Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Core/Matrix.h')
-rw-r--r--extern/Eigen2/Eigen/src/Core/Matrix.h637
1 files changed, 637 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/Core/Matrix.h b/extern/Eigen2/Eigen/src/Core/Matrix.h
new file mode 100644
index 00000000000..ffd16d37606
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/Core/Matrix.h
@@ -0,0 +1,637 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_MATRIX_H
+#define EIGEN_MATRIX_H
+
+
+/** \class Matrix
+ *
+ * \brief The matrix class, also used for vectors and row-vectors
+ *
+ * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
+ * Vectors are matrices with one column, and row-vectors are matrices with one row.
+ *
+ * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
+ *
+ * The first three template parameters are required:
+ * \param _Scalar Numeric type, i.e. float, double, int
+ * \param _Rows Number of rows, or \b Dynamic
+ * \param _Cols Number of columns, or \b Dynamic
+ *
+ * The remaining template parameters are optional -- in most cases you don't have to worry about them.
+ * \param _Options A combination of either \b RowMajor or \b ColMajor, and of either
+ * \b AutoAlign or \b DontAlign.
+ * The former controls storage order, and defaults to column-major. The latter controls alignment, which is required
+ * for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
+ * \param _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
+ * \param _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
+ *
+ * Eigen provides a number of typedefs covering the usual cases. Here are some examples:
+ *
+ * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
+ * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
+ * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
+ *
+ * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
+ * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
+ *
+ * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
+ *
+ * You can access elements of vectors and matrices using normal subscripting:
+ *
+ * \code
+ * Eigen::VectorXd v(10);
+ * v[0] = 0.1;
+ * v[1] = 0.2;
+ * v(0) = 0.3;
+ * v(1) = 0.4;
+ *
+ * Eigen::MatrixXi m(10, 10);
+ * m(0, 1) = 1;
+ * m(0, 2) = 2;
+ * m(0, 3) = 3;
+ * \endcode
+ *
+ * <i><b>Some notes:</b></i>
+ *
+ * <dl>
+ * <dt><b>\anchor dense Dense versus sparse:</b></dt>
+ * <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
+ *
+ * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
+ * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
+ *
+ * <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
+ * <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
+ * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
+ * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
+ *
+ * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
+ * variables, and the array of coefficients is allocated dynamically on the heap.
+ *
+ * Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
+ * If you want this behavior, see the Sparse module.</dd>
+ *
+ * <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
+ * <dd>In most cases, one just leaves these parameters to the default values.
+ * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
+ * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
+ * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
+ * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
+ * </dl>
+ *
+ * \see MatrixBase for the majority of the API methods for matrices
+ */
+template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
+struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
+{
+ typedef _Scalar Scalar;
+ enum {
+ RowsAtCompileTime = _Rows,
+ ColsAtCompileTime = _Cols,
+ MaxRowsAtCompileTime = _MaxRows,
+ MaxColsAtCompileTime = _MaxCols,
+ Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost
+ };
+};
+
+template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
+class Matrix
+ : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
+{
+ public:
+ EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix)
+ enum { Options = _Options };
+ friend class Eigen::Map<Matrix, Unaligned>;
+ typedef class Eigen::Map<Matrix, Unaligned> UnalignedMapType;
+ friend class Eigen::Map<Matrix, Aligned>;
+ typedef class Eigen::Map<Matrix, Aligned> AlignedMapType;
+
+ protected:
+ ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime, Options> m_storage;
+
+ public:
+ enum { NeedsToAlign = (Options&AutoAlign) == AutoAlign
+ && SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
+
+ Base& base() { return *static_cast<Base*>(this); }
+ const Base& base() const { return *static_cast<const Base*>(this); }
+
+ EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); }
+ EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); }
+
+ EIGEN_STRONG_INLINE int stride(void) const
+ {
+ if(Flags & RowMajorBit)
+ return m_storage.cols();
+ else
+ return m_storage.rows();
+ }
+
+ EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const
+ {
+ if(Flags & RowMajorBit)
+ return m_storage.data()[col + row * m_storage.cols()];
+ else // column-major
+ return m_storage.data()[row + col * m_storage.rows()];
+ }
+
+ EIGEN_STRONG_INLINE const Scalar& coeff(int index) const
+ {
+ return m_storage.data()[index];
+ }
+
+ EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col)
+ {
+ if(Flags & RowMajorBit)
+ return m_storage.data()[col + row * m_storage.cols()];
+ else // column-major
+ return m_storage.data()[row + col * m_storage.rows()];
+ }
+
+ EIGEN_STRONG_INLINE Scalar& coeffRef(int index)
+ {
+ return m_storage.data()[index];
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
+ {
+ return ei_ploadt<Scalar, LoadMode>
+ (m_storage.data() + (Flags & RowMajorBit
+ ? col + row * m_storage.cols()
+ : row + col * m_storage.rows()));
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(int index) const
+ {
+ return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
+ }
+
+ template<int StoreMode>
+ EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x)
+ {
+ ei_pstoret<Scalar, PacketScalar, StoreMode>
+ (m_storage.data() + (Flags & RowMajorBit
+ ? col + row * m_storage.cols()
+ : row + col * m_storage.rows()), x);
+ }
+
+ template<int StoreMode>
+ EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x)
+ {
+ ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
+ }
+
+ /** \returns a const pointer to the data array of this matrix */
+ EIGEN_STRONG_INLINE const Scalar *data() const
+ { return m_storage.data(); }
+
+ /** \returns a pointer to the data array of this matrix */
+ EIGEN_STRONG_INLINE Scalar *data()
+ { return m_storage.data(); }
+
+ /** Resizes \c *this to a \a rows x \a cols matrix.
+ *
+ * Makes sense for dynamic-size matrices only.
+ *
+ * If the current number of coefficients of \c *this exactly matches the
+ * product \a rows * \a cols, then no memory allocation is performed and
+ * the current values are left unchanged. In all other cases, including
+ * shrinking, the data is reallocated and all previous values are lost.
+ *
+ * \sa resize(int) for vectors.
+ */
+ inline void resize(int rows, int cols)
+ {
+ ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
+ && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
+ && (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
+ && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
+ m_storage.resize(rows * cols, rows, cols);
+ }
+
+ /** Resizes \c *this to a vector of length \a size
+ *
+ * \sa resize(int,int) for the details.
+ */
+ inline void resize(int size)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
+ if(RowsAtCompileTime == 1)
+ m_storage.resize(size, 1, size);
+ else
+ m_storage.resize(size, size, 1);
+ }
+
+ /** Copies the value of the expression \a other into \c *this with automatic resizing.
+ *
+ * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
+ * it will be initialized.
+ *
+ * Note that copying a row-vector into a vector (and conversely) is allowed.
+ * The resizing, if any, is then done in the appropriate way so that row-vectors
+ * remain row-vectors and vectors remain vectors.
+ */
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
+ {
+ return _set(other);
+ }
+
+ /** This is a special case of the templated operator=. Its purpose is to
+ * prevent a default operator= from hiding the templated operator=.
+ */
+ EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
+ {
+ return _set(other);
+ }
+
+ EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, +=)
+ EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, -=)
+ EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, *=)
+ EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, /=)
+
+ /** Default constructor.
+ *
+ * For fixed-size matrices, does nothing.
+ *
+ * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
+ * is called a null matrix. This constructor is the unique way to create null matrices: resizing
+ * a matrix to 0 is not supported.
+ *
+ * \sa resize(int,int)
+ */
+ EIGEN_STRONG_INLINE explicit Matrix() : m_storage()
+ {
+ _check_template_params();
+ }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** \internal */
+ Matrix(ei_constructor_without_unaligned_array_assert)
+ : m_storage(ei_constructor_without_unaligned_array_assert())
+ {}
+#endif
+
+ /** Constructs a vector or row-vector with given dimension. \only_for_vectors
+ *
+ * Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
+ * it is redundant to pass the dimension here, so it makes more sense to use the default
+ * constructor Matrix() instead.
+ */
+ EIGEN_STRONG_INLINE explicit Matrix(int dim)
+ : m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
+ {
+ _check_template_params();
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
+ ei_assert(dim > 0);
+ ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
+ }
+
+ /** This constructor has two very different behaviors, depending on the type of *this.
+ *
+ * \li When Matrix is a fixed-size vector type of size 2, this constructor constructs
+ * an initialized vector. The parameters \a x, \a y are copied into the first and second
+ * coords of the vector respectively.
+ * \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and
+ * \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices,
+ * it is redundant to pass these parameters, so one should use the default constructor
+ * Matrix() instead.
+ */
+ EIGEN_STRONG_INLINE Matrix(int x, int y) : m_storage(x*y, x, y)
+ {
+ _check_template_params();
+ if((RowsAtCompileTime == 1 && ColsAtCompileTime == 2)
+ || (RowsAtCompileTime == 2 && ColsAtCompileTime == 1))
+ {
+ m_storage.data()[0] = Scalar(x);
+ m_storage.data()[1] = Scalar(y);
+ }
+ else
+ {
+ ei_assert(x > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == x)
+ && y > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == y));
+ }
+ }
+ /** constructs an initialized 2D vector with given coefficients */
+ EIGEN_STRONG_INLINE Matrix(const float& x, const float& y)
+ {
+ _check_template_params();
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2)
+ m_storage.data()[0] = x;
+ m_storage.data()[1] = y;
+ }
+ /** constructs an initialized 2D vector with given coefficients */
+ EIGEN_STRONG_INLINE Matrix(const double& x, const double& y)
+ {
+ _check_template_params();
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2)
+ m_storage.data()[0] = x;
+ m_storage.data()[1] = y;
+ }
+ /** constructs an initialized 3D vector with given coefficients */
+ EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
+ {
+ _check_template_params();
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
+ m_storage.data()[0] = x;
+ m_storage.data()[1] = y;
+ m_storage.data()[2] = z;
+ }
+ /** constructs an initialized 4D vector with given coefficients */
+ EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
+ {
+ _check_template_params();
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
+ m_storage.data()[0] = x;
+ m_storage.data()[1] = y;
+ m_storage.data()[2] = z;
+ m_storage.data()[3] = w;
+ }
+
+ explicit Matrix(const Scalar *data);
+
+ /** Constructor copying the value of the expression \a other */
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
+ : m_storage(other.rows() * other.cols(), other.rows(), other.cols())
+ {
+ _check_template_params();
+ _set_noalias(other);
+ }
+ /** Copy constructor */
+ EIGEN_STRONG_INLINE Matrix(const Matrix& other)
+ : Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols())
+ {
+ _check_template_params();
+ _set_noalias(other);
+ }
+ /** Destructor */
+ inline ~Matrix() {}
+
+ /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
+ * data pointers.
+ */
+ template<typename OtherDerived>
+ void swap(const MatrixBase<OtherDerived>& other);
+
+ /** \name Map
+ * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
+ * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
+ * \a data pointers.
+ *
+ * \see class Map
+ */
+ //@{
+ inline static const UnalignedMapType Map(const Scalar* data)
+ { return UnalignedMapType(data); }
+ inline static UnalignedMapType Map(Scalar* data)
+ { return UnalignedMapType(data); }
+ inline static const UnalignedMapType Map(const Scalar* data, int size)
+ { return UnalignedMapType(data, size); }
+ inline static UnalignedMapType Map(Scalar* data, int size)
+ { return UnalignedMapType(data, size); }
+ inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols)
+ { return UnalignedMapType(data, rows, cols); }
+ inline static UnalignedMapType Map(Scalar* data, int rows, int cols)
+ { return UnalignedMapType(data, rows, cols); }
+
+ inline static const AlignedMapType MapAligned(const Scalar* data)
+ { return AlignedMapType(data); }
+ inline static AlignedMapType MapAligned(Scalar* data)
+ { return AlignedMapType(data); }
+ inline static const AlignedMapType MapAligned(const Scalar* data, int size)
+ { return AlignedMapType(data, size); }
+ inline static AlignedMapType MapAligned(Scalar* data, int size)
+ { return AlignedMapType(data, size); }
+ inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols)
+ { return AlignedMapType(data, rows, cols); }
+ inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols)
+ { return AlignedMapType(data, rows, cols); }
+ //@}
+
+ using Base::setConstant;
+ Matrix& setConstant(int size, const Scalar& value);
+ Matrix& setConstant(int rows, int cols, const Scalar& value);
+
+ using Base::setZero;
+ Matrix& setZero(int size);
+ Matrix& setZero(int rows, int cols);
+
+ using Base::setOnes;
+ Matrix& setOnes(int size);
+ Matrix& setOnes(int rows, int cols);
+
+ using Base::setRandom;
+ Matrix& setRandom(int size);
+ Matrix& setRandom(int rows, int cols);
+
+ using Base::setIdentity;
+ Matrix& setIdentity(int rows, int cols);
+
+/////////// Geometry module ///////////
+
+ template<typename OtherDerived>
+ explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
+ template<typename OtherDerived>
+ Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
+
+ // allow to extend Matrix outside Eigen
+ #ifdef EIGEN_MATRIX_PLUGIN
+ #include EIGEN_MATRIX_PLUGIN
+ #endif
+
+ private:
+ /** \internal Resizes *this in preparation for assigning \a other to it.
+ * Takes care of doing all the checking that's needed.
+ *
+ * Note that copying a row-vector into a vector (and conversely) is allowed.
+ * The resizing, if any, is then done in the appropriate way so that row-vectors
+ * remain row-vectors and vectors remain vectors.
+ */
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE void _resize_to_match(const MatrixBase<OtherDerived>& other)
+ {
+ if(RowsAtCompileTime == 1)
+ {
+ ei_assert(other.isVector());
+ resize(1, other.size());
+ }
+ else if(ColsAtCompileTime == 1)
+ {
+ ei_assert(other.isVector());
+ resize(other.size(), 1);
+ }
+ else resize(other.rows(), other.cols());
+ }
+
+ /** \internal Copies the value of the expression \a other into \c *this with automatic resizing.
+ *
+ * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
+ * it will be initialized.
+ *
+ * Note that copying a row-vector into a vector (and conversely) is allowed.
+ * The resizing, if any, is then done in the appropriate way so that row-vectors
+ * remain row-vectors and vectors remain vectors.
+ *
+ * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
+ */
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE Matrix& _set(const MatrixBase<OtherDerived>& other)
+ {
+ _set_selector(other.derived(), typename ei_meta_if<bool(int(OtherDerived::Flags) & EvalBeforeAssigningBit), ei_meta_true, ei_meta_false>::ret());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); }
+
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); }
+
+ /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
+ * is the case when creating a new matrix) so one can enforce lazy evaluation.
+ *
+ * \sa operator=(const MatrixBase<OtherDerived>&), _set()
+ */
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE Matrix& _set_noalias(const MatrixBase<OtherDerived>& other)
+ {
+ _resize_to_match(other);
+ // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
+ // it wouldn't allow to copy a row-vector into a column-vector.
+ return ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived());
+ }
+
+ static EIGEN_STRONG_INLINE void _check_template_params()
+ {
+ EIGEN_STATIC_ASSERT((_Rows > 0
+ && _Cols > 0
+ && _MaxRows <= _Rows
+ && _MaxCols <= _Cols
+ && (_Options & (AutoAlign|RowMajor)) == _Options),
+ INVALID_MATRIX_TEMPLATE_PARAMETERS)
+ }
+
+ template<typename MatrixType, typename OtherDerived, bool IsSameType, bool IsDynamicSize>
+ friend struct ei_matrix_swap_impl;
+};
+
+template<typename MatrixType, typename OtherDerived,
+ bool IsSameType = ei_is_same_type<MatrixType, OtherDerived>::ret,
+ bool IsDynamicSize = MatrixType::SizeAtCompileTime==Dynamic>
+struct ei_matrix_swap_impl
+{
+ static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
+ {
+ matrix.base().swap(other);
+ }
+};
+
+template<typename MatrixType, typename OtherDerived>
+struct ei_matrix_swap_impl<MatrixType, OtherDerived, true, true>
+{
+ static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
+ {
+ matrix.m_storage.swap(other.derived().m_storage);
+ }
+};
+
+template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
+template<typename OtherDerived>
+inline void Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::swap(const MatrixBase<OtherDerived>& other)
+{
+ ei_matrix_swap_impl<Matrix, OtherDerived>::run(*this, *const_cast<MatrixBase<OtherDerived>*>(&other));
+}
+
+
+/** \defgroup matrixtypedefs Global matrix typedefs
+ *
+ * \ingroup Core_Module
+ *
+ * Eigen defines several typedef shortcuts for most common matrix and vector types.
+ *
+ * The general patterns are the following:
+ *
+ * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
+ * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
+ * for complex double.
+ *
+ * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
+ *
+ * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
+ * a fixed-size vector of 4 complex floats.
+ *
+ * \sa class Matrix
+ */
+
+#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
+/** \ingroup matrixtypedefs */ \
+typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
+/** \ingroup matrixtypedefs */ \
+typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
+/** \ingroup matrixtypedefs */ \
+typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
+
+#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
+EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
+EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
+EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
+EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
+
+EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
+EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
+EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
+EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
+EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
+
+#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
+#undef EIGEN_MAKE_TYPEDEFS
+
+#undef EIGEN_MAKE_TYPEDEFS_LARGE
+
+#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
+using Eigen::Matrix##SizeSuffix##TypeSuffix; \
+using Eigen::Vector##SizeSuffix##TypeSuffix; \
+using Eigen::RowVector##SizeSuffix##TypeSuffix;
+
+#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
+
+#define EIGEN_USING_MATRIX_TYPEDEFS \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
+EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
+
+#endif // EIGEN_MATRIX_H