Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Core/Functors.h')
-rw-r--r--extern/Eigen2/Eigen/src/Core/Functors.h378
1 files changed, 0 insertions, 378 deletions
diff --git a/extern/Eigen2/Eigen/src/Core/Functors.h b/extern/Eigen2/Eigen/src/Core/Functors.h
deleted file mode 100644
index 969cad78d8f..00000000000
--- a/extern/Eigen2/Eigen/src/Core/Functors.h
+++ /dev/null
@@ -1,378 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_FUNCTORS_H
-#define EIGEN_FUNCTORS_H
-
-// associative functors:
-
-/** \internal
- * \brief Template functor to compute the sum of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::operator+, class PartialRedux, MatrixBase::sum()
- */
-template<typename Scalar> struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
- { return ei_padd(a,b); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_sum_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = ei_packet_traits<Scalar>::size>1
- };
-};
-
-/** \internal
- * \brief Template functor to compute the product of two scalars
- *
- * \sa class CwiseBinaryOp, Cwise::operator*(), class PartialRedux, MatrixBase::redux()
- */
-template<typename Scalar> struct ei_scalar_product_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
- { return ei_pmul(a,b); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_product_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::MulCost,
- PacketAccess = ei_packet_traits<Scalar>::size>1
- };
-};
-
-/** \internal
- * \brief Template functor to compute the min of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class PartialRedux, MatrixBase::minCoeff()
- */
-template<typename Scalar> struct ei_scalar_min_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
- { return ei_pmin(a,b); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_min_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = ei_packet_traits<Scalar>::size>1
- };
-};
-
-/** \internal
- * \brief Template functor to compute the max of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class PartialRedux, MatrixBase::maxCoeff()
- */
-template<typename Scalar> struct ei_scalar_max_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
- { return ei_pmax(a,b); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_max_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = ei_packet_traits<Scalar>::size>1
- };
-};
-
-
-// other binary functors:
-
-/** \internal
- * \brief Template functor to compute the difference of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::operator-
- */
-template<typename Scalar> struct ei_scalar_difference_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
- { return ei_psub(a,b); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_difference_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = ei_packet_traits<Scalar>::size>1
- };
-};
-
-/** \internal
- * \brief Template functor to compute the quotient of two scalars
- *
- * \sa class CwiseBinaryOp, Cwise::operator/()
- */
-template<typename Scalar> struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
- { return ei_pdiv(a,b); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_quotient_op<Scalar> > {
- enum {
- Cost = 2 * NumTraits<Scalar>::MulCost,
- PacketAccess = ei_packet_traits<Scalar>::size>1
- #if (defined EIGEN_VECTORIZE_SSE)
- && NumTraits<Scalar>::HasFloatingPoint
- #endif
- };
-};
-
-// unary functors:
-
-/** \internal
- * \brief Template functor to compute the opposite of a scalar
- *
- * \sa class CwiseUnaryOp, MatrixBase::operator-
- */
-template<typename Scalar> struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_opposite_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to compute the absolute value of a scalar
- *
- * \sa class CwiseUnaryOp, Cwise::abs
- */
-template<typename Scalar> struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT {
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_abs_op<Scalar> >
-{
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = false // this could actually be vectorized with SSSE3.
- };
-};
-
-/** \internal
- * \brief Template functor to compute the squared absolute value of a scalar
- *
- * \sa class CwiseUnaryOp, Cwise::abs2
- */
-template<typename Scalar> struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT {
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
- { return ei_pmul(a,a); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_abs2_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
-
-/** \internal
- * \brief Template functor to compute the conjugate of a complex value
- *
- * \sa class CwiseUnaryOp, MatrixBase::conjugate()
- */
-template<typename Scalar> struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); }
- template<typename PacketScalar>
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return a; }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_conjugate_op<Scalar> >
-{
- enum {
- Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
- PacketAccess = int(ei_packet_traits<Scalar>::size)>1
- };
-};
-
-/** \internal
- * \brief Template functor to cast a scalar to another type
- *
- * \sa class CwiseUnaryOp, MatrixBase::cast()
- */
-template<typename Scalar, typename NewType>
-struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT {
- typedef NewType result_type;
- EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return static_cast<NewType>(a); }
-};
-template<typename Scalar, typename NewType>
-struct ei_functor_traits<ei_scalar_cast_op<Scalar,NewType> >
-{ enum { Cost = ei_is_same_type<Scalar, NewType>::ret ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to extract the real part of a complex
- *
- * \sa class CwiseUnaryOp, MatrixBase::real()
- */
-template<typename Scalar>
-struct ei_scalar_real_op EIGEN_EMPTY_STRUCT {
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_real_op<Scalar> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to extract the imaginary part of a complex
- *
- * \sa class CwiseUnaryOp, MatrixBase::imag()
- */
-template<typename Scalar>
-struct ei_scalar_imag_op EIGEN_EMPTY_STRUCT {
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_imag_op<Scalar> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to multiply a scalar by a fixed other one
- *
- * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
- */
-/* NOTE why doing the ei_pset1() in packetOp *is* an optimization ?
- * indeed it seems better to declare m_other as a PacketScalar and do the ei_pset1() once
- * in the constructor. However, in practice:
- * - GCC does not like m_other as a PacketScalar and generate a load every time it needs it
- * - one the other hand GCC is able to moves the ei_pset1() away the loop :)
- * - simpler code ;)
- * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
- */
-template<typename Scalar>
-struct ei_scalar_multiple_op {
- typedef typename ei_packet_traits<Scalar>::type PacketScalar;
- // FIXME default copy constructors seems bugged with std::complex<>
- EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { }
- EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
- { return ei_pmul(a, ei_pset1(m_other)); }
- const Scalar m_other;
-private:
- ei_scalar_multiple_op& operator=(const ei_scalar_multiple_op&);
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_multiple_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
-
-template<typename Scalar, bool HasFloatingPoint>
-struct ei_scalar_quotient1_impl {
- typedef typename ei_packet_traits<Scalar>::type PacketScalar;
- // FIXME default copy constructors seems bugged with std::complex<>
- EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
- EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
- EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
- { return ei_pmul(a, ei_pset1(m_other)); }
- const Scalar m_other;
-private:
- ei_scalar_quotient1_impl& operator=(const ei_scalar_quotient1_impl&);
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,true> >
-{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
-
-template<typename Scalar>
-struct ei_scalar_quotient1_impl<Scalar,false> {
- // FIXME default copy constructors seems bugged with std::complex<>
- EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
- EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
- const Scalar m_other;
-private:
- ei_scalar_quotient1_impl& operator=(const ei_scalar_quotient1_impl&);
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> >
-{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to divide a scalar by a fixed other one
- *
- * This functor is used to implement the quotient of a matrix by
- * a scalar where the scalar type is not necessarily a floating point type.
- *
- * \sa class CwiseUnaryOp, MatrixBase::operator/
- */
-template<typename Scalar>
-struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint > {
- EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other)
- : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint >(other) {}
-private:
- ei_scalar_quotient1_op& operator=(const ei_scalar_quotient1_op&);
-};
-
-// nullary functors
-
-template<typename Scalar>
-struct ei_scalar_constant_op {
- typedef typename ei_packet_traits<Scalar>::type PacketScalar;
- EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { }
- EIGEN_STRONG_INLINE const Scalar operator() (int, int = 0) const { return m_other; }
- EIGEN_STRONG_INLINE const PacketScalar packetOp() const { return ei_pset1(m_other); }
- const Scalar m_other;
-private:
- ei_scalar_constant_op& operator=(const ei_scalar_constant_op&);
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_constant_op<Scalar> >
-{ enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::size>1, IsRepeatable = true }; };
-
-template<typename Scalar> struct ei_scalar_identity_op EIGEN_EMPTY_STRUCT {
- EIGEN_STRONG_INLINE ei_scalar_identity_op(void) {}
- EIGEN_STRONG_INLINE const Scalar operator() (int row, int col) const { return row==col ? Scalar(1) : Scalar(0); }
-};
-template<typename Scalar>
-struct ei_functor_traits<ei_scalar_identity_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
-
-// allow to add new functors and specializations of ei_functor_traits from outside Eigen.
-// this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used...
-#ifdef EIGEN_FUNCTORS_PLUGIN
-#include EIGEN_FUNCTORS_PLUGIN
-#endif
-
-// all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta
-// to indicate whether a functor allows linear access, just always answering 'yes' except for
-// ei_scalar_identity_op.
-template<typename Functor> struct ei_functor_has_linear_access { enum { ret = 1 }; };
-template<typename Scalar> struct ei_functor_has_linear_access<ei_scalar_identity_op<Scalar> > { enum { ret = 0 }; };
-
-// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
-// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
-template<typename Functor> struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
-template<typename Scalar> struct ei_functor_allows_mixing_real_and_complex<ei_scalar_product_op<Scalar> > { enum { ret = 1 }; };
-
-#endif // EIGEN_FUNCTORS_H