Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--source/blender/draw/CMakeLists.txt2
-rw-r--r--source/blender/draw/engines/eevee/eevee_lightprobes.c32
-rw-r--r--source/blender/draw/engines/eevee/eevee_materials.c7
-rw-r--r--source/blender/draw/engines/eevee/eevee_private.h2
-rw-r--r--source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl27
-rw-r--r--source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl70
-rw-r--r--source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl74
-rw-r--r--source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl6
-rw-r--r--source/blender/draw/engines/eevee/shaders/lamps_lib.glsl193
-rw-r--r--source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl11
-rw-r--r--source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl245
-rw-r--r--source/blender/draw/engines/eevee/shaders/lightprobe_planar_display_frag.glsl1
-rw-r--r--source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl523
13 files changed, 618 insertions, 575 deletions
diff --git a/source/blender/draw/CMakeLists.txt b/source/blender/draw/CMakeLists.txt
index 31deb59b7fc..765e6a2fda2 100644
--- a/source/blender/draw/CMakeLists.txt
+++ b/source/blender/draw/CMakeLists.txt
@@ -120,6 +120,8 @@ data_to_c_simple(engines/eevee/shaders/default_world_frag.glsl SRC)
data_to_c_simple(engines/eevee/shaders/background_vert.glsl SRC)
data_to_c_simple(engines/eevee/shaders/ambient_occlusion_lib.glsl SRC)
data_to_c_simple(engines/eevee/shaders/effect_minmaxz_frag.glsl SRC)
+data_to_c_simple(engines/eevee/shaders/lamps_lib.glsl SRC)
+data_to_c_simple(engines/eevee/shaders/lightprobe_lib.glsl SRC)
data_to_c_simple(engines/eevee/shaders/lightprobe_filter_glossy_frag.glsl SRC)
data_to_c_simple(engines/eevee/shaders/lightprobe_filter_diffuse_frag.glsl SRC)
data_to_c_simple(engines/eevee/shaders/lightprobe_geom.glsl SRC)
diff --git a/source/blender/draw/engines/eevee/eevee_lightprobes.c b/source/blender/draw/engines/eevee/eevee_lightprobes.c
index b85116adc81..d7b7a6b6ffd 100644
--- a/source/blender/draw/engines/eevee/eevee_lightprobes.c
+++ b/source/blender/draw/engines/eevee/eevee_lightprobes.c
@@ -87,6 +87,7 @@ extern char datatoc_lightprobe_cube_display_vert_glsl[];
extern char datatoc_lightprobe_grid_display_frag_glsl[];
extern char datatoc_lightprobe_grid_display_vert_glsl[];
extern char datatoc_irradiance_lib_glsl[];
+extern char datatoc_lightprobe_lib_glsl[];
extern char datatoc_octahedron_lib_glsl[];
extern char datatoc_bsdf_common_lib_glsl[];
extern char datatoc_bsdf_sampling_lib_glsl[];
@@ -217,7 +218,9 @@ void EEVEE_lightprobes_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *UNUSED(ved
ds_frag = BLI_dynstr_new();
BLI_dynstr_append(ds_frag, datatoc_octahedron_lib_glsl);
+ BLI_dynstr_append(ds_frag, datatoc_bsdf_common_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_irradiance_lib_glsl);
+ BLI_dynstr_append(ds_frag, datatoc_lightprobe_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_lightprobe_grid_display_frag_glsl);
shader_str = BLI_dynstr_get_cstring(ds_frag);
BLI_dynstr_free(ds_frag);
@@ -237,6 +240,8 @@ void EEVEE_lightprobes_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *UNUSED(ved
ds_frag = BLI_dynstr_new();
BLI_dynstr_append(ds_frag, datatoc_octahedron_lib_glsl);
+ BLI_dynstr_append(ds_frag, datatoc_bsdf_common_lib_glsl);
+ BLI_dynstr_append(ds_frag, datatoc_lightprobe_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_lightprobe_cube_display_frag_glsl);
shader_str = BLI_dynstr_get_cstring(ds_frag);
BLI_dynstr_free(ds_frag);
@@ -247,7 +252,9 @@ void EEVEE_lightprobes_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *UNUSED(ved
MEM_freeN(shader_str);
ds_frag = BLI_dynstr_new();
+ BLI_dynstr_append(ds_frag, datatoc_octahedron_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_bsdf_common_lib_glsl);
+ BLI_dynstr_append(ds_frag, datatoc_lightprobe_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_lightprobe_planar_display_frag_glsl);
shader_str = BLI_dynstr_get_cstring(ds_frag);
BLI_dynstr_free(ds_frag);
@@ -377,7 +384,7 @@ void EEVEE_lightprobes_cache_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *veda
DRW_shgroup_uniform_float(grp, "invSampleCount", &sldata->probes->invsamples_ct, 1);
DRW_shgroup_uniform_float(grp, "roughnessSquared", &sldata->probes->roughness, 1);
DRW_shgroup_uniform_float(grp, "lodFactor", &sldata->probes->lodfactor, 1);
- DRW_shgroup_uniform_float(grp, "lodMax", &sldata->probes->lodmax, 1);
+ DRW_shgroup_uniform_float(grp, "lodMax", &sldata->probes->lod_rt_max, 1);
DRW_shgroup_uniform_float(grp, "texelSize", &sldata->probes->texel_size, 1);
DRW_shgroup_uniform_float(grp, "paddingSize", &sldata->probes->padding_size, 1);
DRW_shgroup_uniform_int(grp, "Layer", &sldata->probes->layer, 1);
@@ -398,7 +405,7 @@ void EEVEE_lightprobes_cache_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *veda
DRW_shgroup_uniform_float(grp, "sampleCount", &sldata->probes->samples_ct, 1);
DRW_shgroup_uniform_float(grp, "invSampleCount", &sldata->probes->invsamples_ct, 1);
DRW_shgroup_uniform_float(grp, "lodFactor", &sldata->probes->lodfactor, 1);
- DRW_shgroup_uniform_float(grp, "lodMax", &sldata->probes->lodmax, 1);
+ DRW_shgroup_uniform_float(grp, "lodMax", &sldata->probes->lod_rt_max, 1);
DRW_shgroup_uniform_texture(grp, "texHammersley", e_data.hammersley);
#endif
DRW_shgroup_uniform_texture(grp, "probeHdr", sldata->probe_rt);
@@ -416,7 +423,7 @@ void EEVEE_lightprobes_cache_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *veda
DRW_shgroup_attrib_float(grp, "probe_id", 1); /* XXX this works because we are still uploading 4bytes and using the right stride */
DRW_shgroup_attrib_float(grp, "probe_location", 3);
DRW_shgroup_attrib_float(grp, "sphere_size", 1);
- DRW_shgroup_uniform_float(grp, "lodMax", &sldata->probes->lodmax, 1);
+ DRW_shgroup_uniform_float(grp, "lodCubeMax", &sldata->probes->lod_cube_max, 1);
DRW_shgroup_uniform_buffer(grp, "probeCubes", &sldata->probe_pool);
}
@@ -870,7 +877,7 @@ static void glossy_filter_probe(EEVEE_SceneLayerData *sldata, EEVEE_PassList *ps
pinfo->invsamples_ct = 1.0f / pinfo->samples_ct;
pinfo->lodfactor = bias + 0.5f * log((float)(PROBE_RT_SIZE * PROBE_RT_SIZE) * pinfo->invsamples_ct) / log(2);
- pinfo->lodmax = floorf(log2f(PROBE_RT_SIZE)) - 2.0f;
+ pinfo->lod_rt_max = floorf(log2f(PROBE_RT_SIZE)) - 2.0f;
DRW_framebuffer_texture_attach(sldata->probe_filter_fb, sldata->probe_pool, 0, i);
DRW_framebuffer_viewport_size(sldata->probe_filter_fb, 0, 0, mipsize, mipsize);
@@ -881,7 +888,7 @@ static void glossy_filter_probe(EEVEE_SceneLayerData *sldata, EEVEE_PassList *ps
CLAMP_MIN(mipsize, 1);
}
/* For shading, save max level of the octahedron map */
- pinfo->lodmax = (float)(maxlevel - min_lod_level) - 1.0f;
+ pinfo->lod_cube_max = (float)(maxlevel - min_lod_level) - 1.0f;
/* reattach to have a valid framebuffer. */
DRW_framebuffer_texture_attach(sldata->probe_filter_fb, sldata->probe_pool, 0, 0);
@@ -892,9 +899,6 @@ static void diffuse_filter_probe(EEVEE_SceneLayerData *sldata, EEVEE_PassList *p
{
EEVEE_LightProbesInfo *pinfo = sldata->probes;
- /* TODO do things properly */
- float lodmax = pinfo->lodmax;
-
/* 4 - Compute spherical harmonics */
/* Tweaking parameters to balance perf. vs precision */
DRW_framebuffer_bind(sldata->probe_filter_fb);
@@ -924,10 +928,10 @@ static void diffuse_filter_probe(EEVEE_SceneLayerData *sldata, EEVEE_PassList *p
const float bias = 0.0f;
pinfo->invsamples_ct = 1.0f / pinfo->samples_ct;
pinfo->lodfactor = bias + 0.5f * log((float)(PROBE_RT_SIZE * PROBE_RT_SIZE) * pinfo->invsamples_ct) / log(2);
- pinfo->lodmax = floorf(log2f(PROBE_RT_SIZE)) - 2.0f;
+ pinfo->lod_rt_max = floorf(log2f(PROBE_RT_SIZE)) - 2.0f;
#else
pinfo->shres = 32; /* Less texture fetches & reduce branches */
- pinfo->lodmax = 2.0f; /* Improve cache reuse */
+ pinfo->lod_rt_max = 2.0f; /* Improve cache reuse */
#endif
DRW_framebuffer_viewport_size(sldata->probe_filter_fb, x, y, size[0], size[1]);
@@ -936,9 +940,6 @@ static void diffuse_filter_probe(EEVEE_SceneLayerData *sldata, EEVEE_PassList *p
/* reattach to have a valid framebuffer. */
DRW_framebuffer_texture_detach(sldata->irradiance_rt);
DRW_framebuffer_texture_attach(sldata->probe_filter_fb, sldata->probe_pool, 0, 0);
-
- /* restore */
- pinfo->lodmax = lodmax;
}
/* Render the scene to the probe_rt texture. */
@@ -1294,7 +1295,10 @@ update_planar:
/* If there is at least one planar probe */
if (pinfo->num_planar > 0) {
- DRW_framebuffer_recursive_downsample(vedata->fbl->minmaxz_fb, txl->planar_pool, 5, &downsample_planar, vedata);
+ const int max_lod = 5;
+ DRW_framebuffer_recursive_downsample(vedata->fbl->minmaxz_fb, txl->planar_pool, max_lod, &downsample_planar, vedata);
+ /* For shading, save max level of the planar map */
+ pinfo->lod_planar_max = (float)(max_lod);
}
}
diff --git a/source/blender/draw/engines/eevee/eevee_materials.c b/source/blender/draw/engines/eevee/eevee_materials.c
index 5393c8d305e..3b25277c8ae 100644
--- a/source/blender/draw/engines/eevee/eevee_materials.c
+++ b/source/blender/draw/engines/eevee/eevee_materials.c
@@ -77,6 +77,8 @@ static struct {
float viewvecs[2][4];
} e_data = {NULL}; /* Engine data */
+extern char datatoc_lamps_lib_glsl[];
+extern char datatoc_lightprobe_lib_glsl[];
extern char datatoc_ambient_occlusion_lib_glsl[];
extern char datatoc_prepass_frag_glsl[];
extern char datatoc_prepass_vert_glsl[];
@@ -211,7 +213,8 @@ static void add_standard_uniforms(DRWShadingGroup *shgrp, EEVEE_SceneLayerData *
DRW_shgroup_uniform_int(shgrp, "grid_count", &sldata->probes->num_render_grid, 1);
DRW_shgroup_uniform_int(shgrp, "planar_count", &sldata->probes->num_planar, 1);
DRW_shgroup_uniform_bool(shgrp, "specToggle", &sldata->probes->specular_toggle, 1);
- DRW_shgroup_uniform_float(shgrp, "lodMax", &sldata->probes->lodmax, 1);
+ DRW_shgroup_uniform_float(shgrp, "lodCubeMax", &sldata->probes->lod_cube_max, 1);
+ DRW_shgroup_uniform_float(shgrp, "lodPlanarMax", &sldata->probes->lod_planar_max, 1);
DRW_shgroup_uniform_texture(shgrp, "utilTex", e_data.util_tex);
DRW_shgroup_uniform_buffer(shgrp, "probeCubes", &sldata->probe_pool);
DRW_shgroup_uniform_buffer(shgrp, "probePlanars", &vedata->txl->planar_pool);
@@ -252,8 +255,10 @@ void EEVEE_materials_init(void)
BLI_dynstr_append(ds_frag, datatoc_ambient_occlusion_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_octahedron_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_irradiance_lib_glsl);
+ BLI_dynstr_append(ds_frag, datatoc_lightprobe_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_ltc_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_bsdf_direct_lib_glsl);
+ BLI_dynstr_append(ds_frag, datatoc_lamps_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_lit_surface_frag_glsl);
e_data.frag_shader_lib = BLI_dynstr_get_cstring(ds_frag);
BLI_dynstr_free(ds_frag);
diff --git a/source/blender/draw/engines/eevee/eevee_private.h b/source/blender/draw/engines/eevee/eevee_private.h
index 14b0d270dc9..0c4de70be1b 100644
--- a/source/blender/draw/engines/eevee/eevee_private.h
+++ b/source/blender/draw/engines/eevee/eevee_private.h
@@ -250,7 +250,7 @@ typedef struct EEVEE_LightProbesInfo {
float invsamples_ct;
float roughness;
float lodfactor;
- float lodmax;
+ float lod_rt_max, lod_cube_max, lod_planar_max;
int shres;
int shnbr;
bool specular_toggle;
diff --git a/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl b/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
index 5a7e893deb6..5fcc24d1a73 100644
--- a/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/ambient_occlusion_lib.glsl
@@ -213,4 +213,29 @@ float gtao_multibounce(float visibility, vec3 albedo)
float x = visibility;
return max(x, ((x * a + b) * x + c) * x);
-} \ No newline at end of file
+}
+
+/* Use the right occlusion */
+float occlusion_compute(vec3 N, vec3 vpos, float user_occlusion, vec2 randuv, out vec3 bent_normal)
+{
+#ifdef USE_AO /* Screen Space Occlusion */
+
+ float computed_occlusion;
+ vec3 vnor = mat3(ViewMatrix) * N;
+
+#ifdef USE_BENT_NORMAL
+ gtao(vnor, vpos, randuv, computed_occlusion, bent_normal);
+ bent_normal = mat3(ViewMatrixInverse) * bent_normal;
+#else
+ gtao(vnor, vpos, randuv, computed_occlusion);
+ bent_normal = N;
+#endif
+ return min(computed_occlusion, user_occlusion);
+
+#else /* No added Occlusion. */
+
+ bent_normal = N;
+ return user_occlusion;
+
+#endif
+}
diff --git a/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl b/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl
index 3327c5c4427..bd3fedf76ed 100644
--- a/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl
@@ -9,61 +9,14 @@
#define LUT_SIZE 64
uniform mat4 ProjectionMatrix;
+uniform mat4 ViewMatrixInverse;
+uniform mat4 ViewMatrix;
uniform vec4 viewvecs[2];
-/* ------- Structures -------- */
-
-struct ProbeData {
- vec4 position_type;
- vec4 attenuation_fac_type;
- mat4 influencemat;
- mat4 parallaxmat;
-};
+#define cameraForward normalize(ViewMatrixInverse[2].xyz)
+#define cameraPos ViewMatrixInverse[3].xyz
-#define PROBE_PARALLAX_BOX 1.0
-#define PROBE_ATTENUATION_BOX 1.0
-
-#define p_position position_type.xyz
-#define p_parallax_type position_type.w
-#define p_atten_fac attenuation_fac_type.x
-#define p_atten_type attenuation_fac_type.y
-
-struct PlanarData {
- vec4 plane_equation;
- vec4 clip_vec_x_fade_scale;
- vec4 clip_vec_y_fade_bias;
- vec4 clip_edges;
- vec4 facing_scale_bias;
- mat4 reflectionmat; /* transform world space into reflection texture space */
-};
-
-#define pl_plane_eq plane_equation
-#define pl_normal plane_equation.xyz
-#define pl_facing_scale facing_scale_bias.x
-#define pl_facing_bias facing_scale_bias.y
-#define pl_fade_scale clip_vec_x_fade_scale.w
-#define pl_fade_bias clip_vec_y_fade_bias.w
-#define pl_clip_pos_x clip_vec_x_fade_scale.xyz
-#define pl_clip_pos_y clip_vec_y_fade_bias.xyz
-#define pl_clip_edges clip_edges
-
-struct GridData {
- mat4 localmat;
- ivec4 resolution_offset;
- vec4 ws_corner_atten_scale; /* world space corner position */
- vec4 ws_increment_x_atten_bias; /* world space vector between 2 opposite cells */
- vec4 ws_increment_y;
- vec4 ws_increment_z;
-};
-
-#define g_corner ws_corner_atten_scale.xyz
-#define g_atten_scale ws_corner_atten_scale.w
-#define g_atten_bias ws_increment_x_atten_bias.w
-#define g_increment_x ws_increment_x_atten_bias.xyz
-#define g_increment_y ws_increment_y.xyz
-#define g_increment_z ws_increment_z.xyz
-#define g_resolution resolution_offset.xyz
-#define g_offset resolution_offset.w
+/* ------- Structures -------- */
struct LightData {
vec4 position_influence; /* w : InfluenceRadius */
@@ -126,14 +79,15 @@ struct ShadowCascadeData {
struct ShadingData {
vec3 V; /* View vector */
vec3 N; /* World Normal of the fragment */
- vec3 W; /* World Position of the fragment */
- vec3 l_vector; /* Current Light vector */
};
+#define cameraVec ((ProjectionMatrix[3][3] == 0.0) ? normalize(cameraPos - worldPosition) : cameraForward)
+
/* ------- Convenience functions --------- */
vec3 mul(mat3 m, vec3 v) { return m * v; }
mat3 mul(mat3 m1, mat3 m2) { return m1 * m2; }
+vec3 transform_point(mat4 m, vec3 v) { return (m * vec4(v, 1.0)).xyz; }
float min_v3(vec3 v) { return min(v.x, min(v.y, v.z)); }
@@ -288,8 +242,9 @@ vec3 get_view_space_from_depth(vec2 uvcoords, float depth)
}
}
-vec3 get_specular_dominant_dir(vec3 N, vec3 R, float roughness)
+vec3 get_specular_dominant_dir(vec3 N, vec3 V, float roughness)
{
+ vec3 R = -reflect(V, N);
float smoothness = 1.0 - roughness;
float fac = smoothness * (sqrt(smoothness) + roughness);
return normalize(mix(N, R, fac));
@@ -362,3 +317,8 @@ float bsdf_ggx(vec3 N, vec3 L, vec3 V, float roughness)
/* bsdf = D * G / (4.0 * NL * NV); /* Reference function */
return NL * a2 / (D * G); /* NL to Fit cycles Equation : line. 345 in bsdf_microfacet.h */
}
+
+void accumulate_light(vec3 light, float fac, inout vec4 accum)
+{
+ accum += vec4(light, 1.0) * min(fac, (1.0 - accum.a));
+} \ No newline at end of file
diff --git a/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl b/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl
index a1a5fab03af..a68b44838f1 100644
--- a/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/bsdf_direct_lib.glsl
@@ -11,10 +11,10 @@
/* ------------ Diffuse ------------- */
-float direct_diffuse_point(LightData ld, ShadingData sd)
+float direct_diffuse_point(ShadingData sd, vec4 l_vector)
{
- float dist = length(sd.l_vector);
- vec3 L = sd.l_vector / dist;
+ float dist = l_vector.w;
+ vec3 L = l_vector.xyz / dist;
float bsdf = max(0.0, dot(sd.N, L));
bsdf /= dist * dist;
return bsdf;
@@ -29,12 +29,12 @@ float direct_diffuse_sun(LightData ld, ShadingData sd)
}
/* From Frostbite PBR Course
- * Analitical irradiance from a sphere with correct horizon handling
+ * Analytical irradiance from a sphere with correct horizon handling
* http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
-float direct_diffuse_sphere(LightData ld, ShadingData sd)
+float direct_diffuse_sphere(LightData ld, ShadingData sd, vec4 l_vector)
{
- float dist = length(sd.l_vector);
- vec3 L = sd.l_vector / dist;
+ float dist = l_vector.w;
+ vec3 L = l_vector.xyz / dist;
float radius = max(ld.l_sizex, 0.0001);
float costheta = clamp(dot(sd.N, L), -0.999, 0.999);
float h = min(ld.l_radius / dist , 0.9999);
@@ -61,13 +61,13 @@ float direct_diffuse_sphere(LightData ld, ShadingData sd)
/* From Frostbite PBR Course
* http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
-float direct_diffuse_rectangle(LightData ld, ShadingData sd)
+float direct_diffuse_rectangle(LightData ld, ShadingData sd, vec4 l_vector)
{
vec3 corners[4];
- corners[0] = sd.l_vector + ld.l_right * -ld.l_sizex + ld.l_up * ld.l_sizey;
- corners[1] = sd.l_vector + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey;
- corners[2] = sd.l_vector + ld.l_right * ld.l_sizex + ld.l_up * -ld.l_sizey;
- corners[3] = sd.l_vector + ld.l_right * ld.l_sizex + ld.l_up * ld.l_sizey;
+ corners[0] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * ld.l_sizey;
+ corners[1] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey;
+ corners[2] = l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * -ld.l_sizey;
+ corners[3] = l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * ld.l_sizey;
float bsdf = ltc_evaluate(sd.N, sd.V, mat3(1.0), corners);
bsdf *= M_1_2PI;
@@ -83,10 +83,10 @@ float direct_diffuse_unit_disc(vec3 N, vec3 L)
#endif
/* ----------- GGx ------------ */
-vec3 direct_ggx_point(ShadingData sd, float roughness, vec3 f0)
+vec3 direct_ggx_point(ShadingData sd, vec4 l_vector, float roughness, vec3 f0)
{
- float dist = length(sd.l_vector);
- vec3 L = sd.l_vector / dist;
+ float dist = l_vector.w;
+ vec3 L = l_vector.xyz / dist;
float bsdf = bsdf_ggx(sd.N, L, sd.V, roughness);
bsdf /= dist * dist;
@@ -102,13 +102,13 @@ vec3 direct_ggx_sun(LightData ld, ShadingData sd, float roughness, vec3 f0)
return F_schlick(f0, VH) * bsdf;
}
-vec3 direct_ggx_sphere(LightData ld, ShadingData sd, float roughness, vec3 f0)
+vec3 direct_ggx_sphere(LightData ld, ShadingData sd, vec4 l_vector, float roughness, vec3 f0)
{
- vec3 L = normalize(sd.l_vector);
- vec3 spec_dir = get_specular_dominant_dir(sd.N, reflect(-sd.V, sd.N), roughness);
- vec3 P = line_aligned_plane_intersect(vec3(0.0), spec_dir, sd.l_vector);
+ vec3 L = l_vector.xyz / l_vector.w;
+ vec3 spec_dir = get_specular_dominant_dir(sd.N, sd.V, roughness);
+ vec3 P = line_aligned_plane_intersect(vec3(0.0), spec_dir, l_vector.xyz);
- vec3 Px = normalize(P - sd.l_vector) * ld.l_radius;
+ vec3 Px = normalize(P - l_vector.xyz) * ld.l_radius;
vec3 Py = cross(Px, L);
vec2 uv = lut_coords(dot(sd.N, sd.V), sqrt(roughness));
@@ -123,21 +123,21 @@ vec3 direct_ggx_sphere(LightData ld, ShadingData sd, float roughness, vec3 f0)
/* counter clockwise */
vec3 points[8];
- points[0] = sd.l_vector + Px;
- points[1] = sd.l_vector - Pxy2;
- points[2] = sd.l_vector - Py;
- points[3] = sd.l_vector - Pxy1;
- points[4] = sd.l_vector - Px;
- points[5] = sd.l_vector + Pxy2;
- points[6] = sd.l_vector + Py;
- points[7] = sd.l_vector + Pxy1;
+ points[0] = l_vector.xyz + Px;
+ points[1] = l_vector.xyz - Pxy2;
+ points[2] = l_vector.xyz - Py;
+ points[3] = l_vector.xyz - Pxy1;
+ points[4] = l_vector.xyz - Px;
+ points[5] = l_vector.xyz + Pxy2;
+ points[6] = l_vector.xyz + Py;
+ points[7] = l_vector.xyz + Pxy1;
float bsdf = ltc_evaluate_circle(sd.N, sd.V, ltc_mat, points);
#else
vec3 points[4];
- points[0] = sd.l_vector + Px;
- points[1] = sd.l_vector - Py;
- points[2] = sd.l_vector - Px;
- points[3] = sd.l_vector + Py;
+ points[0] = l_vector.xyz + Px;
+ points[1] = l_vector.xyz - Py;
+ points[2] = l_vector.xyz - Px;
+ points[3] = l_vector.xyz + Py;
float bsdf = ltc_evaluate(sd.N, sd.V, ltc_mat, points);
/* sqrt(pi/2) difference between square and disk area */
bsdf *= 1.25331413731;
@@ -151,13 +151,13 @@ vec3 direct_ggx_sphere(LightData ld, ShadingData sd, float roughness, vec3 f0)
return spec;
}
-vec3 direct_ggx_rectangle(LightData ld, ShadingData sd, float roughness, vec3 f0)
+vec3 direct_ggx_rectangle(LightData ld, ShadingData sd, vec4 l_vector, float roughness, vec3 f0)
{
vec3 corners[4];
- corners[0] = sd.l_vector + ld.l_right * -ld.l_sizex + ld.l_up * ld.l_sizey;
- corners[1] = sd.l_vector + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey;
- corners[2] = sd.l_vector + ld.l_right * ld.l_sizex + ld.l_up * -ld.l_sizey;
- corners[3] = sd.l_vector + ld.l_right * ld.l_sizex + ld.l_up * ld.l_sizey;
+ corners[0] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * ld.l_sizey;
+ corners[1] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey;
+ corners[2] = l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * -ld.l_sizey;
+ corners[3] = l_vector.xyz + ld.l_right * ld.l_sizex + ld.l_up * ld.l_sizey;
vec2 uv = lut_coords(dot(sd.N, sd.V), sqrt(roughness));
vec3 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rgb;
diff --git a/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl b/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl
index 0f95d552d1f..95e7af41398 100644
--- a/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl
+++ b/source/blender/draw/engines/eevee/shaders/irradiance_lib.glsl
@@ -1,6 +1,8 @@
uniform sampler2D irradianceGrid;
+#define IRRADIANCE_LIB
+
#ifdef IRRADIANCE_CUBEMAP
struct IrradianceData {
vec3 color;
@@ -132,10 +134,8 @@ vec3 compute_irradiance(vec3 N, IrradianceData ird)
#endif
}
-vec3 get_cell_color(ivec3 localpos, ivec3 gridres, int offset, vec3 ir_dir)
+vec3 irradiance_from_cell_get(int cell, vec3 ir_dir)
{
- /* Keep in sync with update_irradiance_probe */
- int cell = offset + localpos.z + localpos.y * gridres.z + localpos.x * gridres.z * gridres.y;
IrradianceData ir_data = load_irradiance_cell(cell, ir_dir);
return compute_irradiance(ir_dir, ir_data);
}
diff --git a/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl b/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl
new file mode 100644
index 00000000000..b031b45d1c4
--- /dev/null
+++ b/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl
@@ -0,0 +1,193 @@
+
+uniform sampler2DArray shadowCubes;
+uniform sampler2DArrayShadow shadowCascades;
+
+layout(std140) uniform shadow_block {
+ ShadowCubeData shadows_cube_data[MAX_SHADOW_CUBE];
+ ShadowMapData shadows_map_data[MAX_SHADOW_MAP];
+ ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
+};
+
+layout(std140) uniform probe_block {
+ CubeData probes_data[MAX_PROBE];
+};
+
+layout(std140) uniform grid_block {
+ GridData grids_data[MAX_GRID];
+};
+
+layout(std140) uniform planar_block {
+ PlanarData planars_data[MAX_PLANAR];
+};
+
+layout(std140) uniform light_block {
+ LightData lights_data[MAX_LIGHT];
+};
+
+/* type */
+#define POINT 0.0
+#define SUN 1.0
+#define SPOT 2.0
+#define HEMI 3.0
+#define AREA 4.0
+
+float shadow_cubemap(float shid, vec3 l_vector, vec3 W)
+{
+ ShadowCubeData scd = shadows_cube_data[int(shid)];
+
+ vec3 cubevec = W - l_vector;
+ float dist = length(cubevec) - scd.sh_cube_bias;
+
+ float z = texture_octahedron(shadowCubes, vec4(cubevec, shid)).r;
+
+ float esm_test = saturate(exp(scd.sh_cube_exp * (z - dist)));
+ // float sh_test = step(0, z - dist);
+
+ return esm_test;
+}
+
+float shadow_cascade(float shid, vec3 W)
+{
+ /* Shadow Cascade */
+ shid -= (MAX_SHADOW_CUBE + MAX_SHADOW_MAP);
+ ShadowCascadeData smd = shadows_cascade_data[int(shid)];
+
+ /* Finding Cascade index */
+ vec4 z = vec4(-dot(cameraPos - W, cameraForward));
+ vec4 comp = step(z, smd.split_distances);
+ float cascade = dot(comp, comp);
+ mat4 shadowmat;
+ float bias;
+
+ /* Manual Unrolling of a loop for better performance.
+ * Doing fetch directly with cascade index leads to
+ * major performance impact. (0.27ms -> 10.0ms for 1 light) */
+ if (cascade == 0.0) {
+ shadowmat = smd.shadowmat[0];
+ bias = smd.bias[0];
+ }
+ else if (cascade == 1.0) {
+ shadowmat = smd.shadowmat[1];
+ bias = smd.bias[1];
+ }
+ else if (cascade == 2.0) {
+ shadowmat = smd.shadowmat[2];
+ bias = smd.bias[2];
+ }
+ else {
+ shadowmat = smd.shadowmat[3];
+ bias = smd.bias[3];
+ }
+
+ vec4 shpos = shadowmat * vec4(W, 1.0);
+ shpos.z -= bias * shpos.w;
+ shpos.xyz /= shpos.w;
+
+ return texture(shadowCascades, vec4(shpos.xy, shid * float(MAX_CASCADE_NUM) + cascade, shpos.z));
+}
+
+float light_visibility(LightData ld, vec3 W, vec3 l_vector)
+{
+ float vis = 1.0;
+
+ if (ld.l_type == SPOT) {
+ float z = dot(ld.l_forward, l_vector);
+ vec3 lL = l_vector / z;
+ float x = dot(ld.l_right, lL) / ld.l_sizex;
+ float y = dot(ld.l_up, lL) / ld.l_sizey;
+
+ float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);
+
+ float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);
+
+ vis *= spotmask;
+ vis *= step(0.0, -dot(l_vector, ld.l_forward));
+ }
+ else if (ld.l_type == AREA) {
+ vis *= step(0.0, -dot(l_vector, ld.l_forward));
+ }
+
+ /* shadowing */
+ if (ld.l_shadowid >= (MAX_SHADOW_MAP + MAX_SHADOW_CUBE)) {
+ vis *= shadow_cascade(ld.l_shadowid, W);
+ }
+ else if (ld.l_shadowid >= 0.0) {
+ vis *= shadow_cubemap(ld.l_shadowid, l_vector, W);
+ }
+
+ return vis;
+}
+
+float light_diffuse(LightData ld, ShadingData sd, vec4 l_vector)
+{
+#ifdef USE_LTC
+ if (ld.l_type == SUN) {
+ /* TODO disk area light */
+ return direct_diffuse_sun(ld, sd);
+ }
+ else if (ld.l_type == AREA) {
+ return direct_diffuse_rectangle(ld, sd, l_vector);
+ }
+ else {
+ return direct_diffuse_sphere(ld, sd, l_vector);
+ }
+#else
+ if (ld.l_type == SUN) {
+ return direct_diffuse_sun(ld, sd);
+ }
+ else {
+ return direct_diffuse_point(sd, l_vector);
+ }
+#endif
+}
+
+vec3 light_specular(LightData ld, ShadingData sd, vec4 l_vector, float roughness, vec3 f0)
+{
+#ifdef USE_LTC
+ if (ld.l_type == SUN) {
+ /* TODO disk area light */
+ return direct_ggx_sun(ld, sd, roughness, f0);
+ }
+ else if (ld.l_type == AREA) {
+ return direct_ggx_rectangle(ld, sd, l_vector, roughness, f0);
+ }
+ else {
+ return direct_ggx_sphere(ld, sd, l_vector, roughness, f0);
+ }
+#else
+ if (ld.l_type == SUN) {
+ return direct_ggx_sun(ld, sd, roughness, f0);
+ }
+ else {
+ return direct_ggx_point(sd, l_vector, roughness, f0);
+ }
+#endif
+}
+
+#ifdef HAIR_SHADER
+void light_hair_common(
+ LightData ld, ShadingData sd, vec4 l_vector, vec3 norm_view,
+ out float occlu_trans, out float occlu,
+ out vec3 norm_lamp, out vec3 view_vec)
+{
+ const float transmission = 0.3; /* Uniform internal scattering factor */
+
+ vec3 lamp_vec;
+
+ if (ld.l_type == SUN || ld.l_type == AREA) {
+ lamp_vec = ld.l_forward;
+ }
+ else {
+ lamp_vec = -l_vector.xyz;
+ }
+
+ norm_lamp = cross(lamp_vec, sd.N);
+ norm_lamp = normalize(cross(sd.N, norm_lamp)); /* Normal facing lamp */
+
+ /* Rotate view vector onto the cross(tangent, light) plane */
+ view_vec = normalize(norm_lamp * dot(norm_view, sd.V) + sd.N * dot(sd.N, sd.V));
+
+ float occlusion = (dot(norm_view, norm_lamp) * 0.5 + 0.5);
+ float occltrans = transmission + (occlusion * (1.0 - transmission)); /* Includes transmission component */
+}
+#endif
diff --git a/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl b/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl
index d651a866433..fc0b5b9548b 100644
--- a/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lightprobe_cube_display_frag.glsl
@@ -1,24 +1,15 @@
-uniform mat4 ProjectionMatrix;
-uniform mat4 ViewMatrixInverse;
-
-uniform sampler2DArray probeCubes;
-uniform float lodMax;
-
flat in int pid;
in vec3 worldNormal;
in vec3 worldPosition;
out vec4 FragColor;
-#define cameraForward normalize(ViewMatrixInverse[2].xyz)
-#define cameraPos ViewMatrixInverse[3].xyz
-
void main()
{
vec3 V = (ProjectionMatrix[3][3] == 0.0) /* if perspective */
? normalize(cameraPos - worldPosition)
: cameraForward;
vec3 N = normalize(worldNormal);
- FragColor = vec4(textureLod_octahedron(probeCubes, vec4(reflect(-V, N), pid), 0.0, lodMax).rgb, 1.0);
+ FragColor = vec4(textureLod_octahedron(probeCubes, vec4(reflect(-V, N), pid), 0.0, lodCubeMax).rgb, 1.0);
}
diff --git a/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl b/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl
new file mode 100644
index 00000000000..32da31339d1
--- /dev/null
+++ b/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl
@@ -0,0 +1,245 @@
+/* ----------- Uniforms --------- */
+
+uniform sampler2DArray probePlanars;
+uniform float lodPlanarMax;
+
+uniform sampler2DArray probeCubes;
+uniform float lodCubeMax;
+
+/* ----------- Structures --------- */
+
+struct CubeData {
+ vec4 position_type;
+ vec4 attenuation_fac_type;
+ mat4 influencemat;
+ mat4 parallaxmat;
+};
+
+#define PROBE_PARALLAX_BOX 1.0
+#define PROBE_ATTENUATION_BOX 1.0
+
+#define p_position position_type.xyz
+#define p_parallax_type position_type.w
+#define p_atten_fac attenuation_fac_type.x
+#define p_atten_type attenuation_fac_type.y
+
+struct PlanarData {
+ vec4 plane_equation;
+ vec4 clip_vec_x_fade_scale;
+ vec4 clip_vec_y_fade_bias;
+ vec4 clip_edges;
+ vec4 facing_scale_bias;
+ mat4 reflectionmat; /* transform world space into reflection texture space */
+};
+
+#define pl_plane_eq plane_equation
+#define pl_normal plane_equation.xyz
+#define pl_facing_scale facing_scale_bias.x
+#define pl_facing_bias facing_scale_bias.y
+#define pl_fade_scale clip_vec_x_fade_scale.w
+#define pl_fade_bias clip_vec_y_fade_bias.w
+#define pl_clip_pos_x clip_vec_x_fade_scale.xyz
+#define pl_clip_pos_y clip_vec_y_fade_bias.xyz
+#define pl_clip_edges clip_edges
+
+struct GridData {
+ mat4 localmat;
+ ivec4 resolution_offset;
+ vec4 ws_corner_atten_scale; /* world space corner position */
+ vec4 ws_increment_x_atten_bias; /* world space vector between 2 opposite cells */
+ vec4 ws_increment_y;
+ vec4 ws_increment_z;
+};
+
+#define g_corner ws_corner_atten_scale.xyz
+#define g_atten_scale ws_corner_atten_scale.w
+#define g_atten_bias ws_increment_x_atten_bias.w
+#define g_increment_x ws_increment_x_atten_bias.xyz
+#define g_increment_y ws_increment_y.xyz
+#define g_increment_z ws_increment_z.xyz
+#define g_resolution resolution_offset.xyz
+#define g_offset resolution_offset.w
+
+/* ----------- Functions --------- */
+
+float probe_attenuation_cube(CubeData pd, vec3 W)
+{
+ vec3 localpos = transform_point(pd.influencemat, W);
+
+ float fac;
+ if (pd.p_atten_type == PROBE_ATTENUATION_BOX) {
+ vec3 axes_fac = saturate(pd.p_atten_fac - pd.p_atten_fac * abs(localpos));
+ fac = min_v3(axes_fac);
+ }
+ else {
+ fac = saturate(pd.p_atten_fac - pd.p_atten_fac * length(localpos));
+ }
+
+ return fac;
+}
+
+float probe_attenuation_planar(PlanarData pd, vec3 W, vec3 N)
+{
+ /* Normal Facing */
+ float fac = saturate(dot(pd.pl_normal, N) * pd.pl_facing_scale + pd.pl_facing_bias);
+
+ /* Distance from plane */
+ fac *= saturate(abs(dot(pd.pl_plane_eq, vec4(W, 1.0))) * pd.pl_fade_scale + pd.pl_fade_bias);
+
+ /* Fancy fast clipping calculation */
+ vec2 dist_to_clip;
+ dist_to_clip.x = dot(pd.pl_clip_pos_x, W);
+ dist_to_clip.y = dot(pd.pl_clip_pos_y, W);
+ fac *= step(2.0, dot(step(pd.pl_clip_edges, dist_to_clip.xxyy), vec2(-1.0, 1.0).xyxy)); /* compare and add all tests */
+
+ return fac;
+}
+
+float probe_attenuation_grid(GridData gd, vec3 W, out vec3 localpos)
+{
+ localpos = transform_point(gd.localmat, W);
+
+ float fade = min(1.0, min_v3(1.0 - abs(localpos)));
+ return saturate(fade * gd.g_atten_scale + gd.g_atten_bias);
+}
+
+vec3 probe_evaluate_cube(float id, CubeData cd, vec3 W, vec3 R, float roughness)
+{
+ /* Correct reflection ray using parallax volume intersection. */
+ vec3 localpos = transform_point(cd.parallaxmat, W);
+ vec3 localray = mat3(cd.parallaxmat) * R;
+
+ float dist;
+ if (cd.p_parallax_type == PROBE_PARALLAX_BOX) {
+ dist = line_unit_box_intersect_dist(localpos, localray);
+ }
+ else {
+ dist = line_unit_sphere_intersect_dist(localpos, localray);
+ }
+
+ /* Use Distance in WS directly to recover intersection */
+ vec3 intersection = W + R * dist - cd.p_position;
+
+ /* From Frostbite PBR Course
+ * Distance based roughness
+ * http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
+ float original_roughness = roughness;
+ float linear_roughness = sqrt(roughness);
+ float distance_roughness = saturate(dist * linear_roughness / length(intersection));
+ linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
+ roughness = linear_roughness * linear_roughness;
+
+ float fac = saturate(original_roughness * 2.0 - 1.0);
+ R = mix(intersection, R, fac * fac);
+
+ return textureLod_octahedron(probeCubes, vec4(R, id), roughness * lodCubeMax, lodCubeMax).rgb;
+}
+
+vec3 probe_evaluate_world_spec(vec3 R, float roughness)
+{
+ return textureLod_octahedron(probeCubes, vec4(R, 0.0), roughness * lodCubeMax, lodCubeMax).rgb;
+}
+
+vec3 probe_evaluate_planar(
+ float id, PlanarData pd, vec3 W, vec3 N, vec3 V,
+ float rand, vec3 camera_pos, float roughness,
+ inout float fade)
+{
+ /* Sample reflection depth. */
+ vec4 refco = pd.reflectionmat * vec4(W, 1.0);
+ refco.xy /= refco.w;
+ float ref_depth = textureLod(probePlanars, vec3(refco.xy, id), 0.0).a;
+
+ /* Find view vector / reflection plane intersection. (dist_to_plane is negative) */
+ float dist_to_plane = line_plane_intersect_dist(camera_pos, V, pd.pl_plane_eq);
+ vec3 point_on_plane = camera_pos + V * dist_to_plane;
+
+ /* How far the pixel is from the plane. */
+ ref_depth = ref_depth + dist_to_plane;
+
+ /* Compute distorded reflection vector based on the distance to the reflected object.
+ * In other words find intersection between reflection vector and the sphere center
+ * around point_on_plane. */
+ vec3 proj_ref = reflect(reflect(-V, N) * ref_depth, pd.pl_normal);
+
+ /* Final point in world space. */
+ vec3 ref_pos = point_on_plane + proj_ref;
+
+ /* Reproject to find texture coords. */
+ refco = pd.reflectionmat * vec4(ref_pos, 1.0);
+ refco.xy /= refco.w;
+
+ /* Distance to roughness */
+ float linear_roughness = sqrt(roughness);
+ float distance_roughness = min(linear_roughness, ref_depth * linear_roughness);
+ linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
+
+ /* Decrease influence for high roughness */
+ fade *= saturate((1.0 - linear_roughness) * 5.0 - 2.0);
+
+ float lod = linear_roughness * 2.5 * lodPlanarMax;
+ vec3 sample = textureLod(probePlanars, vec3(refco.xy, id), lod).rgb;
+
+ /* Use a second sample randomly rotated to blur out the lowres aspect */
+ vec2 rot_sample = (1.0 / vec2(textureSize(probePlanars, 0).xy)) * vec2(cos(rand * M_2PI), sin(rand * M_2PI)) * lod;
+ sample += textureLod(probePlanars, vec3(refco.xy + rot_sample, id), lod).rgb;
+ sample *= 0.5;
+
+ return sample;
+}
+
+#ifdef IRRADIANCE_LIB
+vec3 probe_evaluate_grid(GridData gd, vec3 W, vec3 N, vec3 localpos)
+{
+ localpos = localpos * 0.5 + 0.5;
+ localpos = localpos * vec3(gd.g_resolution) - 0.5;
+
+ vec3 localpos_floored = floor(localpos);
+ vec3 trilinear_weight = fract(localpos);
+
+ float weight_accum = 0.0;
+ vec3 irradiance_accum = vec3(0.0);
+
+ /* For each neighboor cells */
+ for (int i = 0; i < 8; ++i) {
+ ivec3 offset = ivec3(i, i >> 1, i >> 2) & ivec3(1);
+ vec3 cell_cos = clamp(localpos_floored + vec3(offset), vec3(0.0), vec3(gd.g_resolution) - 1.0);
+
+ /* Keep in sync with update_irradiance_probe */
+ ivec3 icell_cos = ivec3(cell_cos);
+ int cell = gd.g_offset + icell_cos.z + icell_cos.y * gd.g_resolution.z + icell_cos.x * gd.g_resolution.z * gd.g_resolution.y;
+
+ vec3 color = irradiance_from_cell_get(cell, N);
+
+ /* We need this because we render probes in world space (so we need light vector in WS).
+ * And rendering them in local probe space is too much problem. */
+ vec3 ws_cell_location = gd.g_corner +
+ (gd.g_increment_x * cell_cos.x +
+ gd.g_increment_y * cell_cos.y +
+ gd.g_increment_z * cell_cos.z);
+
+ // vec3 ws_point_to_cell = ws_cell_location - W;
+ // vec3 ws_light = normalize(ws_point_to_cell);
+
+ vec3 trilinear = mix(1 - trilinear_weight, trilinear_weight, offset);
+ float weight = trilinear.x * trilinear.y * trilinear.z;
+
+ /* Smooth backface test */
+ // weight *= sqrt(max(0.002, dot(ws_light, N)));
+
+ /* Avoid zero weight */
+ weight = max(0.00001, weight);
+
+ weight_accum += weight;
+ irradiance_accum += color * weight;
+ }
+
+ return irradiance_accum / weight_accum;
+}
+
+vec3 probe_evaluate_world_diff(vec3 N)
+{
+ return irradiance_from_cell_get(0, N);
+}
+
+#endif /* IRRADIANCE_LIB */
diff --git a/source/blender/draw/engines/eevee/shaders/lightprobe_planar_display_frag.glsl b/source/blender/draw/engines/eevee/shaders/lightprobe_planar_display_frag.glsl
index 338dc3bf9c0..2cb43336ace 100644
--- a/source/blender/draw/engines/eevee/shaders/lightprobe_planar_display_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lightprobe_planar_display_frag.glsl
@@ -1,6 +1,5 @@
uniform int probeIdx;
-uniform sampler2DArray probePlanars;
layout(std140) uniform planar_block {
PlanarData planars_data[MAX_PLANAR];
diff --git a/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl b/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl
index d6cc170f025..6ee87641e1f 100644
--- a/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl
+++ b/source/blender/draw/engines/eevee/shaders/lit_surface_frag.glsl
@@ -3,13 +3,7 @@ uniform int light_count;
uniform int probe_count;
uniform int grid_count;
uniform int planar_count;
-uniform mat4 ViewMatrix;
-uniform mat4 ViewMatrixInverse;
-uniform sampler2DArray probePlanars;
-
-uniform sampler2DArray probeCubes;
-uniform float lodMax;
uniform bool specToggle;
#ifndef UTIL_TEX
@@ -17,31 +11,6 @@ uniform bool specToggle;
uniform sampler2DArray utilTex;
#endif /* UTIL_TEX */
-uniform sampler2DArray shadowCubes;
-uniform sampler2DArrayShadow shadowCascades;
-
-layout(std140) uniform probe_block {
- ProbeData probes_data[MAX_PROBE];
-};
-
-layout(std140) uniform grid_block {
- GridData grids_data[MAX_GRID];
-};
-
-layout(std140) uniform planar_block {
- PlanarData planars_data[MAX_PLANAR];
-};
-
-layout(std140) uniform light_block {
- LightData lights_data[MAX_LIGHT];
-};
-
-layout(std140) uniform shadow_block {
- ShadowCubeData shadows_cube_data[MAX_SHADOW_CUBE];
- ShadowMapData shadows_map_data[MAX_SHADOW_MAP];
- ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
-};
-
in vec3 worldPosition;
in vec3 viewPosition;
@@ -53,481 +22,131 @@ in vec3 worldNormal;
in vec3 viewNormal;
#endif
-#define cameraForward normalize(ViewMatrixInverse[2].xyz)
-#define cameraPos ViewMatrixInverse[3].xyz
-
-/* type */
-#define POINT 0.0
-#define SUN 1.0
-#define SPOT 2.0
-#define HEMI 3.0
-#define AREA 4.0
-
-#ifdef HAIR_SHADER
-vec3 light_diffuse(LightData ld, ShadingData sd, vec3 albedo)
-{
- if (ld.l_type == SUN) {
- return direct_diffuse_sun(ld, sd) * albedo;
- }
- else if (ld.l_type == AREA) {
- return direct_diffuse_rectangle(ld, sd) * albedo;
- }
- else {
- return direct_diffuse_sphere(ld, sd) * albedo;
- }
-}
-
-vec3 light_specular(LightData ld, ShadingData sd, float roughness, vec3 f0)
-{
- if (ld.l_type == SUN) {
- return direct_ggx_sun(ld, sd, roughness, f0);
- }
- else if (ld.l_type == AREA) {
- return direct_ggx_rectangle(ld, sd, roughness, f0);
- }
- else {
- return direct_ggx_sphere(ld, sd, roughness, f0);
- }
-}
-
-void light_shade(
- LightData ld, ShadingData sd, vec3 albedo, float roughness, vec3 f0,
- out vec3 diffuse, out vec3 specular)
-{
- const float transmission = 0.3; /* Uniform internal scattering factor */
- ShadingData sd_new = sd;
-
- vec3 lamp_vec;
-
- if (ld.l_type == SUN || ld.l_type == AREA) {
- lamp_vec = ld.l_forward;
- }
- else {
- lamp_vec = -sd.l_vector;
- }
-
- vec3 norm_view = cross(sd.V, sd.N);
- norm_view = normalize(cross(norm_view, sd.N)); /* Normal facing view */
-
- vec3 norm_lamp = cross(lamp_vec, sd.N);
- norm_lamp = normalize(cross(sd.N, norm_lamp)); /* Normal facing lamp */
-
- /* Rotate view vector onto the cross(tangent, light) plane */
- vec3 view_vec = normalize(norm_lamp * dot(norm_view, sd.V) + sd.N * dot(sd.N, sd.V));
-
- float occlusion = (dot(norm_view, norm_lamp) * 0.5 + 0.5);
- float occltrans = transmission + (occlusion * (1.0 - transmission)); /* Includes transmission component */
-
- sd_new.N = -norm_lamp;
-
- diffuse = light_diffuse(ld, sd_new, albedo) * occltrans;
-
- sd_new.V = view_vec;
-
- specular = light_specular(ld, sd_new, roughness, f0) * occlusion;
-}
-#else
-void light_shade(
- LightData ld, ShadingData sd, vec3 albedo, float roughness, vec3 f0,
- out vec3 diffuse, out vec3 specular)
-{
-#ifdef USE_LTC
- if (ld.l_type == SUN) {
- /* TODO disk area light */
- diffuse = direct_diffuse_sun(ld, sd) * albedo;
- specular = direct_ggx_sun(ld, sd, roughness, f0);
- }
- else if (ld.l_type == AREA) {
- diffuse = direct_diffuse_rectangle(ld, sd) * albedo;
- specular = direct_ggx_rectangle(ld, sd, roughness, f0);
- }
- else {
- diffuse = direct_diffuse_sphere(ld, sd) * albedo;
- specular = direct_ggx_sphere(ld, sd, roughness, f0);
- }
-#else
- if (ld.l_type == SUN) {
- diffuse = direct_diffuse_sun(ld, sd) * albedo;
- specular = direct_ggx_sun(ld, sd, roughness, f0);
- }
- else {
- diffuse = direct_diffuse_point(ld, sd) * albedo;
- specular = direct_ggx_point(sd, roughness, f0);
- }
-#endif
-
- specular *= float(specToggle);
-}
-#endif
-
-void light_visibility(LightData ld, ShadingData sd, out float vis)
-{
- vis = 1.0;
-
- if (ld.l_type == SPOT) {
- float z = dot(ld.l_forward, sd.l_vector);
- vec3 lL = sd.l_vector / z;
- float x = dot(ld.l_right, lL) / ld.l_sizex;
- float y = dot(ld.l_up, lL) / ld.l_sizey;
-
- float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);
-
- float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);
-
- vis *= spotmask;
- vis *= step(0.0, -dot(sd.l_vector, ld.l_forward));
- }
- else if (ld.l_type == AREA) {
- vis *= step(0.0, -dot(sd.l_vector, ld.l_forward));
- }
-
- /* shadowing */
- if (ld.l_shadowid >= (MAX_SHADOW_MAP + MAX_SHADOW_CUBE)) {
- /* Shadow Cascade */
- float shid = ld.l_shadowid - (MAX_SHADOW_CUBE + MAX_SHADOW_MAP);
- ShadowCascadeData smd = shadows_cascade_data[int(shid)];
-
- /* Finding Cascade index */
- vec4 z = vec4(-dot(cameraPos - worldPosition, cameraForward));
- vec4 comp = step(z, smd.split_distances);
- float cascade = dot(comp, comp);
- mat4 shadowmat;
- float bias;
-
- /* Manual Unrolling of a loop for better performance.
- * Doing fetch directly with cascade index leads to
- * major performance impact. (0.27ms -> 10.0ms for 1 light) */
- if (cascade == 0.0) {
- shadowmat = smd.shadowmat[0];
- bias = smd.bias[0];
- }
- else if (cascade == 1.0) {
- shadowmat = smd.shadowmat[1];
- bias = smd.bias[1];
- }
- else if (cascade == 2.0) {
- shadowmat = smd.shadowmat[2];
- bias = smd.bias[2];
- }
- else {
- shadowmat = smd.shadowmat[3];
- bias = smd.bias[3];
- }
-
- vec4 shpos = shadowmat * vec4(sd.W, 1.0);
- shpos.z -= bias * shpos.w;
- shpos.xyz /= shpos.w;
-
- vis *= texture(shadowCascades, vec4(shpos.xy, shid * float(MAX_CASCADE_NUM) + cascade, shpos.z));
- }
- else if (ld.l_shadowid >= 0.0) {
- /* Shadow Cube */
- float shid = ld.l_shadowid;
- ShadowCubeData scd = shadows_cube_data[int(shid)];
-
- vec3 cubevec = sd.W - ld.l_position;
- float dist = length(cubevec) - scd.sh_cube_bias;
-
- float z = texture_octahedron(shadowCubes, vec4(cubevec, shid)).r;
-
- float esm_test = saturate(exp(scd.sh_cube_exp * (z - dist)));
- float sh_test = step(0, z - dist);
-
- vis *= esm_test;
- }
-}
-
-vec3 probe_parallax_correction(vec3 W, vec3 spec_dir, ProbeData pd, inout float roughness)
-{
- vec3 localpos = (pd.parallaxmat * vec4(W, 1.0)).xyz;
- vec3 localray = (pd.parallaxmat * vec4(spec_dir, 0.0)).xyz;
-
- float dist;
- if (pd.p_parallax_type == PROBE_PARALLAX_BOX) {
- dist = line_unit_box_intersect_dist(localpos, localray);
- }
- else {
- dist = line_unit_sphere_intersect_dist(localpos, localray);
- }
-
- /* Use Distance in WS directly to recover intersection */
- vec3 intersection = W + spec_dir * dist - pd.p_position;
-
- /* From Frostbite PBR Course
- * Distance based roughness
- * http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
- float original_roughness = roughness;
- float linear_roughness = sqrt(roughness);
- float distance_roughness = saturate(dist * linear_roughness / length(intersection));
- linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
- roughness = linear_roughness * linear_roughness;
-
- float fac = saturate(original_roughness * 2.0 - 1.0);
- return mix(intersection, spec_dir, fac * fac);
-}
-
-float probe_attenuation(vec3 W, ProbeData pd)
-{
- vec3 localpos = (pd.influencemat * vec4(W, 1.0)).xyz;
-
- float fac;
- if (pd.p_atten_type == PROBE_ATTENUATION_BOX) {
- vec3 axes_fac = saturate(pd.p_atten_fac - pd.p_atten_fac * abs(localpos));
- fac = min_v3(axes_fac);
- }
- else {
- fac = saturate(pd.p_atten_fac - pd.p_atten_fac * length(localpos));
- }
-
- return fac;
-}
-
-float planar_attenuation(vec3 W, vec3 N, PlanarData pd)
-{
- float fac;
-
- /* Normal Facing */
- fac = saturate(dot(pd.pl_normal, N) * pd.pl_facing_scale + pd.pl_facing_bias);
-
- /* Distance from plane */
- fac *= saturate(abs(dot(pd.pl_plane_eq, vec4(W, 1.0))) * pd.pl_fade_scale + pd.pl_fade_bias);
-
- /* Fancy fast clipping calculation */
- vec2 dist_to_clip;
- dist_to_clip.x = dot(pd.pl_clip_pos_x, W);
- dist_to_clip.y = dot(pd.pl_clip_pos_y, W);
- fac *= step(2.0, dot(step(pd.pl_clip_edges, dist_to_clip.xxyy), vec2(-1.0, 1.0).xyxy)); /* compare and add all tests */
-
- return fac;
-}
-
-float compute_occlusion(vec3 N, float micro_occlusion, vec2 randuv, out vec3 bent_normal)
-{
-#ifdef USE_AO /* Screen Space Occlusion */
-
- float macro_occlusion;
- vec3 vnor = mat3(ViewMatrix) * N;
-
-#ifdef USE_BENT_NORMAL
- gtao(vnor, viewPosition, randuv, macro_occlusion, bent_normal);
- bent_normal = mat3(ViewMatrixInverse) * bent_normal;
-#else
- gtao(vnor, viewPosition, randuv, macro_occlusion);
- bent_normal = N;
-#endif
- return min(macro_occlusion, micro_occlusion);
-
-#else /* No added Occlusion. */
-
- bent_normal = N;
- return micro_occlusion;
-
-#endif
-}
vec3 eevee_surface_lit(vec3 world_normal, vec3 albedo, vec3 f0, float roughness, float ao)
{
roughness = clamp(roughness, 1e-8, 0.9999);
float roughnessSquared = roughness * roughness;
- ShadingData sd;
- sd.N = normalize(world_normal);
- sd.V = (ProjectionMatrix[3][3] == 0.0) /* if perspective */
- ? normalize(cameraPos - worldPosition)
- : cameraForward;
- sd.W = worldPosition;
+ ShadingData sd = ShadingData(cameraVec, normalize(world_normal));
+
+ vec4 rand = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0));
- vec3 radiance = vec3(0.0);
+ /* ---------------- SCENE LAMPS LIGHTING ----------------- */
#ifdef HAIR_SHADER
- /* View facing normal */
- vec3 norm_view = cross(sd.V, sd.N);
- norm_view = normalize(cross(norm_view, sd.N)); /* Normal facing view */
+ vec3 norm_view = cross(sd.V, sd.N);
+ norm_view = normalize(cross(norm_view, sd.N)); /* Normal facing view */
#endif
-
- /* Analytic Lights */
+ vec3 diff = vec3(0.0);
+ vec3 spec = vec3(0.0);
for (int i = 0; i < MAX_LIGHT && i < light_count; ++i) {
LightData ld = lights_data[i];
- vec3 diff, spec;
- float vis = 1.0;
- sd.l_vector = ld.l_position - worldPosition;
- light_visibility(ld, sd, vis);
- light_shade(ld, sd, albedo, roughnessSquared, f0, diff, spec);
+ vec4 l_vector; /* Non-Normalized Light Vector with length in last component. */
+ l_vector.xyz = ld.l_position - worldPosition;
+ l_vector.w = length(l_vector.xyz);
+
+ vec3 l_color_vis = ld.l_color * light_visibility(ld, worldPosition, l_vector.xyz);
- radiance += vis * (diff + spec) * ld.l_color;
+#ifdef HAIR_SHADER
+ vec3 norm_lamp, view_vec;
+ float occlu_trans, occlu;
+ light_hair_common(ld, sd, l_vector, norm_view, occlu_trans, occlu, norm_lamp, view_vec);
+
+ ShadingData hsd = sd;
+ hsd.N = -norm_lamp;
+ diff += l_color_vis * light_diffuse(ld, hsd, l_vector) * occlu_trans;
+ hsd.V = view_vec;
+ spec += l_color_vis * light_specular(ld, hsd, l_vector, roughnessSquared, f0) * occlu;
+#else
+ diff += l_color_vis * light_diffuse(ld, sd, l_vector);
+ spec += l_color_vis * light_specular(ld, sd, l_vector, roughnessSquared, f0);
+#endif
}
+ /* Accumulate outgoing radiance */
+ vec3 out_light = diff * albedo + spec * float(specToggle);
+
#ifdef HAIR_SHADER
sd.N = -norm_view;
#endif
- vec3 bent_normal;
- vec4 rand = textureLod(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0), 0.0).rgba;
- float final_ao = compute_occlusion(sd.N, ao, rand.rg, bent_normal);
+ /* ---------------- SPECULAR ENVIRONMENT LIGHTING ----------------- */
/* Envmaps */
- vec3 R = reflect(-sd.V, sd.N);
- vec3 spec_dir = get_specular_dominant_dir(sd.N, R, roughnessSquared);
- vec2 uv = lut_coords(dot(sd.N, sd.V), roughness);
- vec2 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rg;
+ vec3 spec_dir = get_specular_dominant_dir(sd.N, sd.V, roughnessSquared);
+ /* Accumulate light from all sources until accumulator is full. Then apply Occlusion and BRDF. */
vec4 spec_accum = vec4(0.0);
- vec4 diff_accum = vec4(0.0);
/* Planar Reflections */
for (int i = 0; i < MAX_PLANAR && i < planar_count && spec_accum.a < 0.999; ++i) {
PlanarData pd = planars_data[i];
- float influence = planar_attenuation(sd.W, sd.N, pd);
-
- if (influence > 0.0) {
- float influ_spec = min(influence, (1.0 - spec_accum.a));
-
- /* Sample reflection depth. */
- vec4 refco = pd.reflectionmat * vec4(sd.W, 1.0);
- refco.xy /= refco.w;
- float ref_depth = textureLod(probePlanars, vec3(refco.xy, i), 0.0).a;
-
- /* Find view vector / reflection plane intersection. (dist_to_plane is negative) */
- float dist_to_plane = line_plane_intersect_dist(cameraPos, sd.V, pd.pl_plane_eq);
- vec3 point_on_plane = cameraPos + sd.V * dist_to_plane;
-
- /* How far the pixel is from the plane. */
- ref_depth = ref_depth + dist_to_plane;
-
- /* Compute distorded reflection vector based on the distance to the reflected object.
- * In other words find intersection between reflection vector and the sphere center
- * around point_on_plane. */
- vec3 proj_ref = reflect(R * ref_depth, pd.pl_normal);
-
- /* Final point in world space. */
- vec3 ref_pos = point_on_plane + proj_ref;
+ float fade = probe_attenuation_planar(pd, worldPosition, sd.N);
- /* Reproject to find texture coords. */
- refco = pd.reflectionmat * vec4(ref_pos, 1.0);
- refco.xy /= refco.w;
-
- /* Distance to roughness */
- float linear_roughness = sqrt(roughness);
- float distance_roughness = min(linear_roughness, ref_depth * linear_roughness);
- linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
-
- /* Decrease influence for high roughness */
- influ_spec *= saturate((1.0 - linear_roughness) * 5.0 - 2.0);
-
- float lod = linear_roughness * 2.5 * 5.0;
- vec3 sample = textureLod(probePlanars, vec3(refco.xy, i), lod).rgb;
-
- /* Use a second sample randomly rotated to blur out the lowres aspect */
- vec2 rot_sample = (1.0 / vec2(textureSize(probePlanars, 0).xy)) * vec2(cos(rand.a * M_2PI), sin(rand.a * M_2PI)) * lod;
- sample += textureLod(probePlanars, vec3(refco.xy + rot_sample, i), lod).rgb;
- sample *= 0.5;
-
- spec_accum.rgb += sample * influ_spec;
- spec_accum.a += influ_spec;
+ if (fade > 0.0) {
+ vec3 spec = probe_evaluate_planar(float(i), pd, worldPosition, sd.N, sd.V, rand.a, cameraPos, roughness, fade);
+ accumulate_light(spec, fade, spec_accum);
}
}
/* Specular probes */
- /* Start at 1 because 0 is world probe */
+ /* Starts at 1 because 0 is world probe */
for (int i = 1; i < MAX_PROBE && i < probe_count && spec_accum.a < 0.999; ++i) {
- ProbeData pd = probes_data[i];
-
- float dist_attenuation = probe_attenuation(sd.W, pd);
-
- if (dist_attenuation > 0.0) {
- float roughness_copy = roughness;
+ CubeData cd = probes_data[i];
- vec3 sample_vec = probe_parallax_correction(sd.W, spec_dir, pd, roughness_copy);
- vec4 sample = textureLod_octahedron(probeCubes, vec4(sample_vec, i), roughness_copy * lodMax, lodMax).rgba;
+ float fade = probe_attenuation_cube(cd, worldPosition);
- float influ_spec = min(dist_attenuation, (1.0 - spec_accum.a));
-
- spec_accum.rgb += sample.rgb * influ_spec;
- spec_accum.a += influ_spec;
+ if (fade > 0.0) {
+ vec3 spec = probe_evaluate_cube(float(i), cd, worldPosition, spec_dir, roughness);
+ accumulate_light(spec, fade, spec_accum);
}
}
- /* Start at 1 because 0 is world irradiance */
- for (int i = 1; i < MAX_GRID && i < grid_count && diff_accum.a < 0.999; ++i) {
- GridData gd = grids_data[i];
-
- vec3 localpos = (gd.localmat * vec4(sd.W, 1.0)).xyz;
-
- float fade = min(1.0, min_v3(1.0 - abs(localpos)));
- fade = saturate(fade * gd.g_atten_scale + gd.g_atten_bias);
-
- if (fade > 0.0) {
- localpos = localpos * 0.5 + 0.5;
- localpos = localpos * vec3(gd.g_resolution) - 0.5;
-
- vec3 localpos_floored = floor(localpos);
- vec3 trilinear_weight = fract(localpos);
-
- float weight_accum = 0.0;
- vec3 irradiance_accum = vec3(0.0);
-
- /* For each neighboor cells */
- for (int i = 0; i < 8; ++i) {
- ivec3 offset = ivec3(i, i >> 1, i >> 2) & ivec3(1);
- vec3 cell_cos = clamp(localpos_floored + vec3(offset), vec3(0.0), vec3(gd.g_resolution) - 1.0);
-
- /* We need this because we render probes in world space (so we need light vector in WS).
- * And rendering them in local probe space is too much problem. */
- vec3 ws_cell_location = gd.g_corner +
- (gd.g_increment_x * cell_cos.x +
- gd.g_increment_y * cell_cos.y +
- gd.g_increment_z * cell_cos.z);
- vec3 ws_point_to_cell = ws_cell_location - sd.W;
- vec3 ws_light = normalize(ws_point_to_cell);
-
- vec3 trilinear = mix(1 - trilinear_weight, trilinear_weight, offset);
- float weight = trilinear.x * trilinear.y * trilinear.z;
+ /* World Specular */
+ if (spec_accum.a < 1.0) {
+ vec3 spec = probe_evaluate_world_spec(spec_dir, roughness);
+ accumulate_light(spec, 1.0, spec_accum);
+ }
- /* Smooth backface test */
- // weight *= sqrt(max(0.002, dot(ws_light, sd.N)));
+ /* Ambient Occlusion */
+ vec3 bent_normal;
+ float final_ao = occlusion_compute(sd.N, viewPosition, ao, rand.rg, bent_normal);
- /* Avoid zero weight */
- weight = max(0.00001, weight);
+ /* Get Brdf intensity */
+ vec2 uv = lut_coords(dot(sd.N, sd.V), roughness);
+ vec2 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rg;
- vec3 color = get_cell_color(ivec3(cell_cos), gd.g_resolution, gd.g_offset, bent_normal);
+ out_light += spec_accum.rgb * F_ibl(f0, brdf_lut) * specular_occlusion(dot(sd.N, sd.V), final_ao, roughness) * float(specToggle);
- weight_accum += weight;
- irradiance_accum += color * weight;
- }
+ /* ---------------- DIFFUSE ENVIRONMENT LIGHTING ----------------- */
- vec3 indirect_diffuse = irradiance_accum / weight_accum;
+ /* Accumulate light from all sources until accumulator is full. Then apply Occlusion and BRDF. */
+ vec4 diff_accum = vec4(0.0);
- float influ_diff = min(fade, (1.0 - diff_accum.a));
+ /* Start at 1 because 0 is world irradiance */
+ for (int i = 1; i < MAX_GRID && i < grid_count && diff_accum.a < 0.999; ++i) {
+ GridData gd = grids_data[i];
- diff_accum.rgb += indirect_diffuse * influ_diff;
- diff_accum.a += influ_diff;
+ vec3 localpos;
+ float fade = probe_attenuation_grid(gd, worldPosition, localpos);
- /* For Debug purpose */
- // return texture(irradianceGrid, sd.W.xy).rgb;
+ if (fade > 0.0) {
+ vec3 diff = probe_evaluate_grid(gd, worldPosition, bent_normal, localpos);
+ accumulate_light(diff, fade, diff_accum);
}
}
- /* World probe */
+ /* World Diffuse */
if (diff_accum.a < 1.0 && grid_count > 0) {
- IrradianceData ir_data = load_irradiance_cell(0, bent_normal);
-
- vec3 diff = compute_irradiance(bent_normal, ir_data);
- diff_accum.rgb += diff * (1.0 - diff_accum.a);
- }
-
- if (spec_accum.a < 1.0) {
- ProbeData pd = probes_data[0];
-
- vec3 spec = textureLod_octahedron(probeCubes, vec4(spec_dir, 0), roughness * lodMax, lodMax).rgb;
- spec_accum.rgb += spec * (1.0 - spec_accum.a);
+ vec3 diff = probe_evaluate_world_diff(bent_normal);
+ accumulate_light(diff, 1.0, diff_accum);
}
- vec3 indirect_radiance =
- spec_accum.rgb * F_ibl(f0, brdf_lut) * float(specToggle) * specular_occlusion(dot(sd.N, sd.V), final_ao, roughness) +
- diff_accum.rgb * albedo * gtao_multibounce(final_ao, albedo);
+ out_light += diff_accum.rgb * albedo * gtao_multibounce(final_ao, albedo);
- return radiance + indirect_radiance;
+ return out_light;
}