Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/LU/LU.h')
-rw-r--r--extern/Eigen2/Eigen/src/LU/LU.h541
1 files changed, 0 insertions, 541 deletions
diff --git a/extern/Eigen2/Eigen/src/LU/LU.h b/extern/Eigen2/Eigen/src/LU/LU.h
deleted file mode 100644
index 176e76a91a3..00000000000
--- a/extern/Eigen2/Eigen/src/LU/LU.h
+++ /dev/null
@@ -1,541 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_LU_H
-#define EIGEN_LU_H
-
-/** \ingroup LU_Module
- *
- * \class LU
- *
- * \brief LU decomposition of a matrix with complete pivoting, and related features
- *
- * \param MatrixType the type of the matrix of which we are computing the LU decomposition
- *
- * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
- * is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
- * are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
- * coefficients) of U are sorted in such a way that any zeros are at the end, so that the rank
- * of A is the index of the first zero on the diagonal of U (with indices starting at 0) if any.
- *
- * This decomposition provides the generic approach to solving systems of linear equations, computing
- * the rank, invertibility, inverse, kernel, and determinant.
- *
- * This LU decomposition is very stable and well tested with large matrices. Even exact rank computation
- * works at sizes larger than 1000x1000. However there are use cases where the SVD decomposition is inherently
- * more stable when dealing with numerically damaged input. For example, computing the kernel is more stable with
- * SVD because the SVD can determine which singular values are negligible while LU has to work at the level of matrix
- * coefficients that are less meaningful in this respect.
- *
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
- * permutationP(), permutationQ().
- *
- * As an exemple, here is how the original matrix can be retrieved:
- * \include class_LU.cpp
- * Output: \verbinclude class_LU.out
- *
- * \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse()
- */
-template<typename MatrixType> class LU
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
- typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
- typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
-
- enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN(
- MatrixType::MaxColsAtCompileTime,
- MatrixType::MaxRowsAtCompileTime)
- };
-
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
- // so that the product "matrix * kernel = zero" makes sense
- Dynamic, // we don't know at compile-time the dimension of the kernel
- MatrixType::Options,
- MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
- MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
- // of columns of the original matrix
- > KernelResultType;
-
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
- // of rows of the original matrix
- Dynamic, // we don't know at compile time the dimension of the image (the rank)
- MatrixType::Options,
- MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
- MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
- > ImageResultType;
-
- /** Constructor.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- */
- LU(const MatrixType& matrix);
-
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
- * case, special care is needed, see the documentation of class LU).
- *
- * \sa matrixL(), matrixU()
- */
- inline const MatrixType& matrixLU() const
- {
- return m_lu;
- }
-
- /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
- * representing the P permutation i.e. the permutation of the rows. For its precise meaning,
- * see the examples given in the documentation of class LU.
- *
- * \sa permutationQ()
- */
- inline const IntColVectorType& permutationP() const
- {
- return m_p;
- }
-
- /** \returns a vector of integers, whose size is the number of columns of the matrix being
- * decomposed, representing the Q permutation i.e. the permutation of the columns.
- * For its precise meaning, see the examples given in the documentation of class LU.
- *
- * \sa permutationP()
- */
- inline const IntRowVectorType& permutationQ() const
- {
- return m_q;
- }
-
- /** Computes a basis of the kernel of the matrix, also called the null-space of the matrix.
- *
- * \note This method is only allowed on non-invertible matrices, as determined by
- * isInvertible(). Calling it on an invertible matrix will make an assertion fail.
- *
- * \param result a pointer to the matrix in which to store the kernel. The columns of this
- * matrix will be set to form a basis of the kernel (it will be resized
- * if necessary).
- *
- * Example: \include LU_computeKernel.cpp
- * Output: \verbinclude LU_computeKernel.out
- *
- * \sa kernel(), computeImage(), image()
- */
- template<typename KernelMatrixType>
- void computeKernel(KernelMatrixType *result) const;
-
- /** Computes a basis of the image of the matrix, also called the column-space or range of he matrix.
- *
- * \note Calling this method on the zero matrix will make an assertion fail.
- *
- * \param result a pointer to the matrix in which to store the image. The columns of this
- * matrix will be set to form a basis of the image (it will be resized
- * if necessary).
- *
- * Example: \include LU_computeImage.cpp
- * Output: \verbinclude LU_computeImage.out
- *
- * \sa image(), computeKernel(), kernel()
- */
- template<typename ImageMatrixType>
- void computeImage(ImageMatrixType *result) const;
-
- /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
- * will form a basis of the kernel.
- *
- * \note: this method is only allowed on non-invertible matrices, as determined by
- * isInvertible(). Calling it on an invertible matrix will make an assertion fail.
- *
- * \note: this method returns a matrix by value, which induces some inefficiency.
- * If you prefer to avoid this overhead, use computeKernel() instead.
- *
- * Example: \include LU_kernel.cpp
- * Output: \verbinclude LU_kernel.out
- *
- * \sa computeKernel(), image()
- */
- const KernelResultType kernel() const;
-
- /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
- * will form a basis of the kernel.
- *
- * \note: Calling this method on the zero matrix will make an assertion fail.
- *
- * \note: this method returns a matrix by value, which induces some inefficiency.
- * If you prefer to avoid this overhead, use computeImage() instead.
- *
- * Example: \include LU_image.cpp
- * Output: \verbinclude LU_image.out
- *
- * \sa computeImage(), kernel()
- */
- const ImageResultType image() const;
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
- * the only requirement in order for the equation to make sense is that
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- * \param result a pointer to the vector or matrix in which to store the solution, if any exists.
- * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
- * If no solution exists, *result is left with undefined coefficients.
- *
- * \returns true if any solution exists, false if no solution exists.
- *
- * \note If there exist more than one solution, this method will arbitrarily choose one.
- * If you need a complete analysis of the space of solutions, take the one solution obtained
- * by this method and add to it elements of the kernel, as determined by kernel().
- *
- * Example: \include LU_solve.cpp
- * Output: \verbinclude LU_solve.out
- *
- * \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
- */
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
-
- /** \returns the determinant of the matrix of which
- * *this is the LU decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the LU decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
- * optimized paths.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- *
- * \sa MatrixBase::determinant()
- */
- typename ei_traits<MatrixType>::Scalar determinant() const;
-
- /** \returns the rank of the matrix of which *this is the LU decomposition.
- *
- * \note This is computed at the time of the construction of the LU decomposition. This
- * method does not perform any further computation.
- */
- inline int rank() const
- {
- return m_rank;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
- *
- * \note Since the rank is computed at the time of the construction of the LU decomposition, this
- * method almost does not perform any further computation.
- */
- inline int dimensionOfKernel() const
- {
- return m_lu.cols() - m_rank;
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note Since the rank is computed at the time of the construction of the LU decomposition, this
- * method almost does not perform any further computation.
- */
- inline bool isInjective() const
- {
- return m_rank == m_lu.cols();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note Since the rank is computed at the time of the construction of the LU decomposition, this
- * method almost does not perform any further computation.
- */
- inline bool isSurjective() const
- {
- return m_rank == m_lu.rows();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition is invertible.
- *
- * \note Since the rank is computed at the time of the construction of the LU decomposition, this
- * method almost does not perform any further computation.
- */
- inline bool isInvertible() const
- {
- return isInjective() && isSurjective();
- }
-
- /** Computes the inverse of the matrix of which *this is the LU decomposition.
- *
- * \param result a pointer to the matrix into which to store the inverse. Resized if needed.
- *
- * \note If this matrix is not invertible, *result is left with undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- *
- * \sa MatrixBase::computeInverse(), inverse()
- */
- inline void computeInverse(MatrixType *result) const
- {
- solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
- }
-
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- *
- * \sa computeInverse(), MatrixBase::inverse()
- */
- inline MatrixType inverse() const
- {
- MatrixType result;
- computeInverse(&result);
- return result;
- }
-
- protected:
- const MatrixType& m_originalMatrix;
- MatrixType m_lu;
- IntColVectorType m_p;
- IntRowVectorType m_q;
- int m_det_pq;
- int m_rank;
- RealScalar m_precision;
-};
-
-template<typename MatrixType>
-LU<MatrixType>::LU(const MatrixType& matrix)
- : m_originalMatrix(matrix),
- m_lu(matrix),
- m_p(matrix.rows()),
- m_q(matrix.cols())
-{
- const int size = matrix.diagonal().size();
- const int rows = matrix.rows();
- const int cols = matrix.cols();
-
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- m_precision = machine_epsilon<Scalar>() * size;
-
- IntColVectorType rows_transpositions(matrix.rows());
- IntRowVectorType cols_transpositions(matrix.cols());
- int number_of_transpositions = 0;
-
- RealScalar biggest = RealScalar(0);
- m_rank = size;
- for(int k = 0; k < size; ++k)
- {
- int row_of_biggest_in_corner, col_of_biggest_in_corner;
- RealScalar biggest_in_corner;
-
- biggest_in_corner = m_lu.corner(Eigen::BottomRight, rows-k, cols-k)
- .cwise().abs()
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
- row_of_biggest_in_corner += k;
- col_of_biggest_in_corner += k;
- if(k==0) biggest = biggest_in_corner;
-
- // if the corner is negligible, then we have less than full rank, and we can finish early
- if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
- {
- m_rank = k;
- for(int i = k; i < size; i++)
- {
- rows_transpositions.coeffRef(i) = i;
- cols_transpositions.coeffRef(i) = i;
- }
- break;
- }
-
- rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
- cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
- if(k != row_of_biggest_in_corner) {
- m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
- ++number_of_transpositions;
- }
- if(k != col_of_biggest_in_corner) {
- m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
- ++number_of_transpositions;
- }
- if(k<rows-1)
- m_lu.col(k).end(rows-k-1) /= m_lu.coeff(k,k);
- if(k<size-1)
- for(int col = k + 1; col < cols; ++col)
- m_lu.col(col).end(rows-k-1) -= m_lu.col(k).end(rows-k-1) * m_lu.coeff(k,col);
- }
-
- for(int k = 0; k < matrix.rows(); ++k) m_p.coeffRef(k) = k;
- for(int k = size-1; k >= 0; --k)
- std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
-
- for(int k = 0; k < matrix.cols(); ++k) m_q.coeffRef(k) = k;
- for(int k = 0; k < size; ++k)
- std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k)));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
-}
-
-template<typename MatrixType>
-typename ei_traits<MatrixType>::Scalar LU<MatrixType>::determinant() const
-{
- return Scalar(m_det_pq) * m_lu.diagonal().redux(ei_scalar_product_op<Scalar>());
-}
-
-template<typename MatrixType>
-template<typename KernelMatrixType>
-void LU<MatrixType>::computeKernel(KernelMatrixType *result) const
-{
- ei_assert(!isInvertible());
- const int dimker = dimensionOfKernel(), cols = m_lu.cols();
- result->resize(cols, dimker);
-
- /* Let us use the following lemma:
- *
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
- * then Ker A = Q(Ker U).
- *
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
- */
-
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
- *
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
- * Thus, the diagonal of U ends with exactly
- * m_dimKer zero's. Let us use that to construct m_dimKer linearly
- * independent vectors in Ker U.
- */
-
- Matrix<Scalar, Dynamic, Dynamic, MatrixType::Options,
- MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime>
- y(-m_lu.corner(TopRight, m_rank, dimker));
-
- m_lu.corner(TopLeft, m_rank, m_rank)
- .template marked<UpperTriangular>()
- .solveTriangularInPlace(y);
-
- for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = y.row(i);
- for(int i = m_rank; i < cols; ++i) result->row(m_q.coeff(i)).setZero();
- for(int k = 0; k < dimker; ++k) result->coeffRef(m_q.coeff(m_rank+k), k) = Scalar(1);
-}
-
-template<typename MatrixType>
-const typename LU<MatrixType>::KernelResultType
-LU<MatrixType>::kernel() const
-{
- KernelResultType result(m_lu.cols(), dimensionOfKernel());
- computeKernel(&result);
- return result;
-}
-
-template<typename MatrixType>
-template<typename ImageMatrixType>
-void LU<MatrixType>::computeImage(ImageMatrixType *result) const
-{
- ei_assert(m_rank > 0);
- result->resize(m_originalMatrix.rows(), m_rank);
- for(int i = 0; i < m_rank; ++i)
- result->col(i) = m_originalMatrix.col(m_q.coeff(i));
-}
-
-template<typename MatrixType>
-const typename LU<MatrixType>::ImageResultType
-LU<MatrixType>::image() const
-{
- ImageResultType result(m_originalMatrix.rows(), m_rank);
- computeImage(&result);
- return result;
-}
-
-template<typename MatrixType>
-template<typename OtherDerived, typename ResultType>
-bool LU<MatrixType>::solve(
- const MatrixBase<OtherDerived>& b,
- ResultType *result
-) const
-{
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
- * Step 3: replace c by the solution x to Ux = c. Check if a solution really exists.
- * Step 4: result = Qc;
- */
-
- const int rows = m_lu.rows(), cols = m_lu.cols();
- ei_assert(b.rows() == rows);
- const int smalldim = std::min(rows, cols);
-
- typename OtherDerived::PlainMatrixType c(b.rows(), b.cols());
-
- // Step 1
- for(int i = 0; i < rows; ++i) c.row(m_p.coeff(i)) = b.row(i);
-
- // Step 2
- m_lu.corner(Eigen::TopLeft,smalldim,smalldim).template marked<UnitLowerTriangular>()
- .solveTriangularInPlace(
- c.corner(Eigen::TopLeft, smalldim, c.cols()));
- if(rows>cols)
- {
- c.corner(Eigen::BottomLeft, rows-cols, c.cols())
- -= m_lu.corner(Eigen::BottomLeft, rows-cols, cols) * c.corner(Eigen::TopLeft, cols, c.cols());
- }
-
- // Step 3
- if(!isSurjective())
- {
- // is c is in the image of U ?
- RealScalar biggest_in_c = m_rank>0 ? c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff() : 0;
- for(int col = 0; col < c.cols(); ++col)
- for(int row = m_rank; row < c.rows(); ++row)
- if(!ei_isMuchSmallerThan(c.coeff(row,col), biggest_in_c, m_precision))
- return false;
- }
- m_lu.corner(TopLeft, m_rank, m_rank)
- .template marked<UpperTriangular>()
- .solveTriangularInPlace(c.corner(TopLeft, m_rank, c.cols()));
-
- // Step 4
- result->resize(m_lu.cols(), b.cols());
- for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i);
- for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero();
- return true;
-}
-
-/** \lu_module
- *
- * \return the LU decomposition of \c *this.
- *
- * \sa class LU
- */
-template<typename Derived>
-inline const LU<typename MatrixBase<Derived>::PlainMatrixType>
-MatrixBase<Derived>::lu() const
-{
- return LU<PlainMatrixType>(eval());
-}
-
-#endif // EIGEN_LU_H