Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Cholesky/LDLT.h')
-rw-r--r--extern/Eigen2/Eigen/src/Cholesky/LDLT.h198
1 files changed, 0 insertions, 198 deletions
diff --git a/extern/Eigen2/Eigen/src/Cholesky/LDLT.h b/extern/Eigen2/Eigen/src/Cholesky/LDLT.h
deleted file mode 100644
index 205b78a6ded..00000000000
--- a/extern/Eigen2/Eigen/src/Cholesky/LDLT.h
+++ /dev/null
@@ -1,198 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_LDLT_H
-#define EIGEN_LDLT_H
-
-/** \ingroup cholesky_Module
- *
- * \class LDLT
- *
- * \brief Robust Cholesky decomposition of a matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition
- *
- * This class performs a Cholesky decomposition without square root of a symmetric, positive definite
- * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
- * and D is a diagonal matrix.
- *
- * Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
- * stable computation.
- *
- * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
- * the strict lower part does not have to store correct values.
- *
- * \sa MatrixBase::ldlt(), class LLT
- */
-template<typename MatrixType> class LDLT
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
-
- LDLT(const MatrixType& matrix)
- : m_matrix(matrix.rows(), matrix.cols())
- {
- compute(matrix);
- }
-
- /** \returns the lower triangular matrix L */
- inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; }
-
- /** \returns the coefficients of the diagonal matrix D */
- inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); }
-
- /** \returns true if the matrix is positive definite */
- inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
-
- template<typename RhsDerived, typename ResultType>
- bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &bAndX) const;
-
- void compute(const MatrixType& matrix);
-
- protected:
- /** \internal
- * Used to compute and store the cholesky decomposition A = L D L^* = U^* D U.
- * The strict upper part is used during the decomposition, the strict lower
- * part correspond to the coefficients of L (its diagonal is equal to 1 and
- * is not stored), and the diagonal entries correspond to D.
- */
- MatrixType m_matrix;
-
- bool m_isPositiveDefinite;
-};
-
-/** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix
- */
-template<typename MatrixType>
-void LDLT<MatrixType>::compute(const MatrixType& a)
-{
- assert(a.rows()==a.cols());
- const int size = a.rows();
- m_matrix.resize(size, size);
- m_isPositiveDefinite = true;
- const RealScalar eps = ei_sqrt(precision<Scalar>());
-
- if (size<=1)
- {
- m_matrix = a;
- return;
- }
-
- // Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
- // Unlike the standard LLT decomposition, here we cannot evaluate it to the destination
- // matrix because it a sub-row which is not compatible suitable for efficient packet evaluation.
- // (at least if we assume the matrix is col-major)
- Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
-
- // Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store
- // column vector, thus the strange .conjugate() and .transpose()...
-
- m_matrix.row(0) = a.row(0).conjugate();
- m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
- for (int j = 1; j < size; ++j)
- {
- RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
- m_matrix.coeffRef(j,j) = tmp;
-
- if (tmp < eps)
- {
- m_isPositiveDefinite = false;
- return;
- }
-
- int endSize = size-j-1;
- if (endSize>0)
- {
- _temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
- * m_matrix.col(j).start(j).conjugate() ).lazy();
-
- m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate()
- - _temporary.end(endSize).transpose();
-
- m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp;
- }
- }
-}
-
-/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
- * The result is stored in \a result
- *
- * \returns true in case of success, false otherwise.
- *
- * In other words, it computes \f$ b = A^{-1} b \f$ with
- * \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
- *
- * \sa LDLT::solveInPlace(), MatrixBase::ldlt()
- */
-template<typename MatrixType>
-template<typename RhsDerived, typename ResultType>
-bool LDLT<MatrixType>
-::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
-{
- const int size = m_matrix.rows();
- ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
- *result = b;
- return solveInPlace(*result);
-}
-
-/** This is the \em in-place version of solve().
- *
- * \param bAndX represents both the right-hand side matrix b and result x.
- *
- * This version avoids a copy when the right hand side matrix b is not
- * needed anymore.
- *
- * \sa LDLT::solve(), MatrixBase::ldlt()
- */
-template<typename MatrixType>
-template<typename Derived>
-bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
-{
- const int size = m_matrix.rows();
- ei_assert(size==bAndX.rows());
- if (!m_isPositiveDefinite)
- return false;
- matrixL().solveTriangularInPlace(bAndX);
- bAndX = (m_matrix.cwise().inverse().template part<Diagonal>() * bAndX).lazy();
- m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX);
- return true;
-}
-
-/** \cholesky_module
- * \returns the Cholesky decomposition without square root of \c *this
- */
-template<typename Derived>
-inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType>
-MatrixBase<Derived>::ldlt() const
-{
- return derived();
-}
-
-#endif // EIGEN_LDLT_H