ /* Make sure the number of cuts is greater than zero and add one for the existing point. */
+ count = std::max(count, 0) + 1;
+ }
+ if (!cyclic[curve_i]) {
+ /* Endpoints on non-cyclic curves cannot be filleted. */
+ point_counts.first() = 1;
+ point_counts.last() = 1;
+ }
+ /* Implicitly "deselect" points with zero radius. */
+ devirtualize_varray(radii, [&](const auto radii) {
+ for (const int i : IndexRange(src_points.size())) {
+ if (radii[i] == 0.0f) {
+ point_counts[i] = 1;
+ }
+ }
+ });
+
+ bke::curves::accumulate_counts_to_offsets(point_offsets);
+
+ dst_curve_offsets[curve_i] = point_offsets.last();
+ }
+ });
+ bke::curves::accumulate_counts_to_offsets(dst_curve_offsets);
+}
+
+static void calculate_directions(const Span<float3> positions, MutableSpan<float3> directions)
+{
+ for (const int i : positions.index_range().drop_back(1)) {
+ directions[i] = math::normalize(positions[i + 1] - positions[i]);
+ }
+ directions.last() = math::normalize(positions.first() - positions.last());
+}
+
+static void calculate_angles(const Span<float3> directions, MutableSpan<float> angles)
+{
+ angles.first() = M_PI - angle_v3v3(-directions.last(), directions.first());
+ for (const int i : directions.index_range().drop_front(1)) {
+ angles[i] = M_PI - angle_v3v3(-directions[i - 1], directions[i]);
+ }
+}
+
+/**
+ * Find the portion of the previous and next segments used by the current and next point fillets.
+ * If more than the total length of the segment would be used, scale the current point's radius
+ * just enough to make the two points meet in the middle.
+ */
+static float limit_radius(const float3 &position_prev,
+ const float3 &position,
+ const float3 &position_next,
+ const float angle_prev,
+ const float angle,
+ const float angle_next,
+ const float radius_prev,
+ const float radius,
+ const float radius_next)
+{
+ const float displacement = radius * std::tan(angle / 2.0f);
+
+ const float displacement_prev = radius_prev * std::tan(angle_prev / 2.0f);
+ const float segment_length_prev = math::distance(position, position_prev);
+ const float total_displacement_prev = displacement_prev + displacement;
+ const float factor_prev = std::clamp(segment_length_prev / total_displacement_prev, 0.0f, 1.0f);
+
+ const float displacement_next = radius_next * std::tan(angle_next / 2.0f);
+ const float segment_length_next = math::distance(position, position_next);
+ const float total_displacement_next = displacement_next + displacement;
+ const float factor_next = std::clamp(segment_length_next / total_displacement_next, 0.0f, 1.0f);
+
+ return radius * std::min(factor_prev, factor_next);
+}
+
+static void limit_radii(const Span<float3> positions,
+ const Span<float> angles,
+ const Span<float> radii,
+ const bool cyclic,
+ MutableSpan<float> radii_clamped)
+{
+ if (cyclic) {
+ /* First point. */
+ radii_clamped.first() = limit_radius(positions.last(),
+ positions.first(),
+ positions[1],
+ angles.last(),
+ angles.first(),
+ angles[1],
+ radii.last(),
+ radii.first(),
+ radii[1]);
+ /* All middle points. */
+ for (const int i : positions.index_range().drop_back(1).drop_front(1)) {
+ const int i_prev = i - 1;
+ const int i_next = i + 1;
+ radii_clamped[i] = limit_radius(positions[i_prev],
+ positions[i],
+ positions[i_next],
+ angles[i_prev],
+ angles[i],
+ angles[i_next],
+ radii[i_prev],
+ radii[i],
+ radii[i_next]);
+ }
+ /* Last point. */
+ radii_clamped.last() = limit_radius(positions.last(1),
+ positions.last(),
+ positions.first(),
+ angles.last(1),
+ angles.last(),
+ angles.first(),
+ radii.last(1),
+ radii.last(),
+ radii.first());
+ }
+ else {
+ const int i_last = positions.index_range().last();
+ /* First point. */
+ radii_clamped.first() = 0.0f;
+ /* All middle points. */
+ for (const int i : positions.index_range().drop_back(1).drop_front(1)) {
+ const int i_prev = i - 1;
+ const int i_next = i + 1;
+ /* Use a zero radius for the first and last points, because they don't have fillets.
+ * This logic could potentially be unrolled, but it doesn't seem worth it. */
+ const float radius_prev = i_prev == 0 ? 0.0f : radii[i_prev];
+ const float radius_next = i_next == i_last ? 0.0f : radii[i_next];
+ radii_clamped[i] = limit_radius(positions[i_prev],
+ positions[i],
+ positions[i_next],
+ angles[i_prev],
+ angles[i],
+ angles[i_next],
+ radius_prev,
+ radii[i],
+ radius_next);
+ }
+ /* Last point. */
+ radii_clamped.last() = 0.0f;
+ }
+}
+
+static void calculate_fillet_positions(const Span<float3> src_positions,
+ const Span<float> angles,
+ const Span<float> radii,
+ const Span<float3> directions,
+ const Span<int> dst_offsets,
+ MutableSpan<float3> dst)
+{
+ const int i_src_last = src_positions.index_range().last();
+ threading::parallel_for(src_positions.index_range(), 512, [&](IndexRange range) {
+ for (const int i_src : range) {
+ const IndexRange arc = bke::offsets_to_range(dst_offsets, i_src);
+ const float3 &src = src_positions[i_src];
+ if (arc.size() == 1) {
+ dst[arc.first()] = src;
+ continue;
+ }
+
+ const int i_src_prev = i_src == 0 ? i_src_last : i_src - 1;
+ const float angle = angles[i_src];
+ const float radius = radii[i_src];
+ const float displacement = radius * std::tan(angle / 2.0f);
+ const float3 prev_dir = -directions[i_src_prev];
+ const float3 &next_dir = directions[i_src];
+ const float3 arc_start = src + prev_dir * displacement;
+ const float3 arc_end = src + next_dir * displacement;
+
+ dst[arc.first()] = arc_start;
+ dst[arc.last()] = arc_end;
+
+ const IndexRange middle = arc.drop_front(1).drop_back(1);
+ if (middle.is_empty()) {
+ continue;
+ }
+
+ const float3 axis = -math::normalize(math::cross(prev_dir, next_dir));
+ const float3 center_direction = math::normalize(math::midpoint(next_dir, prev_dir));
+ const float distance_to_center = std::sqrt(pow2f(radius) + pow2f(displacement));
+ const float3 center = src + center_direction * distance_to_center;
+
+ /* Rotate each middle fillet point around the center. */
+ const float segment_angle = angle / (middle.size() + 1);
+ for (const int i : IndexRange(middle.size())) {
+ const int point_i = middle[i];
+ dst[point_i] = math::rotate_around_axis(arc_start, center, axis, segment_angle * (i + 1));
+ }
+ }
+ });
+}
+
+/**
+ * Set handles for the "Bezier" mode where we rely on setting the inner handles to approximate a
+ * circular arc. The outer (previous and next) handles outside the result fillet segment are set
+ * to vector handles.
+ */
+static void calculate_bezier_handles_bezier_mode(const Span<float3> src_handles_l,
+ const Span<float3> src_handles_r,
+ const Span<int8_t> src_types_l,
+ const Span<int8_t> src_types_r,
+ const Span<float> angles,
+ const Span<float> radii,
+ const Span<float3> directions,
+ const Span<int> dst_offsets,
+ const Span<float3> dst_positions,
+ MutableSpan<float3> dst_handles_l,
+ MutableSpan<float3> dst_handles_r,
+ MutableSpan<int8_t> dst_types_l,
+ MutableSpan<int8_t> dst_types_r)
+{
+ const int i_src_last = src_handles_l.index_range().last();
+ const int i_dst_last = dst_positions.index_range().last();
+ threading::parallel_for(src_handles_l.index_range(), 512, [&](IndexRange range) {
+ for (const int i_src : range) {
+ const IndexRange arc = bke::offsets_to_range(dst_offsets, i_src);
+ if (arc.size() == 1) {
+ dst_handles_l[arc.first()] = src_handles_l[i_src];
+ dst_handles_r[arc.first()] = src_handles_r[i_src];
+ dst_types_l[arc.first()] = src_types_l[i_src];
+ dst_types_r[arc.first()] = src_types_r[i_src];
+ continue;
+ }
+ BLI_assert(arc.size() == 2);
+ const int i_dst_a = arc.first();
+ const int i_dst_b = arc.last();
+
+ const int i_src_prev = i_src == 0 ? i_src_last : i_src - 1;
+ const float angle = angles[i_src];
+ const float radius = radii[i_src];
+ const float3 prev_dir = -directions[i_src_prev];
+ const float3 &next_dir = directions[i_src];
+
+ const float3 &arc_start = dst_positions[arc.first()];
+ const float3 &arc_end = dst_positions[arc.last()];
+
+ /* Calculate the point's handles on the outside of the fillet segment,
+ * connecting to the next or previous result points. */
+ const int i_dst_prev = i_dst_a == 0 ? i_dst_last : i_dst_a - 1;
+ const int i_dst_next = i_dst_b == i_dst_last ? 0 : i_dst_b + 1;
+ dst_handles_l[i_dst_a] = bke::curves::bezier::calculate_vector_handle(
+ dst_positions[i_dst_a], dst_positions[i_dst_prev]);
+ dst_handles_r[i_dst_b] = bke::curves::bezier::calculate_vector_handle(
+ dst_positions[i_dst_b], dst_positions[i_dst_next]);
+ dst_types_l[i_dst_a] = BEZIER_HANDLE_VECTOR;
+ dst_types_r[i_dst_b] = BEZIER_HANDLE_VECTOR;
+
+ /* The inner handles are aligned with the aligned with the outer vector
+ * handles, but have a specific length to best approximate a circle. */
+ const float handle_length = (4.0f / 3.0f) * radius * std::tan(angle / 4.0f);
+ dst_handles_r[i_dst_a] = arc_start - prev_dir * handle_length;
+ dst_handles_l[i_dst_b] = arc_end - next_dir * handle_length;
+ dst_types_r[i_dst_a] = BEZIER_HANDLE_ALIGN;
+ dst_types_l[i_dst_b] = BEZIER_HANDLE_ALIGN;
+ }
+ });
+}
+
+/**
+ * In the poly fillet mode, all the inner handles are set to vector handles, along with the "outer"
+ * (previous and next) handles at each fillet.
+ */
+static void calculate_bezier_handles_poly_mode(const Span<float3> src_handles_l,
+ const Span<float3> src_handles_r,
+ const Span<int8_t> src_types_l,
+ const Span<int8_t> src_types_r,
+ const Span<int> dst_offsets,
+ const Span<float3> dst_positions,
+ MutableSpan<float3> dst_handles_l,
+ MutableSpan<float3> dst_handles_r,
+ MutableSpan<int8_t> dst_types_l,
+ MutableSpan<int8_t> dst_types_r)
+{
+ const int i_dst_last = dst_positions.index_range().last();
+ threading::parallel_for(src_handles_l.index_range(), 512, [&](IndexRange range) {
+ for (const int i_src : range) {
+ const IndexRange arc = bke::offsets_to_range(dst_offsets, i_src);
+ if (arc.size() == 1) {
+ dst_handles_l[arc.first()] = src_handles_l[i_src];
+ dst_handles_r[arc.first()] = src_handles_r[i_src];
+ dst_types_l[arc.first()] = src_types_l[i_src];
+ dst_types_r[arc.first()] = src_types_r[i_src];
+ continue;
+ }
+
+ /* The fillet's next and previous handles are vector handles, as are the inner handles. */
+ dst_types_l.slice(arc).fill(BEZIER_HANDLE_VECTOR);
+ dst_types_r.slice(arc).fill(BEZIER_HANDLE_VECTOR);
+
+ /* Calculate the point's handles on the outside of the fillet segment. This point
+ * won't be selected for a fillet if it is the first or last in a non-cyclic curve. */
+
+ const int i_dst_prev = arc.first() == 0 ? i_dst_last : arc.one_before_start();
+ const int i_dst_next = arc.last() == i_dst_last ? 0 : arc.one_after_last();
+ dst_handles_l[arc.first()] = bke::curves::bezier::calculate_vector_handle(
+ dst_positions[arc.first()], dst_positions[i_dst_prev]);
+ dst_handles_r[arc.last()] = bke::curves::bezier::calculate_vector_handle(
+ dst_positions[arc.last()], dst_positions[i_dst_next]);
+
+ /* Set the values for the inner handles. */
+ const IndexRange middle = arc.drop_front(1).drop_back(1);
+ for (const int i : middle) {
+ dst_handles_r[i] = bke::curves::bezier::calculate_vector_handle(dst_positions[i],
+ dst_positions[i - 1]);
+ dst_handles_l[i] = bke::curves::bezier::calculate_vector_handle(dst_positions[i],
+ dst_positions[i + 1]);
+ }
+ }
+ });
+}
+
+static bke::CurvesGeometry fillet_curves(const bke::CurvesGeometry &src_curves,
+ const IndexMask curve_selection,
+ const VArray<float> &radius_input,
+ const VArray<int> &counts,
+ const bool limit_radius,
+ const bool use_bezier_mode)
+{
+ const Vector<IndexRange> unselected_ranges = curve_selection.extract_ranges_invert(
+ src_curves.curves_range());
+
+ const Span<float3> positions = src_curves.positions();
+ const VArraySpan<bool> cyclic{src_curves.cyclic()};
+ const bke::AttributeAccessor src_attributes = src_curves.attributes();
+
+ bke::CurvesGeometry dst_curves = bke::curves::copy_only_curve_domain(src_curves);
+ /* Stores the offset of every result point for every original point.
+ * The extra length is used in order to store an extra zero for every curve. */
+ Array<int> dst_point_offsets(src_curves.points_num() + src_curves.curves_num());
+ calculate_result_offsets(src_curves,
+ curve_selection,
+ unselected_ranges,
+ radius_input,
+ counts,
+ cyclic,
+ dst_curves.offsets_for_write(),
+ dst_point_offsets);
+ const Span<int> point_offsets = dst_point_offsets.as_span();
+
+ dst_curves.resize(dst_curves.offsets().last(), dst_curves.curves_num());
+ bke::MutableAttributeAccessor dst_attributes = dst_curves.attributes_for_write();
+ MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
+
+ VArraySpan<int8_t> src_types_l;
+ VArraySpan<int8_t> src_types_r;
+ Span<float3> src_handles_l;
+ Span<float3> src_handles_r;
+ MutableSpan<int8_t> dst_types_l;
+ MutableSpan<int8_t> dst_types_r;
+ MutableSpan<float3> dst_handles_l;
+ MutableSpan<float3> dst_handles_r;
+ if (src_curves.has_curve_with_type(CURVE_TYPE_BEZIER)) {
+ src_types_l = src_curves.handle_types_left();
+ src_types_r = src_curves.handle_types_right();
+ src_handles_l = src_curves.handle_positions_left();
+ src_handles_r = src_curves.handle_positions_right();
+
+ dst_types_l = dst_curves.handle_types_left_for_write();
+ dst_types_r = dst_curves.handle_types_right_for_write();
+ dst_handles_l = dst_curves.handle_positions_left_for_write();
+ dst_handles_r = dst_curves.handle_positions_right_for_write();
+ }
+
+ threading::parallel_for(curve_selection.index_range(), 512, [&](IndexRange range) {
+ Array<float3> directions;
+ Array<float> angles;
+ Array<float> radii;
+ Array<float> input_radii_buffer;
+
+ for (const int curve_i : curve_selection.slice(range)) {
+ const IndexRange src_points = src_curves.points_for_curve(curve_i);
+ const Span<int> offsets = point_offsets.slice(curve_dst_offsets(src_points, curve_i));
+ const IndexRange dst_points = dst_curves.points_for_curve(curve_i);
+ const Span<float3> src_positions = positions.slice(src_points);
+
+ directions.reinitialize(src_points.size());
+ calculate_directions(src_positions, directions);
+
+ angles.reinitialize(src_points.size());
+ calculate_angles(directions, angles);
+
+ radii.reinitialize(src_points.size());
+ if (limit_radius) {
+ input_radii_buffer.reinitialize(src_points.size());
+ radius_input.materialize_compressed(src_points, input_radii_buffer);
+ limit_radii(src_positions, angles, input_radii_buffer, cyclic[curve_i], radii);
+ }
+ else {
+ radius_input.materialize_compressed(src_points, radii);
+ }
+
+ calculate_fillet_positions(positions.slice(src_points),
+ angles,
+ radii,
+ directions,
+ offsets,
+ dst_positions.slice(dst_points));
+
+ if (src_curves.has_curve_with_type(CURVE_TYPE_BEZIER)) {
+ if (use_bezier_mode) {
+ calculate_bezier_handles_bezier_mode(src_handles_l.slice(src_points),
+ src_handles_r.slice(src_points),
+ src_types_l.slice(src_points),
+ src_types_r.slice(src_points),
+ angles,
+ radii,
+ directions,
+ offsets,
+ dst_positions.slice(dst_points),
+ dst_handles_l.slice(dst_points),
+ dst_handles_r.slice(dst_points),
+ dst_types_l.slice(dst_points),
+ dst_types_r.slice(dst_points));
+ }
+ else {
+ calculate_bezier_handles_poly_mode(src_handles_l.slice(src_points),
+ src_handles_r.slice(src_points),
+ src_types_l.slice(src_points),
+ src_types_r.slice(src_points),
+ offsets,
+ dst_positions.slice(dst_points),
+ dst_handles_l.slice(dst_points),
+ dst_handles_r.slice(dst_points),
+ dst_types_l.slice(dst_points),
+ dst_types_r.slice(dst_points));
+ }
+ }
+ }
+ });
+
+ for (auto &attribute : bke::retrieve_attributes_for_transfer(
+ src_attributes,
+ dst_attributes,
+ ATTR_DOMAIN_MASK_POINT,
+ {"position", "handle_type_left", "handle_type_right", "handle_right", "handle_left"})) {
+ duplicate_fillet_point_data(
+ src_curves, dst_curves, curve_selection, point_offsets, attribute.src, attribute.dst.span);
+ attribute.dst.finish();
+ }
+
+ if (!unselected_ranges.is_empty()) {
+ for (auto &attribute : bke::retrieve_attributes_for_transfer(
+ src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT)) {
+ bke::curves::copy_point_data(
+ src_curves, dst_curves, unselected_ranges, attribute.src, attribute.dst.span);
+ attribute.dst.finish();
+ }
+ }
+
+ return dst_curves;
+}
+
+bke::CurvesGeometry fillet_curves_poly(const bke::CurvesGeometry &src_curves,
+ const IndexMask curve_selection,
+ const VArray<float> &radius,
+ const VArray<int> &count,
+ const bool limit_radius)
+{
+ return fillet_curves(src_curves, curve_selection, radius, count, limit_radius, false);
+}
+
+bke::CurvesGeometry fillet_curves_bezier(const bke::CurvesGeometry &src_curves,
+ const IndexMask curve_selection,
+ const VArray<float> &radius,
+ const bool limit_radius)
+{
+ return fillet_curves(src_curves,
+ curve_selection,
+ radius,
+ VArray<int>::ForSingle(1, src_curves.points_num()),
+ limit_radius,
+ true);
+}
+
+} // namespace blender::geometry
diff --git a/source/blender/geometry/intern/subdivide_curves.cc b/source/blender/geometry/intern/subdivide_curves.cc
index b6476d19818..8a6f3cbd5e3 100644
--- a/source/blender/geometry/intern/subdivide_curves.cc
+++ b/source/blender/geometry/intern/subdivide_curves.cc
@@ -56,40 +56,6 @@ static void calculate_result_offsets(const bke::CurvesGeometry &src_curves,
bke::curves::accumulate_counts_to_offsets(dst_curve_offsets);
}
-struct AttributeTransferData {
- /* Expect that if an attribute exists, it is stored as a contiguous array internally anyway. */
- GVArraySpan src;
- bke::GSpanAttributeWriter dst;
-};
-
-static Vector<AttributeTransferData> retrieve_point_attributes(
- const bke::AttributeAccessor &src_attributes,
- bke::MutableAttributeAccessor &dst_attributes,
- const Set<std::string> &skip = {})
-{
- Vector<AttributeTransferData> attributes;
- src_attributes.for_all(
- [&](const bke::AttributeIDRef &id, const bke::AttributeMetaData meta_data) {
- if (meta_data.domain != ATTR_DOMAIN_POINT) {
- /* Curve domain attributes are all copied directly to the result in one step. */
- return true;
- }
- if (id.is_named() && skip.contains(id.name())) {
- return true;
- }
-
- GVArray src = src_attributes.lookup(id, ATTR_DOMAIN_POINT);
- BLI_assert(src);
- bke::GSpanAttributeWriter dst = dst_attributes.lookup_or_add_for_write_only_span(
- id, ATTR_DOMAIN_POINT, meta_data.data_type);
- BLI_assert(dst);
- attributes.append({std::move(src), std::move(dst)});
-
- return true;
- });
- return attributes;
-}
-
template<typename T>
static inline void linear_interpolation(const T &a, const T &b, MutableSpan<T> dst)
{
@@ -365,7 +331,8 @@ bke::CurvesGeometry subdivide_curves(const bke::CurvesGeometry &src_curves,
bke::MutableAttributeAccessor dst_attributes = dst_curves.attributes_for_write();
auto subdivide_catmull_rom = [&](IndexMask selection) {
- for (auto &attribute : retrieve_point_attributes(src_attributes, dst_attributes)) {
+ for (auto &attribute : bke::retrieve_attributes_for_transfer(
+ src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT)) {
subdivide_attribute_catmull_rom(src_curves,
dst_curves,
selection,
@@ -378,7 +345,8 @@ bke::CurvesGeometry subdivide_curves(const bke::CurvesGeometry &src_curves,
};
auto subdivide_poly = [&](IndexMask selection) {
- for (auto &attribute : retrieve_point_attributes(src_attributes, dst_attributes)) {
+ for (auto &attribute : bke::retrieve_attributes_for_transfer(
+ src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT)) {
subdivide_attribute_linear(
src_curves, dst_curves, selection, point_offsets, attribute.src, attribute.dst.span);
attribute.dst.finish();
@@ -419,13 +387,14 @@ bke::CurvesGeometry subdivide_curves(const bke::CurvesGeometry &src_curves,
}
});
- for (auto &attribute : retrieve_point_attributes(src_attributes,
- dst_attributes,
- {"position",
- "handle_type_left",
- "handle_type_right",
- "handle_right",
- "handle_left"})) {
+ for (auto &attribute : bke::retrieve_attributes_for_transfer(src_attributes,
+ dst_attributes,
+ ATTR_DOMAIN_MASK_POINT,
+ {"position",
+ "handle_type_left",
+ "handle_type_right",
+ "handle_right",
+ "handle_left"})) {
subdivide_attribute_linear(
src_curves, dst_curves, selection, point_offsets, attribute.src, attribute.dst.span);
attribute.dst.finish();
@@ -445,7 +414,8 @@ bke::CurvesGeometry subdivide_curves(const bke::CurvesGeometry &src_curves,
subdivide_nurbs);
if (!unselected_ranges.is_empty()) {
- for (auto &attribute : retrieve_point_attributes(src_attributes, dst_attributes)) {
+ for (auto &attribute : bke::retrieve_attributes_for_transfer(
+ src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT)) {
bke::curves::copy_point_data(
src_curves, dst_curves, unselected_ranges, attribute.src, attribute.dst.span);
attribute.dst.finish();
diff --git a/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc b/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc
index dd8471d2dac..ab1f8269c39 100644
--- a/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc
+++ b/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc
@@ -1,17 +1,12 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
-#include "BLI_task.hh"
-
#include "UI_interface.h"
#include "UI_resources.h"
-#include "DNA_node_types.h"
+#include "GEO_fillet_curves.hh"
#include "node_geometry_util.hh"
-#include "BKE_curves.hh"
-#include "BKE_spline.hh"
-
namespace blender::nodes::node_geo_curve_fillet_cc {
NODE_STORAGE_FUNCS(NodeGeometryCurveFillet)
@@ -45,574 +40,18 @@ static void node_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr)
static void node_init(bNodeTree *UNUSED(tree), bNode *node)
{
NodeGeometryCurveFillet *data = MEM_cnew<NodeGeometryCurveFillet>(__func__);
-
data->mode = GEO_NODE_CURVE_FILLET_BEZIER;
node->storage = data;
}
-struct FilletParam {
- GeometryNodeCurveFilletMode mode;
-
- /* Number of points to be added. */
- VArray<int> counts;
-
- /* Radii for fillet arc at all vertices. */
- VArray<float> radii;
-
- /* Whether or not fillets are allowed to overlap. */
- bool limit_radius;
-};
-
-/* A data structure used to store fillet data about all vertices to be filleted. */
-struct FilletData {
- Span<float3> positions;
- Array<float3> directions, axes;
- Array<float> radii, angles;
- Array<int> counts;
-};
-
static void node_update(bNodeTree *ntree, bNode *node)
{
const NodeGeometryCurveFillet &storage = node_storage(*node);
const GeometryNodeCurveFilletMode mode = (GeometryNodeCurveFilletMode)storage.mode;
-
bNodeSocket *poly_socket = ((bNodeSocket *)node->inputs.first)->next;
-
nodeSetSocketAvailability(ntree, poly_socket, mode == GEO_NODE_CURVE_FILLET_POLY);
}
-/* Function to get the center of a fillet. */
-static float3 get_center(const float3 vec_pos2prev,
- const float3 pos,
- const float3 axis,
- const float angle)
-{
- float3 vec_pos2center;
- rotate_normalized_v3_v3v3fl(vec_pos2center, vec_pos2prev, axis, M_PI_2 - angle / 2.0f);
- vec_pos2center *= 1.0f / sinf(angle / 2.0f);
-
- return vec_pos2center + pos;
-}
-
-/* Function to get the center of the fillet using fillet data */
-static float3 get_center(const float3 vec_pos2prev, const FilletData &fd, const int index)
-{
- const float angle = fd.angles[index];
- const float3 axis = fd.axes[index];
- const float3 pos = fd.positions[index];
-
- return get_center(vec_pos2prev, pos, axis, angle);
-}
-
-/* Calculate the direction vectors from each vertex to their previous vertex. */
-static Array<float3> calculate_directions(const Span<float3> positions)
-{
- const int num = positions.size();
- Array<float3> directions(num);
-
- for (const int i : IndexRange(num - 1)) {
- directions[i] = math::normalize(positions[i + 1] - positions[i]);
- }
- directions[num - 1] = math::normalize(positions[0] - positions[num - 1]);
-
- return directions;
-}
-
-/* Calculate the axes around which the fillet is built. */
-static Array<float3> calculate_axes(const Span<float3> directions)
-{
- const int num = directions.size();
- Array<float3> axes(num);
-
- axes[0] = math::normalize(math::cross(-directions[num - 1], directions[0]));
- for (const int i : IndexRange(1, num - 1)) {
- axes[i] = math::normalize(math::cross(-directions[i - 1], directions[i]));
- }
-
- return axes;
-}
-
-/* Calculate the angle of the arc formed by the fillet. */
-static Array<float> calculate_angles(const Span<float3> directions)
-{
- const int num = directions.size();
- Array<float> angles(num);
-
- angles[0] = M_PI - angle_v3v3(-directions[num - 1], directions[0]);
- for (const int i : IndexRange(1, num - 1)) {
- angles[i] = M_PI - angle_v3v3(-directions[i - 1], directions[i]);
- }
-
- return angles;
-}
-
-/* Calculate the segment count in each filleted arc. */
-static Array<int> calculate_counts(const FilletParam &fillet_param,
- const int num,
- const int spline_offset,
- const bool cyclic)
-{
- Array<int> counts(num, 1);
- if (fillet_param.mode == GEO_NODE_CURVE_FILLET_POLY) {
- for (const int i : IndexRange(num)) {
- counts[i] = fillet_param.counts[spline_offset + i];
- }
- }
- if (!cyclic) {
- counts[0] = counts[num - 1] = 0;
- }
-
- return counts;
-}
-
-/* Calculate the radii for the vertices to be filleted. */
-static Array<float> calculate_radii(const FilletParam &fillet_param,
- const int num,
- const int spline_offset)
-{
- Array<float> radii(num, 0.0f);
- if (fillet_param.limit_radius) {
- for (const int i : IndexRange(num)) {
- radii[i] = std::max(fillet_param.radii[spline_offset + i], 0.0f);
- }
- }
- else {
- for (const int i : IndexRange(num)) {
- radii[i] = fillet_param.radii[spline_offset + i];
- }
- }
-
- return radii;
-}
-
-/* Calculate the number of vertices added per vertex on the source spline. */
-static int calculate_point_counts(MutableSpan<int> point_counts,
- const Span<float> radii,
- const Span<int> counts)
-{
- int added_count = 0;
- for (const int i : IndexRange(point_counts.size())) {
- /* Calculate number of points to be added for the vertex. */
- if (radii[i] != 0.0f) {
- added_count += counts[i];
- point_counts[i] = counts[i] + 1;
- }
- }
-
- return added_count;
-}
-
-static FilletData calculate_fillet_data(const Spline &spline,
- const FilletParam &fillet_param,
- int &added_count,
- MutableSpan<int> point_counts,
- const int spline_offset)
-{
- const int num = spline.size();
-
- FilletData fd;
- fd.directions = calculate_directions(spline.positions());
- fd.positions = spline.positions();
- fd.axes = calculate_axes(fd.directions);
- fd.angles = calculate_angles(fd.directions);
- fd.counts = calculate_counts(fillet_param, num, spline_offset, spline.is_cyclic());
- fd.radii = calculate_radii(fillet_param, num, spline_offset);
-
- added_count = calculate_point_counts(point_counts, fd.radii, fd.counts);
-
- return fd;
-}
-
-/* Limit the radius based on angle and radii to prevent overlapping. */
-static void limit_radii(FilletData &fd, const bool cyclic)
-{
- MutableSpan<float> radii(fd.radii);
- Span<float> angles(fd.angles);
- Span<float3> positions(fd.positions);
-
- const int num = radii.size();
- const int fillet_count = cyclic ? num : num - 2;
- const int start = cyclic ? 0 : 1;
- Array<float> max_radii(num, FLT_MAX);
-
- if (cyclic) {
- /* Calculate lengths between adjacent control points. */
- const float len_prev = math::distance(positions[0], positions[num - 1]);
- const float len_next = math::distance(positions[0], positions[1]);
-
- /* Calculate tangent lengths of fillets in control points. */
- const float tan_len = radii[0] * tan(angles[0] / 2.0f);
- const float tan_len_prev = radii[num - 1] * tan(angles[num - 1] / 2.0f);
- const float tan_len_next = radii[1] * tan(angles[1] / 2.0f);
-
- float factor_prev = 1.0f, factor_next = 1.0f;
- if (tan_len + tan_len_prev > len_prev) {
- factor_prev = len_prev / (tan_len + tan_len_prev);
- }
- if (tan_len + tan_len_next > len_next) {
- factor_next = len_next / (tan_len + tan_len_next);
- }
-
- /* Scale max radii by calculated factors. */
- max_radii[0] = radii[0] * std::min(factor_next, factor_prev);
- max_radii[1] = radii[1] * factor_next;
- max_radii[num - 1] = radii[num - 1] * factor_prev;
- }
-
- /* Initialize max_radii to largest possible radii. */
- float prev_dist = math::distance(positions[1], positions[0]);
- for (const int i : IndexRange(1, num - 2)) {
- const float temp_dist = math::distance(positions[i], positions[i + 1]);
- max_radii[i] = std::min(prev_dist, temp_dist) / tan(angles[i] / 2.0f);
- prev_dist = temp_dist;
- }
-
- /* Max radii calculations for each index. */
- for (const int i : IndexRange(start, fillet_count - 1)) {
- const float len_next = math::distance(positions[i], positions[i + 1]);
- const float tan_len = radii[i] * tan(angles[i] / 2.0f);
- const float tan_len_next = radii[i + 1] * tan(angles[i + 1] / 2.0f);
-
- /* Scale down radii if too large for segment. */
- float factor = 1.0f;
- if (tan_len + tan_len_next > len_next) {
- factor = len_next / (tan_len + tan_len_next);
- }
- max_radii[i] = std::min(max_radii[i], radii[i] * factor);
- max_radii[i + 1] = std::min(max_radii[i + 1], radii[i + 1] * factor);
- }
-
- /* Assign the max_radii to the fillet data's radii. */
- for (const int i : IndexRange(num)) {
- radii[i] = std::min(radii[i], max_radii[i]);
- }
-}
-
-/*
- * Create a mapping from each vertex in the destination spline to that of the source spline.
- * Used for copying the data from the source spline.
- */
-static Array<int> create_dst_to_src_map(const Span<int> point_counts, const int total_points)
-{
- Array<int> map(total_points);
- MutableSpan<int> map_span{map};
- int index = 0;
-
- for (const int i : point_counts.index_range()) {
- map_span.slice(index, point_counts[i]).fill(i);
- index += point_counts[i];
- }
-
- BLI_assert(index == total_points);
-
- return map;
-}
-
-template<typename T>
-static void copy_attribute_by_mapping(const Span<T> src,
- MutableSpan<T> dst,
- const Span<int> mapping)
-{
- for (const int i : dst.index_range()) {
- dst[i] = src[mapping[i]];
- }
-}
-
-/* Copy radii and tilts from source spline to destination. Positions are handled later in update
- * positions methods. */
-static void copy_common_attributes_by_mapping(const Spline &src,
- Spline &dst,
- const Span<int> mapping)
-{
- copy_attribute_by_mapping(src.radii(), dst.radii(), mapping);
- copy_attribute_by_mapping(src.tilts(), dst.tilts(), mapping);
-
- src.attributes.foreach_attribute(
- [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
- std::optional<GSpan> src_attribute = src.attributes.get_for_read(attribute_id);
- if (dst.attributes.create(attribute_id, meta_data.data_type)) {
- std::optional<GMutableSpan> dst_attribute = dst.attributes.get_for_write(attribute_id);
- if (dst_attribute) {
- attribute_math::convert_to_static_type(dst_attribute->type(), [&](auto dummy) {
- using T = decltype(dummy);
- copy_attribute_by_mapping(
- src_attribute->typed<T>(), dst_attribute->typed<T>(), mapping);
- });
- return true;
- }
- }
- BLI_assert_unreachable();
- return false;
- },
- ATTR_DOMAIN_POINT);
-}
-
-/* Update the vertex positions and handle positions of a Bezier spline based on fillet data. */
-static void update_bezier_positions(const FilletData &fd,
- BezierSpline &dst_spline,
- const BezierSpline &src_spline,
- const Span<int> point_counts)
-{
- Span<float> radii(fd.radii);
- Span<float> angles(fd.angles);
- Span<float3> axes(fd.axes);
- Span<float3> positions(fd.positions);
- Span<float3> directions(fd.directions);
-
- const int num = radii.size();
-
- int i_dst = 0;
- for (const int i_src : IndexRange(num)) {
- const int count = point_counts[i_src];
-
- /* Skip if the point count for the vertex is 1. */
- if (count == 1) {
- dst_spline.positions()[i_dst] = src_spline.positions()[i_src];
- dst_spline.handle_types_left()[i_dst] = src_spline.handle_types_left()[i_src];
- dst_spline.handle_types_right()[i_dst] = src_spline.handle_types_right()[i_src];
- dst_spline.handle_positions_left()[i_dst] = src_spline.handle_positions_left()[i_src];
- dst_spline.handle_positions_right()[i_dst] = src_spline.handle_positions_right()[i_src];
- i_dst++;
- continue;
- }
-
- /* Calculate the angle to be formed between any 2 adjacent vertices within the fillet. */
- const float segment_angle = angles[i_src] / (count - 1);
- /* Calculate the handle length for each added vertex. Equation: L = 4R/3 * tan(A/4) */
- const float handle_length = 4.0f * radii[i_src] / 3.0f * tan(segment_angle / 4.0f);
- /* Calculate the distance by which each vertex should be displaced from their initial position.
- */
- const float displacement = radii[i_src] * tan(angles[i_src] / 2.0f);
-
- /* Position the end points of the arc and their handles. */
- const int end_i = i_dst + count - 1;
- const float3 prev_dir = i_src == 0 ? -directions[num - 1] : -directions[i_src - 1];
- const float3 next_dir = directions[i_src];
- dst_spline.positions()[i_dst] = positions[i_src] + displacement * prev_dir;
- dst_spline.positions()[end_i] = positions[i_src] + displacement * next_dir;
- dst_spline.handle_positions_right()[i_dst] = dst_spline.positions()[i_dst] -
- handle_length * prev_dir;
- dst_spline.handle_positions_left()[end_i] = dst_spline.positions()[end_i] -
- handle_length * next_dir;
- dst_spline.handle_types_right()[i_dst] = dst_spline.handle_types_left()[end_i] =
- BEZIER_HANDLE_ALIGN;
- dst_spline.handle_types_left()[i_dst] = dst_spline.handle_types_right()[end_i] =
- BEZIER_HANDLE_VECTOR;
- dst_spline.mark_cache_invalid();
-
- /* Calculate the center of the radius to be formed. */
- const float3 center = get_center(dst_spline.positions()[i_dst] - positions[i_src], fd, i_src);
- /* Calculate the vector of the radius formed by the first vertex. */
- float3 radius_vec = dst_spline.positions()[i_dst] - center;
- float radius;
- radius_vec = math::normalize_and_get_length(radius_vec, radius);
-
- dst_spline.handle_types_right().slice(1, count - 2).fill(BEZIER_HANDLE_ALIGN);
- dst_spline.handle_types_left().slice(1, count - 2).fill(BEZIER_HANDLE_ALIGN);
-
- /* For each of the vertices in between the end points. */
- for (const int j : IndexRange(1, count - 2)) {
- int index = i_dst + j;
- /* Rotate the radius by the segment angle and determine its tangent (used for getting handle
- * directions). */
- float3 new_radius_vec, tangent_vec;
- rotate_normalized_v3_v3v3fl(new_radius_vec, radius_vec, -axes[i_src], segment_angle);
- rotate_normalized_v3_v3v3fl(tangent_vec, new_radius_vec, axes[i_src], M_PI_2);
- radius_vec = new_radius_vec;
- tangent_vec *= handle_length;
-
- /* Adjust the positions of the respective vertex and its handles. */
- dst_spline.positions()[index] = center + new_radius_vec * radius;
- dst_spline.handle_positions_left()[index] = dst_spline.positions()[index] + tangent_vec;
- dst_spline.handle_positions_right()[index] = dst_spline.positions()[index] - tangent_vec;
- }
-
- i_dst += count;
- }
-}
-
-/* Update the vertex positions of a Poly spline based on fillet data. */
-static void update_poly_positions(const FilletData &fd,
- Spline &dst_spline,
- const Spline &src_spline,
- const Span<int> point_counts)
-{
- Span<float> radii(fd.radii);
- Span<float> angles(fd.angles);
- Span<float3> axes(fd.axes);
- Span<float3> positions(fd.positions);
- Span<float3> directions(fd.directions);
-
- const int num = radii.size();
-
- int i_dst = 0;
- for (const int i_src : IndexRange(num)) {
- const int count = point_counts[i_src];
-
- /* Skip if the point count for the vertex is 1. */
- if (count == 1) {
- dst_spline.positions()[i_dst] = src_spline.positions()[i_src];
- i_dst++;
- continue;
- }
-
- const float segment_angle = angles[i_src] / (count - 1);
- const float displacement = radii[i_src] * tan(angles[i_src] / 2.0f);
-
- /* Position the end points of the arc. */
- const int end_i = i_dst + count - 1;
- const float3 prev_dir = i_src == 0 ? -directions[num - 1] : -directions[i_src - 1];
- const float3 next_dir = directions[i_src];
- dst_spline.positions()[i_dst] = positions[i_src] + displacement * prev_dir;
- dst_spline.positions()[end_i] = positions[i_src] + displacement * next_dir;
-
- /* Calculate the center of the radius to be formed. */
- const float3 center = get_center(dst_spline.positions()[i_dst] - positions[i_src], fd, i_src);
- /* Calculate the vector of the radius formed by the first vertex. */
- float3 radius_vec = dst_spline.positions()[i_dst] - center;
-
- for (const int j : IndexRange(1, count - 2)) {
- /* Rotate the radius by the segment angle */
- float3 new_radius_vec;
- rotate_normalized_v3_v3v3fl(new_radius_vec, radius_vec, -axes[i_src], segment_angle);
- radius_vec = new_radius_vec;
-
- dst_spline.positions()[i_dst + j] = center + new_radius_vec;
- }
-
- i_dst += count;
- }
-}
-
-static SplinePtr fillet_spline(const Spline &spline,
- const FilletParam &fillet_param,
- const int spline_offset)
-{
- const int num = spline.size();
- const bool cyclic = spline.is_cyclic();
-
- if (num < 3) {
- return spline.copy();
- }
-
- /* Initialize the point_counts with 1s (at least one vertex on dst for each vertex on src). */
- Array<int> point_counts(num, 1);
-
- int added_count = 0;
- /* Update point_counts array and added_count. */
- FilletData fd = calculate_fillet_data(
- spline, fillet_param, added_count, point_counts, spline_offset);
- if (fillet_param.limit_radius) {
- limit_radii(fd, cyclic);
- }
-
- const int total_points = added_count + num;
- const Array<int> dst_to_src = create_dst_to_src_map(point_counts, total_points);
- SplinePtr dst_spline_ptr = spline.copy_only_settings();
- (*dst_spline_ptr).resize(total_points);
- copy_common_attributes_by_mapping(spline, *dst_spline_ptr, dst_to_src);
-
- switch (spline.type()) {
- case CURVE_TYPE_BEZIER: {
- const BezierSpline &src_spline = static_cast<const BezierSpline &>(spline);
- BezierSpline &dst_spline = static_cast<BezierSpline &>(*dst_spline_ptr);
- if (fillet_param.mode == GEO_NODE_CURVE_FILLET_POLY) {
- dst_spline.handle_types_left().fill(BEZIER_HANDLE_VECTOR);
- dst_spline.handle_types_right().fill(BEZIER_HANDLE_VECTOR);
- update_poly_positions(fd, dst_spline, src_spline, point_counts);
- }
- else {
- update_bezier_positions(fd, dst_spline, src_spline, point_counts);
- }
- break;
- }
- case CURVE_TYPE_POLY: {
- update_poly_positions(fd, *dst_spline_ptr, spline, point_counts);
- break;
- }
- case CURVE_TYPE_NURBS: {
- const NURBSpline &src_spline = static_cast<const NURBSpline &>(spline);
- NURBSpline &dst_spline = static_cast<NURBSpline &>(*dst_spline_ptr);
- copy_attribute_by_mapping(src_spline.weights(), dst_spline.weights(), dst_to_src);
- update_poly_positions(fd, dst_spline, src_spline, point_counts);
- break;
- }
- case CURVE_TYPE_CATMULL_ROM: {
- BLI_assert_unreachable();
- break;
- }
- }
-
- return dst_spline_ptr;
-}
-
-static std::unique_ptr<CurveEval> fillet_curve(const CurveEval &input_curve,
- const FilletParam &fillet_param)
-{
- Span<SplinePtr> input_splines = input_curve.splines();
-
- std::unique_ptr<CurveEval> output_curve = std::make_unique<CurveEval>();
- const int splines_num = input_splines.size();
- output_curve->resize(splines_num);
- MutableSpan<SplinePtr> output_splines = output_curve->splines();
- Array<int> spline_offsets = input_curve.control_point_offsets();
-
- threading::parallel_for(input_splines.index_range(), 128, [&](IndexRange range) {
- for (const int i : range) {
- output_splines[i] = fillet_spline(*input_splines[i], fillet_param, spline_offsets[i]);
- }
- });
- output_curve->attributes = input_curve.attributes;
-
- return output_curve;
-}
-
-static void calculate_curve_fillet(GeometrySet &geometry_set,
- const GeometryNodeCurveFilletMode mode,
- const Field<float> &radius_field,
- const std::optional<Field<int>> &count_field,
- const bool limit_radius)
-{
- if (!geometry_set.has_curves()) {
- return;
- }
-
- FilletParam fillet_param;
- fillet_param.mode = mode;
-
- CurveComponent &component = geometry_set.get_component_for_write<CurveComponent>();
- GeometryComponentFieldContext field_context{component, ATTR_DOMAIN_POINT};
- const int domain_size = component.attribute_domain_size(ATTR_DOMAIN_POINT);
- fn::FieldEvaluator field_evaluator{field_context, domain_size};
-
- field_evaluator.add(radius_field);
-
- if (mode == GEO_NODE_CURVE_FILLET_POLY) {
- field_evaluator.add(*count_field);
- }
-
- field_evaluator.evaluate();
-
- fillet_param.radii = field_evaluator.get_evaluated<float>(0);
- if (fillet_param.radii.is_single() && fillet_param.radii.get_internal_single() < 0.0f) {
- return;
- }
-
- if (mode == GEO_NODE_CURVE_FILLET_POLY) {
- fillet_param.counts = field_evaluator.get_evaluated<int>(1);
- }
-
- fillet_param.limit_radius = limit_radius;
-
- const Curves &src_curves_id = *geometry_set.get_curves_for_read();
- const std::unique_ptr<CurveEval> input_curve = curves_to_curve_eval(*component.get_for_read());
- std::unique_ptr<CurveEval> output_curve = fillet_curve(*input_curve, fillet_param);
-
- Curves *dst_curves_id = curve_eval_to_curves(*output_curve);
- bke::curves_copy_parameters(src_curves_id, *dst_curves_id);
- geometry_set.replace_curves(dst_curves_id);
-}
-
static void node_geo_exec(GeoNodeExecParams params)
{
GeometrySet geometry_set = params.extract_input<GeometrySet>("Curve");
@@ -629,7 +68,42 @@ static void node_geo_exec(GeoNodeExecParams params)
}
geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
- calculate_curve_fillet(geometry_set, mode, radius_field, count_field, limit_radius);
+ if (!geometry_set.has_curves()) {
+ return;
+ }
+
+ const CurveComponent &component = *geometry_set.get_component_for_read<CurveComponent>();
+ const Curves &curves_id = *component.get_for_read();
+ const bke::CurvesGeometry &curves = bke::CurvesGeometry::wrap(curves_id.geometry);
+ GeometryComponentFieldContext context{component, ATTR_DOMAIN_POINT};
+ fn::FieldEvaluator evaluator{context, curves.points_num()};
+ evaluator.add(radius_field);
+
+ switch (mode) {
+ case GEO_NODE_CURVE_FILLET_BEZIER: {
+ evaluator.evaluate();
+ bke::CurvesGeometry dst_curves = geometry::fillet_curves_bezier(
+ curves, curves.curves_range(), evaluator.get_evaluated<float>(0), limit_radius);
+ Curves *dst_curves_id = bke::curves_new_nomain(std::move(dst_curves));
+ bke::curves_copy_parameters(curves_id, *dst_curves_id);
+ geometry_set.replace_curves(dst_curves_id);
+ break;
+ }
+ case GEO_NODE_CURVE_FILLET_POLY: {
+ evaluator.add(*count_field);
+ evaluator.evaluate();
+ bke::CurvesGeometry dst_curves = geometry::fillet_curves_poly(
+ curves,
+ curves.curves_range(),
+ evaluator.get_evaluated<float>(0),
+ evaluator.get_evaluated<int>(1),
+ limit_radius);
+ Curves *dst_curves_id = bke::curves_new_nomain(std::move(dst_curves));
+ bke::curves_copy_parameters(curves_id, *dst_curves_id);
+ geometry_set.replace_curves(dst_curves_id);
+ break;
+ }
+ }
});
params.set_output("Curve", std::move(geometry_set));