Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/QR/QR.h')
-rw-r--r--extern/Eigen2/Eigen/src/QR/QR.h334
1 files changed, 0 insertions, 334 deletions
diff --git a/extern/Eigen2/Eigen/src/QR/QR.h b/extern/Eigen2/Eigen/src/QR/QR.h
deleted file mode 100644
index 90751dd428d..00000000000
--- a/extern/Eigen2/Eigen/src/QR/QR.h
+++ /dev/null
@@ -1,334 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_QR_H
-#define EIGEN_QR_H
-
-/** \ingroup QR_Module
- * \nonstableyet
- *
- * \class QR
- *
- * \brief QR decomposition of a matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a QR decomposition using Householder transformations. The result is
- * stored in a compact way compatible with LAPACK.
- *
- * \sa MatrixBase::qr()
- */
-template<typename MatrixType> class QR
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via QR::compute(const MatrixType&).
- */
- QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
-
- QR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs(matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** \deprecated use isInjective()
- * \returns whether or not the matrix is of full rank
- *
- * \note Since the rank is computed only once, i.e. the first time it is needed, this
- * method almost does not perform any further computation.
- */
- EIGEN_DEPRECATED bool isFullRank() const
- {
- ei_assert(m_isInitialized && "QR is not initialized.");
- return rank() == m_qr.cols();
- }
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note Since the rank is computed only once, i.e. the first time it is needed, this
- * method almost does not perform any further computation.
- */
- int rank() const;
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note Since the rank is computed only once, i.e. the first time it is needed, this
- * method almost does not perform any further computation.
- */
- inline int dimensionOfKernel() const
- {
- ei_assert(m_isInitialized && "QR is not initialized.");
- return m_qr.cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note Since the rank is computed only once, i.e. the first time it is needed, this
- * method almost does not perform any further computation.
- */
- inline bool isInjective() const
- {
- ei_assert(m_isInitialized && "QR is not initialized.");
- return rank() == m_qr.cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note Since the rank is computed only once, i.e. the first time it is needed, this
- * method almost does not perform any further computation.
- */
- inline bool isSurjective() const
- {
- ei_assert(m_isInitialized && "QR is not initialized.");
- return rank() == m_qr.rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note Since the rank is computed only once, i.e. the first time it is needed, this
- * method almost does not perform any further computation.
- */
- inline bool isInvertible() const
- {
- ei_assert(m_isInitialized && "QR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns a read-only expression of the matrix R of the actual the QR decomposition */
- const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
- matrixR(void) const
- {
- ei_assert(m_isInitialized && "QR is not initialized.");
- int cols = m_qr.cols();
- return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \param result a pointer to the vector/matrix in which to store the solution, if any exists.
- * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
- * If no solution exists, *result is left with undefined coefficients.
- *
- * \returns true if any solution exists, false if no solution exists.
- *
- * \note If there exist more than one solution, this method will arbitrarily choose one.
- * If you need a complete analysis of the space of solutions, take the one solution obtained
- * by this method and add to it elements of the kernel, as determined by kernel().
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * Example: \include QR_solve.cpp
- * Output: \verbinclude QR_solve.out
- *
- * \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
- */
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
-
- MatrixType matrixQ(void) const;
-
- void compute(const MatrixType& matrix);
-
- protected:
- MatrixType m_qr;
- VectorType m_hCoeffs;
- mutable int m_rank;
- mutable bool m_rankIsUptodate;
- bool m_isInitialized;
-};
-
-/** \returns the rank of the matrix of which *this is the QR decomposition. */
-template<typename MatrixType>
-int QR<MatrixType>::rank() const
-{
- ei_assert(m_isInitialized && "QR is not initialized.");
- if (!m_rankIsUptodate)
- {
- RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
- int n = m_qr.cols();
- m_rank = 0;
- while(m_rank<n && !ei_isMuchSmallerThan(m_qr.diagonal().coeff(m_rank), maxCoeff))
- ++m_rank;
- m_rankIsUptodate = true;
- }
- return m_rank;
-}
-
-#ifndef EIGEN_HIDE_HEAVY_CODE
-
-template<typename MatrixType>
-void QR<MatrixType>::compute(const MatrixType& matrix)
-{
- m_rankIsUptodate = false;
- m_qr = matrix;
- m_hCoeffs.resize(matrix.cols());
-
- int rows = matrix.rows();
- int cols = matrix.cols();
- RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
-
- for (int k = 0; k < cols; ++k)
- {
- int remainingSize = rows-k;
-
- RealScalar beta;
- Scalar v0 = m_qr.col(k).coeff(k);
-
- if (remainingSize==1)
- {
- if (NumTraits<Scalar>::IsComplex)
- {
- // Householder transformation on the remaining single scalar
- beta = ei_abs(v0);
- if (ei_real(v0)>0)
- beta = -beta;
- m_qr.coeffRef(k,k) = beta;
- m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
- }
- else
- {
- m_hCoeffs.coeffRef(k) = 0;
- }
- }
- else if ((beta=m_qr.col(k).end(remainingSize-1).squaredNorm())>eps2)
- // FIXME what about ei_imag(v0) ??
- {
- // form k-th Householder vector
- beta = ei_sqrt(ei_abs2(v0)+beta);
- if (ei_real(v0)>=0.)
- beta = -beta;
- m_qr.col(k).end(remainingSize-1) /= v0-beta;
- m_qr.coeffRef(k,k) = beta;
- Scalar h = m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
-
- // apply the Householder transformation (I - h v v') to remaining columns, i.e.,
- // R <- (I - h v v') * R where v = [1,m_qr(k+1,k), m_qr(k+2,k), ...]
- int remainingCols = cols - k -1;
- if (remainingCols>0)
- {
- m_qr.coeffRef(k,k) = Scalar(1);
- m_qr.corner(BottomRight, remainingSize, remainingCols) -= ei_conj(h) * m_qr.col(k).end(remainingSize)
- * (m_qr.col(k).end(remainingSize).adjoint() * m_qr.corner(BottomRight, remainingSize, remainingCols));
- m_qr.coeffRef(k,k) = beta;
- }
- }
- else
- {
- m_hCoeffs.coeffRef(k) = 0;
- }
- }
- m_isInitialized = true;
-}
-
-template<typename MatrixType>
-template<typename OtherDerived, typename ResultType>
-bool QR<MatrixType>::solve(
- const MatrixBase<OtherDerived>& b,
- ResultType *result
-) const
-{
- ei_assert(m_isInitialized && "QR is not initialized.");
- const int rows = m_qr.rows();
- ei_assert(b.rows() == rows);
- result->resize(rows, b.cols());
-
- // TODO(keir): There is almost certainly a faster way to multiply by
- // Q^T without explicitly forming matrixQ(). Investigate.
- *result = matrixQ().transpose()*b;
-
- if(!isSurjective())
- {
- // is result is in the image of R ?
- RealScalar biggest_in_res = result->corner(TopLeft, m_rank, result->cols()).cwise().abs().maxCoeff();
- for(int col = 0; col < result->cols(); ++col)
- for(int row = m_rank; row < result->rows(); ++row)
- if(!ei_isMuchSmallerThan(result->coeff(row,col), biggest_in_res))
- return false;
- }
- m_qr.corner(TopLeft, m_rank, m_rank)
- .template marked<UpperTriangular>()
- .solveTriangularInPlace(result->corner(TopLeft, m_rank, result->cols()));
-
- return true;
-}
-
-/** \returns the matrix Q */
-template<typename MatrixType>
-MatrixType QR<MatrixType>::matrixQ() const
-{
- ei_assert(m_isInitialized && "QR is not initialized.");
- // compute the product Q_0 Q_1 ... Q_n-1,
- // where Q_k is the k-th Householder transformation I - h_k v_k v_k'
- // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
- int rows = m_qr.rows();
- int cols = m_qr.cols();
- MatrixType res = MatrixType::Identity(rows, cols);
- for (int k = cols-1; k >= 0; k--)
- {
- // to make easier the computation of the transformation, let's temporarily
- // overwrite m_qr(k,k) such that the end of m_qr.col(k) is exactly our Householder vector.
- Scalar beta = m_qr.coeff(k,k);
- m_qr.const_cast_derived().coeffRef(k,k) = 1;
- int endLength = rows-k;
- res.corner(BottomRight,endLength, cols-k) -= ((m_hCoeffs.coeff(k) * m_qr.col(k).end(endLength))
- * (m_qr.col(k).end(endLength).adjoint() * res.corner(BottomRight,endLength, cols-k)).lazy()).lazy();
- m_qr.const_cast_derived().coeffRef(k,k) = beta;
- }
- return res;
-}
-
-#endif // EIGEN_HIDE_HEAVY_CODE
-
-/** \return the QR decomposition of \c *this.
- *
- * \sa class QR
- */
-template<typename Derived>
-const QR<typename MatrixBase<Derived>::PlainMatrixType>
-MatrixBase<Derived>::qr() const
-{
- return QR<PlainMatrixType>(eval());
-}
-
-
-#endif // EIGEN_QR_H