Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Core/MathFunctions.h')
-rw-r--r--extern/Eigen2/Eigen/src/Core/MathFunctions.h295
1 files changed, 295 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/Core/MathFunctions.h b/extern/Eigen2/Eigen/src/Core/MathFunctions.h
new file mode 100644
index 00000000000..1ee64af02c6
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/Core/MathFunctions.h
@@ -0,0 +1,295 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_MATHFUNCTIONS_H
+#define EIGEN_MATHFUNCTIONS_H
+
+template<typename T> inline typename NumTraits<T>::Real precision();
+template<typename T> inline typename NumTraits<T>::Real machine_epsilon();
+template<typename T> inline T ei_random(T a, T b);
+template<typename T> inline T ei_random();
+template<typename T> inline T ei_random_amplitude()
+{
+ if(NumTraits<T>::HasFloatingPoint) return static_cast<T>(1);
+ else return static_cast<T>(10);
+}
+
+template<typename T> inline T ei_hypot(T x, T y)
+{
+ T _x = ei_abs(x);
+ T _y = ei_abs(y);
+ T p = std::max(_x, _y);
+ T q = std::min(_x, _y);
+ T qp = q/p;
+ return p * ei_sqrt(T(1) + qp*qp);
+}
+
+/**************
+*** int ***
+**************/
+
+template<> inline int precision<int>() { return 0; }
+template<> inline int machine_epsilon<int>() { return 0; }
+inline int ei_real(int x) { return x; }
+inline int ei_imag(int) { return 0; }
+inline int ei_conj(int x) { return x; }
+inline int ei_abs(int x) { return abs(x); }
+inline int ei_abs2(int x) { return x*x; }
+inline int ei_sqrt(int) { ei_assert(false); return 0; }
+inline int ei_exp(int) { ei_assert(false); return 0; }
+inline int ei_log(int) { ei_assert(false); return 0; }
+inline int ei_sin(int) { ei_assert(false); return 0; }
+inline int ei_cos(int) { ei_assert(false); return 0; }
+inline int ei_atan2(int, int) { ei_assert(false); return 0; }
+inline int ei_pow(int x, int y) { return int(std::pow(double(x), y)); }
+
+template<> inline int ei_random(int a, int b)
+{
+ // We can't just do rand()%n as only the high-order bits are really random
+ return a + static_cast<int>((b-a+1) * (rand() / (RAND_MAX + 1.0)));
+}
+template<> inline int ei_random()
+{
+ return ei_random<int>(-ei_random_amplitude<int>(), ei_random_amplitude<int>());
+}
+inline bool ei_isMuchSmallerThan(int a, int, int = precision<int>())
+{
+ return a == 0;
+}
+inline bool ei_isApprox(int a, int b, int = precision<int>())
+{
+ return a == b;
+}
+inline bool ei_isApproxOrLessThan(int a, int b, int = precision<int>())
+{
+ return a <= b;
+}
+
+/**************
+*** float ***
+**************/
+
+template<> inline float precision<float>() { return 1e-5f; }
+template<> inline float machine_epsilon<float>() { return 1.192e-07f; }
+inline float ei_real(float x) { return x; }
+inline float ei_imag(float) { return 0.f; }
+inline float ei_conj(float x) { return x; }
+inline float ei_abs(float x) { return std::abs(x); }
+inline float ei_abs2(float x) { return x*x; }
+inline float ei_sqrt(float x) { return std::sqrt(x); }
+inline float ei_exp(float x) { return std::exp(x); }
+inline float ei_log(float x) { return std::log(x); }
+inline float ei_sin(float x) { return std::sin(x); }
+inline float ei_cos(float x) { return std::cos(x); }
+inline float ei_atan2(float y, float x) { return std::atan2(y,x); }
+inline float ei_pow(float x, float y) { return std::pow(x, y); }
+
+template<> inline float ei_random(float a, float b)
+{
+#ifdef EIGEN_NICE_RANDOM
+ int i;
+ do { i = ei_random<int>(256*int(a),256*int(b));
+ } while(i==0);
+ return float(i)/256.f;
+#else
+ return a + (b-a) * float(std::rand()) / float(RAND_MAX);
+#endif
+}
+template<> inline float ei_random()
+{
+ return ei_random<float>(-ei_random_amplitude<float>(), ei_random_amplitude<float>());
+}
+inline bool ei_isMuchSmallerThan(float a, float b, float prec = precision<float>())
+{
+ return ei_abs(a) <= ei_abs(b) * prec;
+}
+inline bool ei_isApprox(float a, float b, float prec = precision<float>())
+{
+ return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
+}
+inline bool ei_isApproxOrLessThan(float a, float b, float prec = precision<float>())
+{
+ return a <= b || ei_isApprox(a, b, prec);
+}
+
+/**************
+*** double ***
+**************/
+
+template<> inline double precision<double>() { return 1e-11; }
+template<> inline double machine_epsilon<double>() { return 2.220e-16; }
+
+inline double ei_real(double x) { return x; }
+inline double ei_imag(double) { return 0.; }
+inline double ei_conj(double x) { return x; }
+inline double ei_abs(double x) { return std::abs(x); }
+inline double ei_abs2(double x) { return x*x; }
+inline double ei_sqrt(double x) { return std::sqrt(x); }
+inline double ei_exp(double x) { return std::exp(x); }
+inline double ei_log(double x) { return std::log(x); }
+inline double ei_sin(double x) { return std::sin(x); }
+inline double ei_cos(double x) { return std::cos(x); }
+inline double ei_atan2(double y, double x) { return std::atan2(y,x); }
+inline double ei_pow(double x, double y) { return std::pow(x, y); }
+
+template<> inline double ei_random(double a, double b)
+{
+#ifdef EIGEN_NICE_RANDOM
+ int i;
+ do { i= ei_random<int>(256*int(a),256*int(b));
+ } while(i==0);
+ return i/256.;
+#else
+ return a + (b-a) * std::rand() / RAND_MAX;
+#endif
+}
+template<> inline double ei_random()
+{
+ return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
+}
+inline bool ei_isMuchSmallerThan(double a, double b, double prec = precision<double>())
+{
+ return ei_abs(a) <= ei_abs(b) * prec;
+}
+inline bool ei_isApprox(double a, double b, double prec = precision<double>())
+{
+ return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
+}
+inline bool ei_isApproxOrLessThan(double a, double b, double prec = precision<double>())
+{
+ return a <= b || ei_isApprox(a, b, prec);
+}
+
+/*********************
+*** complex<float> ***
+*********************/
+
+template<> inline float precision<std::complex<float> >() { return precision<float>(); }
+template<> inline float machine_epsilon<std::complex<float> >() { return machine_epsilon<float>(); }
+inline float ei_real(const std::complex<float>& x) { return std::real(x); }
+inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
+inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
+inline float ei_abs(const std::complex<float>& x) { return std::abs(x); }
+inline float ei_abs2(const std::complex<float>& x) { return std::norm(x); }
+inline std::complex<float> ei_exp(std::complex<float> x) { return std::exp(x); }
+inline std::complex<float> ei_sin(std::complex<float> x) { return std::sin(x); }
+inline std::complex<float> ei_cos(std::complex<float> x) { return std::cos(x); }
+inline std::complex<float> ei_atan2(std::complex<float>, std::complex<float> ) { ei_assert(false); return 0; }
+
+template<> inline std::complex<float> ei_random()
+{
+ return std::complex<float>(ei_random<float>(), ei_random<float>());
+}
+inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
+{
+ return ei_abs2(a) <= ei_abs2(b) * prec * prec;
+}
+inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = precision<float>())
+{
+ return ei_abs2(a) <= ei_abs2(b) * prec * prec;
+}
+inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
+{
+ return ei_isApprox(ei_real(a), ei_real(b), prec)
+ && ei_isApprox(ei_imag(a), ei_imag(b), prec);
+}
+// ei_isApproxOrLessThan wouldn't make sense for complex numbers
+
+/**********************
+*** complex<double> ***
+**********************/
+
+template<> inline double precision<std::complex<double> >() { return precision<double>(); }
+template<> inline double machine_epsilon<std::complex<double> >() { return machine_epsilon<double>(); }
+inline double ei_real(const std::complex<double>& x) { return std::real(x); }
+inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
+inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
+inline double ei_abs(const std::complex<double>& x) { return std::abs(x); }
+inline double ei_abs2(const std::complex<double>& x) { return std::norm(x); }
+inline std::complex<double> ei_exp(std::complex<double> x) { return std::exp(x); }
+inline std::complex<double> ei_sin(std::complex<double> x) { return std::sin(x); }
+inline std::complex<double> ei_cos(std::complex<double> x) { return std::cos(x); }
+inline std::complex<double> ei_atan2(std::complex<double>, std::complex<double>) { ei_assert(false); return 0; }
+
+template<> inline std::complex<double> ei_random()
+{
+ return std::complex<double>(ei_random<double>(), ei_random<double>());
+}
+inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
+{
+ return ei_abs2(a) <= ei_abs2(b) * prec * prec;
+}
+inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = precision<double>())
+{
+ return ei_abs2(a) <= ei_abs2(b) * prec * prec;
+}
+inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
+{
+ return ei_isApprox(ei_real(a), ei_real(b), prec)
+ && ei_isApprox(ei_imag(a), ei_imag(b), prec);
+}
+// ei_isApproxOrLessThan wouldn't make sense for complex numbers
+
+
+/******************
+*** long double ***
+******************/
+
+template<> inline long double precision<long double>() { return precision<double>(); }
+template<> inline long double machine_epsilon<long double>() { return 1.084e-19l; }
+inline long double ei_real(long double x) { return x; }
+inline long double ei_imag(long double) { return 0.; }
+inline long double ei_conj(long double x) { return x; }
+inline long double ei_abs(long double x) { return std::abs(x); }
+inline long double ei_abs2(long double x) { return x*x; }
+inline long double ei_sqrt(long double x) { return std::sqrt(x); }
+inline long double ei_exp(long double x) { return std::exp(x); }
+inline long double ei_log(long double x) { return std::log(x); }
+inline long double ei_sin(long double x) { return std::sin(x); }
+inline long double ei_cos(long double x) { return std::cos(x); }
+inline long double ei_atan2(long double y, long double x) { return std::atan2(y,x); }
+inline long double ei_pow(long double x, long double y) { return std::pow(x, y); }
+
+template<> inline long double ei_random(long double a, long double b)
+{
+ return ei_random<double>(static_cast<double>(a),static_cast<double>(b));
+}
+template<> inline long double ei_random()
+{
+ return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
+}
+inline bool ei_isMuchSmallerThan(long double a, long double b, long double prec = precision<long double>())
+{
+ return ei_abs(a) <= ei_abs(b) * prec;
+}
+inline bool ei_isApprox(long double a, long double b, long double prec = precision<long double>())
+{
+ return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
+}
+inline bool ei_isApproxOrLessThan(long double a, long double b, long double prec = precision<long double>())
+{
+ return a <= b || ei_isApprox(a, b, prec);
+}
+
+#endif // EIGEN_MATHFUNCTIONS_H