Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Cholesky/LLT.h')
-rw-r--r--extern/Eigen2/Eigen/src/Cholesky/LLT.h219
1 files changed, 0 insertions, 219 deletions
diff --git a/extern/Eigen2/Eigen/src/Cholesky/LLT.h b/extern/Eigen2/Eigen/src/Cholesky/LLT.h
deleted file mode 100644
index 42c959f83a2..00000000000
--- a/extern/Eigen2/Eigen/src/Cholesky/LLT.h
+++ /dev/null
@@ -1,219 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_LLT_H
-#define EIGEN_LLT_H
-
-/** \ingroup cholesky_Module
- *
- * \class LLT
- *
- * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
- *
- * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
- * matrix A such that A = LL^* = U^*U, where L is lower triangular.
- *
- * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
- * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
- * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
- * situations like generalised eigen problems with hermitian matrices.
- *
- * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
- * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
- * has a solution.
- *
- * \sa MatrixBase::llt(), class LDLT
- */
- /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
- * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
- * the strict lower part does not have to store correct values.
- */
-template<typename MatrixType> class LLT
-{
- private:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
-
- enum {
- PacketSize = ei_packet_traits<Scalar>::size,
- AlignmentMask = int(PacketSize)-1
- };
-
- public:
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via LLT::compute(const MatrixType&).
- */
- LLT() : m_matrix(), m_isInitialized(false) {}
-
- LLT(const MatrixType& matrix)
- : m_matrix(matrix.rows(), matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** \returns the lower triangular matrix L */
- inline Part<MatrixType, LowerTriangular> matrixL(void) const
- {
- ei_assert(m_isInitialized && "LLT is not initialized.");
- return m_matrix;
- }
-
- /** \deprecated */
- inline bool isPositiveDefinite(void) const { return m_isInitialized && m_isPositiveDefinite; }
-
- template<typename RhsDerived, typename ResultType>
- bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &bAndX) const;
-
- void compute(const MatrixType& matrix);
-
- protected:
- /** \internal
- * Used to compute and store L
- * The strict upper part is not used and even not initialized.
- */
- MatrixType m_matrix;
- bool m_isInitialized;
- bool m_isPositiveDefinite;
-};
-
-/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
- */
-template<typename MatrixType>
-void LLT<MatrixType>::compute(const MatrixType& a)
-{
- assert(a.rows()==a.cols());
- m_isPositiveDefinite = true;
- const int size = a.rows();
- m_matrix.resize(size, size);
- // The biggest overall is the point of reference to which further diagonals
- // are compared; if any diagonal is negligible compared
- // to the largest overall, the algorithm bails. This cutoff is suggested
- // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
- // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
- // Algorithms" page 217, also by Higham.
- const RealScalar cutoff = machine_epsilon<Scalar>() * size * a.diagonal().cwise().abs().maxCoeff();
- RealScalar x;
- x = ei_real(a.coeff(0,0));
- m_matrix.coeffRef(0,0) = ei_sqrt(x);
- if(size==1)
- {
- m_isInitialized = true;
- return;
- }
- m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
- for (int j = 1; j < size; ++j)
- {
- x = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm();
- if (x < cutoff)
- {
- m_isPositiveDefinite = false;
- continue;
- }
-
- m_matrix.coeffRef(j,j) = x = ei_sqrt(x);
-
- int endSize = size-j-1;
- if (endSize>0) {
- // Note that when all matrix columns have good alignment, then the following
- // product is guaranteed to be optimal with respect to alignment.
- m_matrix.col(j).end(endSize) =
- (m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy();
-
- // FIXME could use a.col instead of a.row
- m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
- - m_matrix.col(j).end(endSize) ) / x;
- }
- }
-
- m_isInitialized = true;
-}
-
-/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
- * The result is stored in \a result
- *
- * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
- *
- * In other words, it computes \f$ b = A^{-1} b \f$ with
- * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
- *
- * Example: \include LLT_solve.cpp
- * Output: \verbinclude LLT_solve.out
- *
- * \sa LLT::solveInPlace(), MatrixBase::llt()
- */
-template<typename MatrixType>
-template<typename RhsDerived, typename ResultType>
-bool LLT<MatrixType>::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
-{
- ei_assert(m_isInitialized && "LLT is not initialized.");
- const int size = m_matrix.rows();
- ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
- return solveInPlace((*result) = b);
-}
-
-/** This is the \em in-place version of solve().
- *
- * \param bAndX represents both the right-hand side matrix b and result x.
- *
- * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
- *
- * This version avoids a copy when the right hand side matrix b is not
- * needed anymore.
- *
- * \sa LLT::solve(), MatrixBase::llt()
- */
-template<typename MatrixType>
-template<typename Derived>
-bool LLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
-{
- ei_assert(m_isInitialized && "LLT is not initialized.");
- const int size = m_matrix.rows();
- ei_assert(size==bAndX.rows());
- matrixL().solveTriangularInPlace(bAndX);
- m_matrix.adjoint().template part<UpperTriangular>().solveTriangularInPlace(bAndX);
- return true;
-}
-
-/** \cholesky_module
- * \returns the LLT decomposition of \c *this
- */
-template<typename Derived>
-inline const LLT<typename MatrixBase<Derived>::PlainMatrixType>
-MatrixBase<Derived>::llt() const
-{
- return LLT<PlainMatrixType>(derived());
-}
-
-#endif // EIGEN_LLT_H