Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/QR/HessenbergDecomposition.h')
-rw-r--r--extern/Eigen2/Eigen/src/QR/HessenbergDecomposition.h250
1 files changed, 0 insertions, 250 deletions
diff --git a/extern/Eigen2/Eigen/src/QR/HessenbergDecomposition.h b/extern/Eigen2/Eigen/src/QR/HessenbergDecomposition.h
deleted file mode 100644
index 6d0ff794ec2..00000000000
--- a/extern/Eigen2/Eigen/src/QR/HessenbergDecomposition.h
+++ /dev/null
@@ -1,250 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
-#define EIGEN_HESSENBERGDECOMPOSITION_H
-
-/** \ingroup QR_Module
- * \nonstableyet
- *
- * \class HessenbergDecomposition
- *
- * \brief Reduces a squared matrix to an Hessemberg form
- *
- * \param MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
- *
- * This class performs an Hessenberg decomposition of a matrix \f$ A \f$ such that:
- * \f$ A = Q H Q^* \f$ where \f$ Q \f$ is unitary and \f$ H \f$ a Hessenberg matrix.
- *
- * \sa class Tridiagonalization, class Qr
- */
-template<typename _MatrixType> class HessenbergDecomposition
-{
- public:
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- enum {
- Size = MatrixType::RowsAtCompileTime,
- SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
- ? Dynamic
- : MatrixType::RowsAtCompileTime-1
- };
-
- typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
- typedef Matrix<RealScalar, Size, 1> DiagonalType;
- typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
-
- typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType;
-
- typedef typename NestByValue<DiagonalCoeffs<
- NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
-
- /** This constructor initializes a HessenbergDecomposition object for
- * further use with HessenbergDecomposition::compute()
- */
- HessenbergDecomposition(int size = Size==Dynamic ? 2 : Size)
- : m_matrix(size,size), m_hCoeffs(size-1)
- {}
-
- HessenbergDecomposition(const MatrixType& matrix)
- : m_matrix(matrix),
- m_hCoeffs(matrix.cols()-1)
- {
- _compute(m_matrix, m_hCoeffs);
- }
-
- /** Computes or re-compute the Hessenberg decomposition for the matrix \a matrix.
- *
- * This method allows to re-use the allocated data.
- */
- void compute(const MatrixType& matrix)
- {
- m_matrix = matrix;
- m_hCoeffs.resize(matrix.rows()-1,1);
- _compute(m_matrix, m_hCoeffs);
- }
-
- /** \returns the householder coefficients allowing to
- * reconstruct the matrix Q from the packed data.
- *
- * \sa packedMatrix()
- */
- CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
-
- /** \returns the internal result of the decomposition.
- *
- * The returned matrix contains the following information:
- * - the upper part and lower sub-diagonal represent the Hessenberg matrix H
- * - the rest of the lower part contains the Householder vectors that, combined with
- * Householder coefficients returned by householderCoefficients(),
- * allows to reconstruct the matrix Q as follow:
- * Q = H_{N-1} ... H_1 H_0
- * where the matrices H are the Householder transformation:
- * H_i = (I - h_i * v_i * v_i')
- * where h_i == householderCoefficients()[i] and v_i is a Householder vector:
- * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
- *
- * See LAPACK for further details on this packed storage.
- */
- const MatrixType& packedMatrix(void) const { return m_matrix; }
-
- MatrixType matrixQ(void) const;
- MatrixType matrixH(void) const;
-
- private:
-
- static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
-
- protected:
- MatrixType m_matrix;
- CoeffVectorType m_hCoeffs;
-};
-
-#ifndef EIGEN_HIDE_HEAVY_CODE
-
-/** \internal
- * Performs a tridiagonal decomposition of \a matA in place.
- *
- * \param matA the input selfadjoint matrix
- * \param hCoeffs returned Householder coefficients
- *
- * The result is written in the lower triangular part of \a matA.
- *
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
- *
- * \sa packedMatrix()
- */
-template<typename MatrixType>
-void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
-{
- assert(matA.rows()==matA.cols());
- int n = matA.rows();
- for (int i = 0; i<n-2; ++i)
- {
- // let's consider the vector v = i-th column starting at position i+1
-
- // start of the householder transformation
- // squared norm of the vector v skipping the first element
- RealScalar v1norm2 = matA.col(i).end(n-(i+2)).squaredNorm();
-
- if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
- {
- hCoeffs.coeffRef(i) = 0.;
- }
- else
- {
- Scalar v0 = matA.col(i).coeff(i+1);
- RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
- if (ei_real(v0)>=0.)
- beta = -beta;
- matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta));
- matA.col(i).coeffRef(i+1) = beta;
- Scalar h = (beta - v0) / beta;
- // end of the householder transformation
-
- // Apply similarity transformation to remaining columns,
- // i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
- matA.col(i).coeffRef(i+1) = 1;
-
- // first let's do A = H A
- matA.corner(BottomRight,n-i-1,n-i-1) -= ((ei_conj(h) * matA.col(i).end(n-i-1)) *
- (matA.col(i).end(n-i-1).adjoint() * matA.corner(BottomRight,n-i-1,n-i-1))).lazy();
-
- // now let's do A = A H
- matA.corner(BottomRight,n,n-i-1) -= ((matA.corner(BottomRight,n,n-i-1) * matA.col(i).end(n-i-1))
- * (h * matA.col(i).end(n-i-1).adjoint())).lazy();
-
- matA.col(i).coeffRef(i+1) = beta;
- hCoeffs.coeffRef(i) = h;
- }
- }
- if (NumTraits<Scalar>::IsComplex)
- {
- // Householder transformation on the remaining single scalar
- int i = n-2;
- Scalar v0 = matA.coeff(i+1,i);
-
- RealScalar beta = ei_sqrt(ei_abs2(v0));
- if (ei_real(v0)>=0.)
- beta = -beta;
- Scalar h = (beta - v0) / beta;
- hCoeffs.coeffRef(i) = h;
-
- // A = H* A
- matA.corner(BottomRight,n-i-1,n-i) -= ei_conj(h) * matA.corner(BottomRight,n-i-1,n-i);
-
- // A = A H
- matA.col(n-1) -= h * matA.col(n-1);
- }
- else
- {
- hCoeffs.coeffRef(n-2) = 0;
- }
-}
-
-/** reconstructs and returns the matrix Q */
-template<typename MatrixType>
-typename HessenbergDecomposition<MatrixType>::MatrixType
-HessenbergDecomposition<MatrixType>::matrixQ(void) const
-{
- int n = m_matrix.rows();
- MatrixType matQ = MatrixType::Identity(n,n);
- for (int i = n-2; i>=0; i--)
- {
- Scalar tmp = m_matrix.coeff(i+1,i);
- m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
-
- matQ.corner(BottomRight,n-i-1,n-i-1) -=
- ((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) *
- (m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
-
- m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
- }
- return matQ;
-}
-
-#endif // EIGEN_HIDE_HEAVY_CODE
-
-/** constructs and returns the matrix H.
- * Note that the matrix H is equivalent to the upper part of the packed matrix
- * (including the lower sub-diagonal). Therefore, it might be often sufficient
- * to directly use the packed matrix instead of creating a new one.
- */
-template<typename MatrixType>
-typename HessenbergDecomposition<MatrixType>::MatrixType
-HessenbergDecomposition<MatrixType>::matrixH(void) const
-{
- // FIXME should this function (and other similar) rather take a matrix as argument
- // and fill it (to avoid temporaries)
- int n = m_matrix.rows();
- MatrixType matH = m_matrix;
- if (n>2)
- matH.corner(BottomLeft,n-2, n-2).template part<LowerTriangular>().setZero();
- return matH;
-}
-
-#endif // EIGEN_HESSENBERGDECOMPOSITION_H