Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Core/util/XprHelper.h')
-rw-r--r--extern/Eigen2/Eigen/src/Core/util/XprHelper.h219
1 files changed, 219 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/Core/util/XprHelper.h b/extern/Eigen2/Eigen/src/Core/util/XprHelper.h
new file mode 100644
index 00000000000..12d6f9a3a3e
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/Core/util/XprHelper.h
@@ -0,0 +1,219 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_XPRHELPER_H
+#define EIGEN_XPRHELPER_H
+
+// just a workaround because GCC seems to not really like empty structs
+#ifdef __GNUG__
+ struct ei_empty_struct{char _ei_dummy_;};
+ #define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct
+#else
+ #define EIGEN_EMPTY_STRUCT
+#endif
+
+//classes inheriting ei_no_assignment_operator don't generate a default operator=.
+class ei_no_assignment_operator
+{
+ private:
+ ei_no_assignment_operator& operator=(const ei_no_assignment_operator&);
+};
+
+/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around an int variable that
+ * can be accessed using value() and setValue().
+ * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
+ */
+template<int Value> class ei_int_if_dynamic EIGEN_EMPTY_STRUCT
+{
+ public:
+ ei_int_if_dynamic() {}
+ explicit ei_int_if_dynamic(int) {}
+ static int value() { return Value; }
+ void setValue(int) {}
+};
+
+template<> class ei_int_if_dynamic<Dynamic>
+{
+ int m_value;
+ ei_int_if_dynamic() {}
+ public:
+ explicit ei_int_if_dynamic(int value) : m_value(value) {}
+ int value() const { return m_value; }
+ void setValue(int value) { m_value = value; }
+};
+
+template<typename T> struct ei_functor_traits
+{
+ enum
+ {
+ Cost = 10,
+ PacketAccess = false
+ };
+};
+
+template<typename T> struct ei_packet_traits
+{
+ typedef T type;
+ enum {size=1};
+};
+
+template<typename T> struct ei_unpacket_traits
+{
+ typedef T type;
+ enum {size=1};
+};
+
+template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+class ei_compute_matrix_flags
+{
+ enum {
+ row_major_bit = Options&RowMajor ? RowMajorBit : 0,
+ inner_max_size = row_major_bit ? MaxCols : MaxRows,
+ is_big = inner_max_size == Dynamic,
+ is_packet_size_multiple = (Cols*Rows) % ei_packet_traits<Scalar>::size == 0,
+ aligned_bit = ((Options&AutoAlign) && (is_big || is_packet_size_multiple)) ? AlignedBit : 0,
+ packet_access_bit = ei_packet_traits<Scalar>::size > 1 && aligned_bit ? PacketAccessBit : 0
+ };
+
+ public:
+ enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit };
+};
+
+template<int _Rows, int _Cols> struct ei_size_at_compile_time
+{
+ enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
+};
+
+/* ei_eval : the return type of eval(). For matrices, this is just a const reference
+ * in order to avoid a useless copy
+ */
+
+template<typename T, int Sparseness = ei_traits<T>::Flags&SparseBit> class ei_eval;
+
+template<typename T> struct ei_eval<T,IsDense>
+{
+ typedef Matrix<typename ei_traits<T>::Scalar,
+ ei_traits<T>::RowsAtCompileTime,
+ ei_traits<T>::ColsAtCompileTime,
+ AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
+ ei_traits<T>::MaxRowsAtCompileTime,
+ ei_traits<T>::MaxColsAtCompileTime
+ > type;
+};
+
+// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
+template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
+struct ei_eval<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, IsDense>
+{
+ typedef const Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type;
+};
+
+/* ei_plain_matrix_type : the difference from ei_eval is that ei_plain_matrix_type is always a plain matrix type,
+ * whereas ei_eval is a const reference in the case of a matrix
+ */
+template<typename T> struct ei_plain_matrix_type
+{
+ typedef Matrix<typename ei_traits<T>::Scalar,
+ ei_traits<T>::RowsAtCompileTime,
+ ei_traits<T>::ColsAtCompileTime,
+ AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
+ ei_traits<T>::MaxRowsAtCompileTime,
+ ei_traits<T>::MaxColsAtCompileTime
+ > type;
+};
+
+/* ei_plain_matrix_type_column_major : same as ei_plain_matrix_type but guaranteed to be column-major
+ */
+template<typename T> struct ei_plain_matrix_type_column_major
+{
+ typedef Matrix<typename ei_traits<T>::Scalar,
+ ei_traits<T>::RowsAtCompileTime,
+ ei_traits<T>::ColsAtCompileTime,
+ AutoAlign | ColMajor,
+ ei_traits<T>::MaxRowsAtCompileTime,
+ ei_traits<T>::MaxColsAtCompileTime
+ > type;
+};
+
+template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
+template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };
+
+/** \internal Determines how a given expression should be nested into another one.
+ * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
+ * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
+ * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
+ * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
+ * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
+ *
+ * \param T the type of the expression being nested
+ * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
+ *
+ * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
+ * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
+ * the Product expression uses: ei_nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
+ * ei_nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
+ * since a is of type Matrix3d, the Product expression nests it as ei_nested<Matrix3d, 3>::ret, which turns out to be
+ * const Matrix3d&, because the internal logic of ei_nested determined that since a was already a matrix, there was no point
+ * in copying it into another matrix.
+ */
+template<typename T, int n=1, typename PlainMatrixType = typename ei_eval<T>::type> struct ei_nested
+{
+ enum {
+ CostEval = (n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost),
+ CostNoEval = (n-1) * int(ei_traits<T>::CoeffReadCost)
+ };
+ typedef typename ei_meta_if<
+ ei_must_nest_by_value<T>::ret,
+ T,
+ typename ei_meta_if<
+ (int(ei_traits<T>::Flags) & EvalBeforeNestingBit)
+ || ( int(CostEval) <= int(CostNoEval) ),
+ PlainMatrixType,
+ const T&
+ >::ret
+ >::ret type;
+};
+
+template<unsigned int Flags> struct ei_are_flags_consistent
+{
+ enum { ret = !( (Flags&UnitDiagBit && Flags&ZeroDiagBit) )
+ };
+};
+
+/** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size
+ * TODO: could be a good idea to define a big ReturnType struct ??
+ */
+template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> struct BlockReturnType {
+ typedef Block<ExpressionType, (ei_traits<ExpressionType>::RowsAtCompileTime == 1 ? 1 : RowsOrSize),
+ (ei_traits<ExpressionType>::ColsAtCompileTime == 1 ? 1 : RowsOrSize)> SubVectorType;
+ typedef Block<ExpressionType, RowsOrSize, Cols> Type;
+};
+
+template<typename CurrentType, typename NewType> struct ei_cast_return_type
+{
+ typedef typename ei_meta_if<ei_is_same_type<CurrentType,NewType>::ret,const CurrentType&,NewType>::ret type;
+};
+
+#endif // EIGEN_XPRHELPER_H