Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Cholesky/LDLT.h')
-rw-r--r--extern/Eigen2/Eigen/src/Cholesky/LDLT.h198
1 files changed, 198 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/Cholesky/LDLT.h b/extern/Eigen2/Eigen/src/Cholesky/LDLT.h
new file mode 100644
index 00000000000..205b78a6ded
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/Cholesky/LDLT.h
@@ -0,0 +1,198 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_LDLT_H
+#define EIGEN_LDLT_H
+
+/** \ingroup cholesky_Module
+ *
+ * \class LDLT
+ *
+ * \brief Robust Cholesky decomposition of a matrix and associated features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition
+ *
+ * This class performs a Cholesky decomposition without square root of a symmetric, positive definite
+ * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
+ * and D is a diagonal matrix.
+ *
+ * Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
+ * stable computation.
+ *
+ * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
+ * the strict lower part does not have to store correct values.
+ *
+ * \sa MatrixBase::ldlt(), class LLT
+ */
+template<typename MatrixType> class LDLT
+{
+ public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
+
+ LDLT(const MatrixType& matrix)
+ : m_matrix(matrix.rows(), matrix.cols())
+ {
+ compute(matrix);
+ }
+
+ /** \returns the lower triangular matrix L */
+ inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; }
+
+ /** \returns the coefficients of the diagonal matrix D */
+ inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); }
+
+ /** \returns true if the matrix is positive definite */
+ inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
+
+ template<typename RhsDerived, typename ResultType>
+ bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;
+
+ template<typename Derived>
+ bool solveInPlace(MatrixBase<Derived> &bAndX) const;
+
+ void compute(const MatrixType& matrix);
+
+ protected:
+ /** \internal
+ * Used to compute and store the cholesky decomposition A = L D L^* = U^* D U.
+ * The strict upper part is used during the decomposition, the strict lower
+ * part correspond to the coefficients of L (its diagonal is equal to 1 and
+ * is not stored), and the diagonal entries correspond to D.
+ */
+ MatrixType m_matrix;
+
+ bool m_isPositiveDefinite;
+};
+
+/** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix
+ */
+template<typename MatrixType>
+void LDLT<MatrixType>::compute(const MatrixType& a)
+{
+ assert(a.rows()==a.cols());
+ const int size = a.rows();
+ m_matrix.resize(size, size);
+ m_isPositiveDefinite = true;
+ const RealScalar eps = ei_sqrt(precision<Scalar>());
+
+ if (size<=1)
+ {
+ m_matrix = a;
+ return;
+ }
+
+ // Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
+ // Unlike the standard LLT decomposition, here we cannot evaluate it to the destination
+ // matrix because it a sub-row which is not compatible suitable for efficient packet evaluation.
+ // (at least if we assume the matrix is col-major)
+ Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
+
+ // Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store
+ // column vector, thus the strange .conjugate() and .transpose()...
+
+ m_matrix.row(0) = a.row(0).conjugate();
+ m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
+ for (int j = 1; j < size; ++j)
+ {
+ RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
+ m_matrix.coeffRef(j,j) = tmp;
+
+ if (tmp < eps)
+ {
+ m_isPositiveDefinite = false;
+ return;
+ }
+
+ int endSize = size-j-1;
+ if (endSize>0)
+ {
+ _temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
+ * m_matrix.col(j).start(j).conjugate() ).lazy();
+
+ m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate()
+ - _temporary.end(endSize).transpose();
+
+ m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp;
+ }
+ }
+}
+
+/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ * The result is stored in \a result
+ *
+ * \returns true in case of success, false otherwise.
+ *
+ * In other words, it computes \f$ b = A^{-1} b \f$ with
+ * \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
+ *
+ * \sa LDLT::solveInPlace(), MatrixBase::ldlt()
+ */
+template<typename MatrixType>
+template<typename RhsDerived, typename ResultType>
+bool LDLT<MatrixType>
+::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
+{
+ const int size = m_matrix.rows();
+ ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
+ *result = b;
+ return solveInPlace(*result);
+}
+
+/** This is the \em in-place version of solve().
+ *
+ * \param bAndX represents both the right-hand side matrix b and result x.
+ *
+ * This version avoids a copy when the right hand side matrix b is not
+ * needed anymore.
+ *
+ * \sa LDLT::solve(), MatrixBase::ldlt()
+ */
+template<typename MatrixType>
+template<typename Derived>
+bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
+{
+ const int size = m_matrix.rows();
+ ei_assert(size==bAndX.rows());
+ if (!m_isPositiveDefinite)
+ return false;
+ matrixL().solveTriangularInPlace(bAndX);
+ bAndX = (m_matrix.cwise().inverse().template part<Diagonal>() * bAndX).lazy();
+ m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX);
+ return true;
+}
+
+/** \cholesky_module
+ * \returns the Cholesky decomposition without square root of \c *this
+ */
+template<typename Derived>
+inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::ldlt() const
+{
+ return derived();
+}
+
+#endif // EIGEN_LDLT_H