Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/LU/LU.h')
-rw-r--r--extern/Eigen2/Eigen/src/LU/LU.h541
1 files changed, 541 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/LU/LU.h b/extern/Eigen2/Eigen/src/LU/LU.h
new file mode 100644
index 00000000000..176e76a91a3
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/LU/LU.h
@@ -0,0 +1,541 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_LU_H
+#define EIGEN_LU_H
+
+/** \ingroup LU_Module
+ *
+ * \class LU
+ *
+ * \brief LU decomposition of a matrix with complete pivoting, and related features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the LU decomposition
+ *
+ * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
+ * is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
+ * are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
+ * coefficients) of U are sorted in such a way that any zeros are at the end, so that the rank
+ * of A is the index of the first zero on the diagonal of U (with indices starting at 0) if any.
+ *
+ * This decomposition provides the generic approach to solving systems of linear equations, computing
+ * the rank, invertibility, inverse, kernel, and determinant.
+ *
+ * This LU decomposition is very stable and well tested with large matrices. Even exact rank computation
+ * works at sizes larger than 1000x1000. However there are use cases where the SVD decomposition is inherently
+ * more stable when dealing with numerically damaged input. For example, computing the kernel is more stable with
+ * SVD because the SVD can determine which singular values are negligible while LU has to work at the level of matrix
+ * coefficients that are less meaningful in this respect.
+ *
+ * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
+ * permutationP(), permutationQ().
+ *
+ * As an exemple, here is how the original matrix can be retrieved:
+ * \include class_LU.cpp
+ * Output: \verbinclude class_LU.out
+ *
+ * \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse()
+ */
+template<typename MatrixType> class LU
+{
+ public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
+ typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
+ typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
+
+ enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN(
+ MatrixType::MaxColsAtCompileTime,
+ MatrixType::MaxRowsAtCompileTime)
+ };
+
+ typedef Matrix<typename MatrixType::Scalar,
+ MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
+ // so that the product "matrix * kernel = zero" makes sense
+ Dynamic, // we don't know at compile-time the dimension of the kernel
+ MatrixType::Options,
+ MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
+ MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
+ // of columns of the original matrix
+ > KernelResultType;
+
+ typedef Matrix<typename MatrixType::Scalar,
+ MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
+ // of rows of the original matrix
+ Dynamic, // we don't know at compile time the dimension of the image (the rank)
+ MatrixType::Options,
+ MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
+ MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
+ > ImageResultType;
+
+ /** Constructor.
+ *
+ * \param matrix the matrix of which to compute the LU decomposition.
+ */
+ LU(const MatrixType& matrix);
+
+ /** \returns the LU decomposition matrix: the upper-triangular part is U, the
+ * unit-lower-triangular part is L (at least for square matrices; in the non-square
+ * case, special care is needed, see the documentation of class LU).
+ *
+ * \sa matrixL(), matrixU()
+ */
+ inline const MatrixType& matrixLU() const
+ {
+ return m_lu;
+ }
+
+ /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
+ * representing the P permutation i.e. the permutation of the rows. For its precise meaning,
+ * see the examples given in the documentation of class LU.
+ *
+ * \sa permutationQ()
+ */
+ inline const IntColVectorType& permutationP() const
+ {
+ return m_p;
+ }
+
+ /** \returns a vector of integers, whose size is the number of columns of the matrix being
+ * decomposed, representing the Q permutation i.e. the permutation of the columns.
+ * For its precise meaning, see the examples given in the documentation of class LU.
+ *
+ * \sa permutationP()
+ */
+ inline const IntRowVectorType& permutationQ() const
+ {
+ return m_q;
+ }
+
+ /** Computes a basis of the kernel of the matrix, also called the null-space of the matrix.
+ *
+ * \note This method is only allowed on non-invertible matrices, as determined by
+ * isInvertible(). Calling it on an invertible matrix will make an assertion fail.
+ *
+ * \param result a pointer to the matrix in which to store the kernel. The columns of this
+ * matrix will be set to form a basis of the kernel (it will be resized
+ * if necessary).
+ *
+ * Example: \include LU_computeKernel.cpp
+ * Output: \verbinclude LU_computeKernel.out
+ *
+ * \sa kernel(), computeImage(), image()
+ */
+ template<typename KernelMatrixType>
+ void computeKernel(KernelMatrixType *result) const;
+
+ /** Computes a basis of the image of the matrix, also called the column-space or range of he matrix.
+ *
+ * \note Calling this method on the zero matrix will make an assertion fail.
+ *
+ * \param result a pointer to the matrix in which to store the image. The columns of this
+ * matrix will be set to form a basis of the image (it will be resized
+ * if necessary).
+ *
+ * Example: \include LU_computeImage.cpp
+ * Output: \verbinclude LU_computeImage.out
+ *
+ * \sa image(), computeKernel(), kernel()
+ */
+ template<typename ImageMatrixType>
+ void computeImage(ImageMatrixType *result) const;
+
+ /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
+ * will form a basis of the kernel.
+ *
+ * \note: this method is only allowed on non-invertible matrices, as determined by
+ * isInvertible(). Calling it on an invertible matrix will make an assertion fail.
+ *
+ * \note: this method returns a matrix by value, which induces some inefficiency.
+ * If you prefer to avoid this overhead, use computeKernel() instead.
+ *
+ * Example: \include LU_kernel.cpp
+ * Output: \verbinclude LU_kernel.out
+ *
+ * \sa computeKernel(), image()
+ */
+ const KernelResultType kernel() const;
+
+ /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
+ * will form a basis of the kernel.
+ *
+ * \note: Calling this method on the zero matrix will make an assertion fail.
+ *
+ * \note: this method returns a matrix by value, which induces some inefficiency.
+ * If you prefer to avoid this overhead, use computeImage() instead.
+ *
+ * Example: \include LU_image.cpp
+ * Output: \verbinclude LU_image.out
+ *
+ * \sa computeImage(), kernel()
+ */
+ const ImageResultType image() const;
+
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the LU decomposition, if any exists.
+ *
+ * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
+ * the only requirement in order for the equation to make sense is that
+ * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
+ * \param result a pointer to the vector or matrix in which to store the solution, if any exists.
+ * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
+ * If no solution exists, *result is left with undefined coefficients.
+ *
+ * \returns true if any solution exists, false if no solution exists.
+ *
+ * \note If there exist more than one solution, this method will arbitrarily choose one.
+ * If you need a complete analysis of the space of solutions, take the one solution obtained
+ * by this method and add to it elements of the kernel, as determined by kernel().
+ *
+ * Example: \include LU_solve.cpp
+ * Output: \verbinclude LU_solve.out
+ *
+ * \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
+ */
+ template<typename OtherDerived, typename ResultType>
+ bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
+
+ /** \returns the determinant of the matrix of which
+ * *this is the LU decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the LU decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
+ * optimized paths.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ *
+ * \sa MatrixBase::determinant()
+ */
+ typename ei_traits<MatrixType>::Scalar determinant() const;
+
+ /** \returns the rank of the matrix of which *this is the LU decomposition.
+ *
+ * \note This is computed at the time of the construction of the LU decomposition. This
+ * method does not perform any further computation.
+ */
+ inline int rank() const
+ {
+ return m_rank;
+ }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
+ *
+ * \note Since the rank is computed at the time of the construction of the LU decomposition, this
+ * method almost does not perform any further computation.
+ */
+ inline int dimensionOfKernel() const
+ {
+ return m_lu.cols() - m_rank;
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note Since the rank is computed at the time of the construction of the LU decomposition, this
+ * method almost does not perform any further computation.
+ */
+ inline bool isInjective() const
+ {
+ return m_rank == m_lu.cols();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note Since the rank is computed at the time of the construction of the LU decomposition, this
+ * method almost does not perform any further computation.
+ */
+ inline bool isSurjective() const
+ {
+ return m_rank == m_lu.rows();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition is invertible.
+ *
+ * \note Since the rank is computed at the time of the construction of the LU decomposition, this
+ * method almost does not perform any further computation.
+ */
+ inline bool isInvertible() const
+ {
+ return isInjective() && isSurjective();
+ }
+
+ /** Computes the inverse of the matrix of which *this is the LU decomposition.
+ *
+ * \param result a pointer to the matrix into which to store the inverse. Resized if needed.
+ *
+ * \note If this matrix is not invertible, *result is left with undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ *
+ * \sa MatrixBase::computeInverse(), inverse()
+ */
+ inline void computeInverse(MatrixType *result) const
+ {
+ solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
+ }
+
+ /** \returns the inverse of the matrix of which *this is the LU decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ *
+ * \sa computeInverse(), MatrixBase::inverse()
+ */
+ inline MatrixType inverse() const
+ {
+ MatrixType result;
+ computeInverse(&result);
+ return result;
+ }
+
+ protected:
+ const MatrixType& m_originalMatrix;
+ MatrixType m_lu;
+ IntColVectorType m_p;
+ IntRowVectorType m_q;
+ int m_det_pq;
+ int m_rank;
+ RealScalar m_precision;
+};
+
+template<typename MatrixType>
+LU<MatrixType>::LU(const MatrixType& matrix)
+ : m_originalMatrix(matrix),
+ m_lu(matrix),
+ m_p(matrix.rows()),
+ m_q(matrix.cols())
+{
+ const int size = matrix.diagonal().size();
+ const int rows = matrix.rows();
+ const int cols = matrix.cols();
+
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
+ // and turns out to be identical to Higham's formula used already in LDLt.
+ m_precision = machine_epsilon<Scalar>() * size;
+
+ IntColVectorType rows_transpositions(matrix.rows());
+ IntRowVectorType cols_transpositions(matrix.cols());
+ int number_of_transpositions = 0;
+
+ RealScalar biggest = RealScalar(0);
+ m_rank = size;
+ for(int k = 0; k < size; ++k)
+ {
+ int row_of_biggest_in_corner, col_of_biggest_in_corner;
+ RealScalar biggest_in_corner;
+
+ biggest_in_corner = m_lu.corner(Eigen::BottomRight, rows-k, cols-k)
+ .cwise().abs()
+ .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
+ row_of_biggest_in_corner += k;
+ col_of_biggest_in_corner += k;
+ if(k==0) biggest = biggest_in_corner;
+
+ // if the corner is negligible, then we have less than full rank, and we can finish early
+ if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
+ {
+ m_rank = k;
+ for(int i = k; i < size; i++)
+ {
+ rows_transpositions.coeffRef(i) = i;
+ cols_transpositions.coeffRef(i) = i;
+ }
+ break;
+ }
+
+ rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
+ cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
+ if(k != row_of_biggest_in_corner) {
+ m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+ if(k != col_of_biggest_in_corner) {
+ m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+ if(k<rows-1)
+ m_lu.col(k).end(rows-k-1) /= m_lu.coeff(k,k);
+ if(k<size-1)
+ for(int col = k + 1; col < cols; ++col)
+ m_lu.col(col).end(rows-k-1) -= m_lu.col(k).end(rows-k-1) * m_lu.coeff(k,col);
+ }
+
+ for(int k = 0; k < matrix.rows(); ++k) m_p.coeffRef(k) = k;
+ for(int k = size-1; k >= 0; --k)
+ std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
+
+ for(int k = 0; k < matrix.cols(); ++k) m_q.coeffRef(k) = k;
+ for(int k = 0; k < size; ++k)
+ std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k)));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+}
+
+template<typename MatrixType>
+typename ei_traits<MatrixType>::Scalar LU<MatrixType>::determinant() const
+{
+ return Scalar(m_det_pq) * m_lu.diagonal().redux(ei_scalar_product_op<Scalar>());
+}
+
+template<typename MatrixType>
+template<typename KernelMatrixType>
+void LU<MatrixType>::computeKernel(KernelMatrixType *result) const
+{
+ ei_assert(!isInvertible());
+ const int dimker = dimensionOfKernel(), cols = m_lu.cols();
+ result->resize(cols, dimker);
+
+ /* Let us use the following lemma:
+ *
+ * Lemma: If the matrix A has the LU decomposition PAQ = LU,
+ * then Ker A = Q(Ker U).
+ *
+ * Proof: trivial: just keep in mind that P, Q, L are invertible.
+ */
+
+ /* Thus, all we need to do is to compute Ker U, and then apply Q.
+ *
+ * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
+ * Thus, the diagonal of U ends with exactly
+ * m_dimKer zero's. Let us use that to construct m_dimKer linearly
+ * independent vectors in Ker U.
+ */
+
+ Matrix<Scalar, Dynamic, Dynamic, MatrixType::Options,
+ MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime>
+ y(-m_lu.corner(TopRight, m_rank, dimker));
+
+ m_lu.corner(TopLeft, m_rank, m_rank)
+ .template marked<UpperTriangular>()
+ .solveTriangularInPlace(y);
+
+ for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = y.row(i);
+ for(int i = m_rank; i < cols; ++i) result->row(m_q.coeff(i)).setZero();
+ for(int k = 0; k < dimker; ++k) result->coeffRef(m_q.coeff(m_rank+k), k) = Scalar(1);
+}
+
+template<typename MatrixType>
+const typename LU<MatrixType>::KernelResultType
+LU<MatrixType>::kernel() const
+{
+ KernelResultType result(m_lu.cols(), dimensionOfKernel());
+ computeKernel(&result);
+ return result;
+}
+
+template<typename MatrixType>
+template<typename ImageMatrixType>
+void LU<MatrixType>::computeImage(ImageMatrixType *result) const
+{
+ ei_assert(m_rank > 0);
+ result->resize(m_originalMatrix.rows(), m_rank);
+ for(int i = 0; i < m_rank; ++i)
+ result->col(i) = m_originalMatrix.col(m_q.coeff(i));
+}
+
+template<typename MatrixType>
+const typename LU<MatrixType>::ImageResultType
+LU<MatrixType>::image() const
+{
+ ImageResultType result(m_originalMatrix.rows(), m_rank);
+ computeImage(&result);
+ return result;
+}
+
+template<typename MatrixType>
+template<typename OtherDerived, typename ResultType>
+bool LU<MatrixType>::solve(
+ const MatrixBase<OtherDerived>& b,
+ ResultType *result
+) const
+{
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
+ * So we proceed as follows:
+ * Step 1: compute c = Pb.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. Check if a solution really exists.
+ * Step 4: result = Qc;
+ */
+
+ const int rows = m_lu.rows(), cols = m_lu.cols();
+ ei_assert(b.rows() == rows);
+ const int smalldim = std::min(rows, cols);
+
+ typename OtherDerived::PlainMatrixType c(b.rows(), b.cols());
+
+ // Step 1
+ for(int i = 0; i < rows; ++i) c.row(m_p.coeff(i)) = b.row(i);
+
+ // Step 2
+ m_lu.corner(Eigen::TopLeft,smalldim,smalldim).template marked<UnitLowerTriangular>()
+ .solveTriangularInPlace(
+ c.corner(Eigen::TopLeft, smalldim, c.cols()));
+ if(rows>cols)
+ {
+ c.corner(Eigen::BottomLeft, rows-cols, c.cols())
+ -= m_lu.corner(Eigen::BottomLeft, rows-cols, cols) * c.corner(Eigen::TopLeft, cols, c.cols());
+ }
+
+ // Step 3
+ if(!isSurjective())
+ {
+ // is c is in the image of U ?
+ RealScalar biggest_in_c = m_rank>0 ? c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff() : 0;
+ for(int col = 0; col < c.cols(); ++col)
+ for(int row = m_rank; row < c.rows(); ++row)
+ if(!ei_isMuchSmallerThan(c.coeff(row,col), biggest_in_c, m_precision))
+ return false;
+ }
+ m_lu.corner(TopLeft, m_rank, m_rank)
+ .template marked<UpperTriangular>()
+ .solveTriangularInPlace(c.corner(TopLeft, m_rank, c.cols()));
+
+ // Step 4
+ result->resize(m_lu.cols(), b.cols());
+ for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i);
+ for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero();
+ return true;
+}
+
+/** \lu_module
+ *
+ * \return the LU decomposition of \c *this.
+ *
+ * \sa class LU
+ */
+template<typename Derived>
+inline const LU<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::lu() const
+{
+ return LU<PlainMatrixType>(eval());
+}
+
+#endif // EIGEN_LU_H