Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/QR/QR.h')
-rw-r--r--extern/Eigen2/Eigen/src/QR/QR.h334
1 files changed, 334 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/QR/QR.h b/extern/Eigen2/Eigen/src/QR/QR.h
new file mode 100644
index 00000000000..90751dd428d
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/QR/QR.h
@@ -0,0 +1,334 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_QR_H
+#define EIGEN_QR_H
+
+/** \ingroup QR_Module
+ * \nonstableyet
+ *
+ * \class QR
+ *
+ * \brief QR decomposition of a matrix
+ *
+ * \param MatrixType the type of the matrix of which we are computing the QR decomposition
+ *
+ * This class performs a QR decomposition using Householder transformations. The result is
+ * stored in a compact way compatible with LAPACK.
+ *
+ * \sa MatrixBase::qr()
+ */
+template<typename MatrixType> class QR
+{
+ public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via QR::compute(const MatrixType&).
+ */
+ QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
+
+ QR(const MatrixType& matrix)
+ : m_qr(matrix.rows(), matrix.cols()),
+ m_hCoeffs(matrix.cols()),
+ m_isInitialized(false)
+ {
+ compute(matrix);
+ }
+
+ /** \deprecated use isInjective()
+ * \returns whether or not the matrix is of full rank
+ *
+ * \note Since the rank is computed only once, i.e. the first time it is needed, this
+ * method almost does not perform any further computation.
+ */
+ EIGEN_DEPRECATED bool isFullRank() const
+ {
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ return rank() == m_qr.cols();
+ }
+
+ /** \returns the rank of the matrix of which *this is the QR decomposition.
+ *
+ * \note Since the rank is computed only once, i.e. the first time it is needed, this
+ * method almost does not perform any further computation.
+ */
+ int rank() const;
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
+ *
+ * \note Since the rank is computed only once, i.e. the first time it is needed, this
+ * method almost does not perform any further computation.
+ */
+ inline int dimensionOfKernel() const
+ {
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ return m_qr.cols() - rank();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note Since the rank is computed only once, i.e. the first time it is needed, this
+ * method almost does not perform any further computation.
+ */
+ inline bool isInjective() const
+ {
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ return rank() == m_qr.cols();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note Since the rank is computed only once, i.e. the first time it is needed, this
+ * method almost does not perform any further computation.
+ */
+ inline bool isSurjective() const
+ {
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ return rank() == m_qr.rows();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition is invertible.
+ *
+ * \note Since the rank is computed only once, i.e. the first time it is needed, this
+ * method almost does not perform any further computation.
+ */
+ inline bool isInvertible() const
+ {
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ return isInjective() && isSurjective();
+ }
+
+ /** \returns a read-only expression of the matrix R of the actual the QR decomposition */
+ const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
+ matrixR(void) const
+ {
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ int cols = m_qr.cols();
+ return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
+ }
+
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the QR decomposition, if any exists.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \param result a pointer to the vector/matrix in which to store the solution, if any exists.
+ * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
+ * If no solution exists, *result is left with undefined coefficients.
+ *
+ * \returns true if any solution exists, false if no solution exists.
+ *
+ * \note If there exist more than one solution, this method will arbitrarily choose one.
+ * If you need a complete analysis of the space of solutions, take the one solution obtained
+ * by this method and add to it elements of the kernel, as determined by kernel().
+ *
+ * \note The case where b is a matrix is not yet implemented. Also, this
+ * code is space inefficient.
+ *
+ * Example: \include QR_solve.cpp
+ * Output: \verbinclude QR_solve.out
+ *
+ * \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
+ */
+ template<typename OtherDerived, typename ResultType>
+ bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
+
+ MatrixType matrixQ(void) const;
+
+ void compute(const MatrixType& matrix);
+
+ protected:
+ MatrixType m_qr;
+ VectorType m_hCoeffs;
+ mutable int m_rank;
+ mutable bool m_rankIsUptodate;
+ bool m_isInitialized;
+};
+
+/** \returns the rank of the matrix of which *this is the QR decomposition. */
+template<typename MatrixType>
+int QR<MatrixType>::rank() const
+{
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ if (!m_rankIsUptodate)
+ {
+ RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
+ int n = m_qr.cols();
+ m_rank = 0;
+ while(m_rank<n && !ei_isMuchSmallerThan(m_qr.diagonal().coeff(m_rank), maxCoeff))
+ ++m_rank;
+ m_rankIsUptodate = true;
+ }
+ return m_rank;
+}
+
+#ifndef EIGEN_HIDE_HEAVY_CODE
+
+template<typename MatrixType>
+void QR<MatrixType>::compute(const MatrixType& matrix)
+{
+ m_rankIsUptodate = false;
+ m_qr = matrix;
+ m_hCoeffs.resize(matrix.cols());
+
+ int rows = matrix.rows();
+ int cols = matrix.cols();
+ RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
+
+ for (int k = 0; k < cols; ++k)
+ {
+ int remainingSize = rows-k;
+
+ RealScalar beta;
+ Scalar v0 = m_qr.col(k).coeff(k);
+
+ if (remainingSize==1)
+ {
+ if (NumTraits<Scalar>::IsComplex)
+ {
+ // Householder transformation on the remaining single scalar
+ beta = ei_abs(v0);
+ if (ei_real(v0)>0)
+ beta = -beta;
+ m_qr.coeffRef(k,k) = beta;
+ m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
+ }
+ else
+ {
+ m_hCoeffs.coeffRef(k) = 0;
+ }
+ }
+ else if ((beta=m_qr.col(k).end(remainingSize-1).squaredNorm())>eps2)
+ // FIXME what about ei_imag(v0) ??
+ {
+ // form k-th Householder vector
+ beta = ei_sqrt(ei_abs2(v0)+beta);
+ if (ei_real(v0)>=0.)
+ beta = -beta;
+ m_qr.col(k).end(remainingSize-1) /= v0-beta;
+ m_qr.coeffRef(k,k) = beta;
+ Scalar h = m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
+
+ // apply the Householder transformation (I - h v v') to remaining columns, i.e.,
+ // R <- (I - h v v') * R where v = [1,m_qr(k+1,k), m_qr(k+2,k), ...]
+ int remainingCols = cols - k -1;
+ if (remainingCols>0)
+ {
+ m_qr.coeffRef(k,k) = Scalar(1);
+ m_qr.corner(BottomRight, remainingSize, remainingCols) -= ei_conj(h) * m_qr.col(k).end(remainingSize)
+ * (m_qr.col(k).end(remainingSize).adjoint() * m_qr.corner(BottomRight, remainingSize, remainingCols));
+ m_qr.coeffRef(k,k) = beta;
+ }
+ }
+ else
+ {
+ m_hCoeffs.coeffRef(k) = 0;
+ }
+ }
+ m_isInitialized = true;
+}
+
+template<typename MatrixType>
+template<typename OtherDerived, typename ResultType>
+bool QR<MatrixType>::solve(
+ const MatrixBase<OtherDerived>& b,
+ ResultType *result
+) const
+{
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ const int rows = m_qr.rows();
+ ei_assert(b.rows() == rows);
+ result->resize(rows, b.cols());
+
+ // TODO(keir): There is almost certainly a faster way to multiply by
+ // Q^T without explicitly forming matrixQ(). Investigate.
+ *result = matrixQ().transpose()*b;
+
+ if(!isSurjective())
+ {
+ // is result is in the image of R ?
+ RealScalar biggest_in_res = result->corner(TopLeft, m_rank, result->cols()).cwise().abs().maxCoeff();
+ for(int col = 0; col < result->cols(); ++col)
+ for(int row = m_rank; row < result->rows(); ++row)
+ if(!ei_isMuchSmallerThan(result->coeff(row,col), biggest_in_res))
+ return false;
+ }
+ m_qr.corner(TopLeft, m_rank, m_rank)
+ .template marked<UpperTriangular>()
+ .solveTriangularInPlace(result->corner(TopLeft, m_rank, result->cols()));
+
+ return true;
+}
+
+/** \returns the matrix Q */
+template<typename MatrixType>
+MatrixType QR<MatrixType>::matrixQ() const
+{
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ // compute the product Q_0 Q_1 ... Q_n-1,
+ // where Q_k is the k-th Householder transformation I - h_k v_k v_k'
+ // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
+ int rows = m_qr.rows();
+ int cols = m_qr.cols();
+ MatrixType res = MatrixType::Identity(rows, cols);
+ for (int k = cols-1; k >= 0; k--)
+ {
+ // to make easier the computation of the transformation, let's temporarily
+ // overwrite m_qr(k,k) such that the end of m_qr.col(k) is exactly our Householder vector.
+ Scalar beta = m_qr.coeff(k,k);
+ m_qr.const_cast_derived().coeffRef(k,k) = 1;
+ int endLength = rows-k;
+ res.corner(BottomRight,endLength, cols-k) -= ((m_hCoeffs.coeff(k) * m_qr.col(k).end(endLength))
+ * (m_qr.col(k).end(endLength).adjoint() * res.corner(BottomRight,endLength, cols-k)).lazy()).lazy();
+ m_qr.const_cast_derived().coeffRef(k,k) = beta;
+ }
+ return res;
+}
+
+#endif // EIGEN_HIDE_HEAVY_CODE
+
+/** \return the QR decomposition of \c *this.
+ *
+ * \sa class QR
+ */
+template<typename Derived>
+const QR<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::qr() const
+{
+ return QR<PlainMatrixType>(eval());
+}
+
+
+#endif // EIGEN_QR_H