Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/QR/SelfAdjointEigenSolver.h')
-rw-r--r--extern/Eigen2/Eigen/src/QR/SelfAdjointEigenSolver.h402
1 files changed, 402 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/QR/SelfAdjointEigenSolver.h b/extern/Eigen2/Eigen/src/QR/SelfAdjointEigenSolver.h
new file mode 100644
index 00000000000..70984efab9d
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/QR/SelfAdjointEigenSolver.h
@@ -0,0 +1,402 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
+#define EIGEN_SELFADJOINTEIGENSOLVER_H
+
+/** \qr_module \ingroup QR_Module
+ * \nonstableyet
+ *
+ * \class SelfAdjointEigenSolver
+ *
+ * \brief Eigen values/vectors solver for selfadjoint matrix
+ *
+ * \param MatrixType the type of the matrix of which we are computing the eigen decomposition
+ *
+ * \note MatrixType must be an actual Matrix type, it can't be an expression type.
+ *
+ * \sa MatrixBase::eigenvalues(), class EigenSolver
+ */
+template<typename _MatrixType> class SelfAdjointEigenSolver
+{
+ public:
+
+ enum {Size = _MatrixType::RowsAtCompileTime };
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef std::complex<RealScalar> Complex;
+ typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
+ typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
+ typedef Tridiagonalization<MatrixType> TridiagonalizationType;
+
+ SelfAdjointEigenSolver()
+ : m_eivec(int(Size), int(Size)),
+ m_eivalues(int(Size))
+ {
+ ei_assert(Size!=Dynamic);
+ }
+
+ SelfAdjointEigenSolver(int size)
+ : m_eivec(size, size),
+ m_eivalues(size)
+ {}
+
+ /** Constructors computing the eigenvalues of the selfadjoint matrix \a matrix,
+ * as well as the eigenvectors if \a computeEigenvectors is true.
+ *
+ * \sa compute(MatrixType,bool), SelfAdjointEigenSolver(MatrixType,MatrixType,bool)
+ */
+ SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
+ : m_eivec(matrix.rows(), matrix.cols()),
+ m_eivalues(matrix.cols())
+ {
+ compute(matrix, computeEigenvectors);
+ }
+
+ /** Constructors computing the eigenvalues of the generalized eigen problem
+ * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
+ * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
+ * are computed if \a computeEigenvectors is true.
+ *
+ * \sa compute(MatrixType,MatrixType,bool), SelfAdjointEigenSolver(MatrixType,bool)
+ */
+ SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
+ : m_eivec(matA.rows(), matA.cols()),
+ m_eivalues(matA.cols())
+ {
+ compute(matA, matB, computeEigenvectors);
+ }
+
+ void compute(const MatrixType& matrix, bool computeEigenvectors = true);
+
+ void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true);
+
+ /** \returns the computed eigen vectors as a matrix of column vectors */
+ MatrixType eigenvectors(void) const
+ {
+ #ifndef NDEBUG
+ ei_assert(m_eigenvectorsOk);
+ #endif
+ return m_eivec;
+ }
+
+ /** \returns the computed eigen values */
+ RealVectorType eigenvalues(void) const { return m_eivalues; }
+
+ /** \returns the positive square root of the matrix
+ *
+ * \note the matrix itself must be positive in order for this to make sense.
+ */
+ MatrixType operatorSqrt() const
+ {
+ return m_eivec * m_eivalues.cwise().sqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \returns the positive inverse square root of the matrix
+ *
+ * \note the matrix itself must be positive definite in order for this to make sense.
+ */
+ MatrixType operatorInverseSqrt() const
+ {
+ return m_eivec * m_eivalues.cwise().inverse().cwise().sqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+
+ protected:
+ MatrixType m_eivec;
+ RealVectorType m_eivalues;
+ #ifndef NDEBUG
+ bool m_eigenvectorsOk;
+ #endif
+};
+
+#ifndef EIGEN_HIDE_HEAVY_CODE
+
+// from Golub's "Matrix Computations", algorithm 5.1.3
+template<typename Scalar>
+static void ei_givens_rotation(Scalar a, Scalar b, Scalar& c, Scalar& s)
+{
+ if (b==0)
+ {
+ c = 1; s = 0;
+ }
+ else if (ei_abs(b)>ei_abs(a))
+ {
+ Scalar t = -a/b;
+ s = Scalar(1)/ei_sqrt(1+t*t);
+ c = s * t;
+ }
+ else
+ {
+ Scalar t = -b/a;
+ c = Scalar(1)/ei_sqrt(1+t*t);
+ s = c * t;
+ }
+}
+
+/** \internal
+ *
+ * \qr_module
+ *
+ * Performs a QR step on a tridiagonal symmetric matrix represented as a
+ * pair of two vectors \a diag and \a subdiag.
+ *
+ * \param matA the input selfadjoint matrix
+ * \param hCoeffs returned Householder coefficients
+ *
+ * For compilation efficiency reasons, this procedure does not use eigen expression
+ * for its arguments.
+ *
+ * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
+ * "implicit symmetric QR step with Wilkinson shift"
+ */
+template<typename RealScalar, typename Scalar>
+static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n);
+
+/** Computes the eigenvalues of the selfadjoint matrix \a matrix,
+ * as well as the eigenvectors if \a computeEigenvectors is true.
+ *
+ * \sa SelfAdjointEigenSolver(MatrixType,bool), compute(MatrixType,MatrixType,bool)
+ */
+template<typename MatrixType>
+void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
+{
+ #ifndef NDEBUG
+ m_eigenvectorsOk = computeEigenvectors;
+ #endif
+ assert(matrix.cols() == matrix.rows());
+ int n = matrix.cols();
+ m_eivalues.resize(n,1);
+
+ if(n==1)
+ {
+ m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0));
+ m_eivec.setOnes();
+ return;
+ }
+
+ m_eivec = matrix;
+
+ // FIXME, should tridiag be a local variable of this function or an attribute of SelfAdjointEigenSolver ?
+ // the latter avoids multiple memory allocation when the same SelfAdjointEigenSolver is used multiple times...
+ // (same for diag and subdiag)
+ RealVectorType& diag = m_eivalues;
+ typename TridiagonalizationType::SubDiagonalType subdiag(n-1);
+ TridiagonalizationType::decomposeInPlace(m_eivec, diag, subdiag, computeEigenvectors);
+
+ int end = n-1;
+ int start = 0;
+ while (end>0)
+ {
+ for (int i = start; i<end; ++i)
+ if (ei_isMuchSmallerThan(ei_abs(subdiag[i]),(ei_abs(diag[i])+ei_abs(diag[i+1]))))
+ subdiag[i] = 0;
+
+ // find the largest unreduced block
+ while (end>0 && subdiag[end-1]==0)
+ end--;
+ if (end<=0)
+ break;
+ start = end - 1;
+ while (start>0 && subdiag[start-1]!=0)
+ start--;
+
+ ei_tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
+ }
+
+ // Sort eigenvalues and corresponding vectors.
+ // TODO make the sort optional ?
+ // TODO use a better sort algorithm !!
+ for (int i = 0; i < n-1; ++i)
+ {
+ int k;
+ m_eivalues.segment(i,n-i).minCoeff(&k);
+ if (k > 0)
+ {
+ std::swap(m_eivalues[i], m_eivalues[k+i]);
+ m_eivec.col(i).swap(m_eivec.col(k+i));
+ }
+ }
+}
+
+/** Computes the eigenvalues of the generalized eigen problem
+ * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
+ * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
+ * are computed if \a computeEigenvectors is true.
+ *
+ * \sa SelfAdjointEigenSolver(MatrixType,MatrixType,bool), compute(MatrixType,bool)
+ */
+template<typename MatrixType>
+void SelfAdjointEigenSolver<MatrixType>::
+compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors)
+{
+ ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
+
+ // Compute the cholesky decomposition of matB = L L'
+ LLT<MatrixType> cholB(matB);
+
+ // compute C = inv(L) A inv(L')
+ MatrixType matC = matA;
+ cholB.matrixL().solveTriangularInPlace(matC);
+ // FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' :
+ matC = matC.adjoint().eval();
+ cholB.matrixL().template marked<LowerTriangular>().solveTriangularInPlace(matC);
+ matC = matC.adjoint().eval();
+ // this version works too:
+// matC = matC.transpose();
+// cholB.matrixL().conjugate().template marked<LowerTriangular>().solveTriangularInPlace(matC);
+// matC = matC.transpose();
+ // FIXME: this should work: (currently it only does for small matrices)
+// Transpose<MatrixType> trMatC(matC);
+// cholB.matrixL().conjugate().eval().template marked<LowerTriangular>().solveTriangularInPlace(trMatC);
+
+ compute(matC, computeEigenvectors);
+
+ if (computeEigenvectors)
+ {
+ // transform back the eigen vectors: evecs = inv(U) * evecs
+ cholB.matrixL().adjoint().template marked<UpperTriangular>().solveTriangularInPlace(m_eivec);
+ for (int i=0; i<m_eivec.cols(); ++i)
+ m_eivec.col(i) = m_eivec.col(i).normalized();
+ }
+}
+
+#endif // EIGEN_HIDE_HEAVY_CODE
+
+/** \qr_module
+ *
+ * \returns a vector listing the eigenvalues of this matrix.
+ */
+template<typename Derived>
+inline Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1>
+MatrixBase<Derived>::eigenvalues() const
+{
+ ei_assert(Flags&SelfAdjointBit);
+ return SelfAdjointEigenSolver<typename Derived::PlainMatrixType>(eval(),false).eigenvalues();
+}
+
+template<typename Derived, bool IsSelfAdjoint>
+struct ei_operatorNorm_selector
+{
+ static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+ operatorNorm(const MatrixBase<Derived>& m)
+ {
+ // FIXME if it is really guaranteed that the eigenvalues are already sorted,
+ // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
+ return m.eigenvalues().cwise().abs().maxCoeff();
+ }
+};
+
+template<typename Derived> struct ei_operatorNorm_selector<Derived, false>
+{
+ static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+ operatorNorm(const MatrixBase<Derived>& m)
+ {
+ typename Derived::PlainMatrixType m_eval(m);
+ // FIXME if it is really guaranteed that the eigenvalues are already sorted,
+ // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
+ return ei_sqrt(
+ (m_eval*m_eval.adjoint())
+ .template marked<SelfAdjoint>()
+ .eigenvalues()
+ .maxCoeff()
+ );
+ }
+};
+
+/** \qr_module
+ *
+ * \returns the matrix norm of this matrix.
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::operatorNorm() const
+{
+ return ei_operatorNorm_selector<Derived, Flags&SelfAdjointBit>
+ ::operatorNorm(derived());
+}
+
+#ifndef EIGEN_EXTERN_INSTANTIATIONS
+template<typename RealScalar, typename Scalar>
+static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n)
+{
+ RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
+ RealScalar e2 = ei_abs2(subdiag[end-1]);
+ RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2));
+ RealScalar x = diag[start] - mu;
+ RealScalar z = subdiag[start];
+
+ for (int k = start; k < end; ++k)
+ {
+ RealScalar c, s;
+ ei_givens_rotation(x, z, c, s);
+
+ // do T = G' T G
+ RealScalar sdk = s * diag[k] + c * subdiag[k];
+ RealScalar dkp1 = s * subdiag[k] + c * diag[k+1];
+
+ diag[k] = c * (c * diag[k] - s * subdiag[k]) - s * (c * subdiag[k] - s * diag[k+1]);
+ diag[k+1] = s * sdk + c * dkp1;
+ subdiag[k] = c * sdk - s * dkp1;
+
+ if (k > start)
+ subdiag[k - 1] = c * subdiag[k-1] - s * z;
+
+ x = subdiag[k];
+
+ if (k < end - 1)
+ {
+ z = -s * subdiag[k+1];
+ subdiag[k + 1] = c * subdiag[k+1];
+ }
+
+ // apply the givens rotation to the unit matrix Q = Q * G
+ // G only modifies the two columns k and k+1
+ if (matrixQ)
+ {
+ #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
+ #else
+ int kn = k*n;
+ int kn1 = (k+1)*n;
+ #endif
+ // let's do the product manually to avoid the need of temporaries...
+ for (int i=0; i<n; ++i)
+ {
+ #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
+ Scalar matrixQ_i_k = matrixQ[i*n+k];
+ matrixQ[i*n+k] = c * matrixQ_i_k - s * matrixQ[i*n+k+1];
+ matrixQ[i*n+k+1] = s * matrixQ_i_k + c * matrixQ[i*n+k+1];
+ #else
+ Scalar matrixQ_i_k = matrixQ[i+kn];
+ matrixQ[i+kn] = c * matrixQ_i_k - s * matrixQ[i+kn1];
+ matrixQ[i+kn1] = s * matrixQ_i_k + c * matrixQ[i+kn1];
+ #endif
+ }
+ }
+ }
+}
+#endif
+
+#endif // EIGEN_SELFADJOINTEIGENSOLVER_H