Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/QR/Tridiagonalization.h')
-rw-r--r--extern/Eigen2/Eigen/src/QR/Tridiagonalization.h431
1 files changed, 0 insertions, 431 deletions
diff --git a/extern/Eigen2/Eigen/src/QR/Tridiagonalization.h b/extern/Eigen2/Eigen/src/QR/Tridiagonalization.h
deleted file mode 100644
index 9ea39be717c..00000000000
--- a/extern/Eigen2/Eigen/src/QR/Tridiagonalization.h
+++ /dev/null
@@ -1,431 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_TRIDIAGONALIZATION_H
-#define EIGEN_TRIDIAGONALIZATION_H
-
-/** \ingroup QR_Module
- * \nonstableyet
- *
- * \class Tridiagonalization
- *
- * \brief Trigiagonal decomposition of a selfadjoint matrix
- *
- * \param MatrixType the type of the matrix of which we are performing the tridiagonalization
- *
- * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
- * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
- *
- * \sa MatrixBase::tridiagonalize()
- */
-template<typename _MatrixType> class Tridiagonalization
-{
- public:
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename ei_packet_traits<Scalar>::type Packet;
-
- enum {
- Size = MatrixType::RowsAtCompileTime,
- SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
- ? Dynamic
- : MatrixType::RowsAtCompileTime-1,
- PacketSize = ei_packet_traits<Scalar>::size
- };
-
- typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
- typedef Matrix<RealScalar, Size, 1> DiagonalType;
- typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
-
- typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType;
-
- typedef typename NestByValue<DiagonalCoeffs<
- NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
-
- /** This constructor initializes a Tridiagonalization object for
- * further use with Tridiagonalization::compute()
- */
- Tridiagonalization(int size = Size==Dynamic ? 2 : Size)
- : m_matrix(size,size), m_hCoeffs(size-1)
- {}
-
- Tridiagonalization(const MatrixType& matrix)
- : m_matrix(matrix),
- m_hCoeffs(matrix.cols()-1)
- {
- _compute(m_matrix, m_hCoeffs);
- }
-
- /** Computes or re-compute the tridiagonalization for the matrix \a matrix.
- *
- * This method allows to re-use the allocated data.
- */
- void compute(const MatrixType& matrix)
- {
- m_matrix = matrix;
- m_hCoeffs.resize(matrix.rows()-1, 1);
- _compute(m_matrix, m_hCoeffs);
- }
-
- /** \returns the householder coefficients allowing to
- * reconstruct the matrix Q from the packed data.
- *
- * \sa packedMatrix()
- */
- inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
-
- /** \returns the internal result of the decomposition.
- *
- * The returned matrix contains the following information:
- * - the strict upper part is equal to the input matrix A
- * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
- * - the rest of the lower part contains the Householder vectors that, combined with
- * Householder coefficients returned by householderCoefficients(),
- * allows to reconstruct the matrix Q as follow:
- * Q = H_{N-1} ... H_1 H_0
- * where the matrices H are the Householder transformations:
- * H_i = (I - h_i * v_i * v_i')
- * where h_i == householderCoefficients()[i] and v_i is a Householder vector:
- * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
- *
- * See LAPACK for further details on this packed storage.
- */
- inline const MatrixType& packedMatrix(void) const { return m_matrix; }
-
- MatrixType matrixQ(void) const;
- MatrixType matrixT(void) const;
- const DiagonalReturnType diagonal(void) const;
- const SubDiagonalReturnType subDiagonal(void) const;
-
- static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
-
- private:
-
- static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
-
- static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
-
- protected:
- MatrixType m_matrix;
- CoeffVectorType m_hCoeffs;
-};
-
-/** \returns an expression of the diagonal vector */
-template<typename MatrixType>
-const typename Tridiagonalization<MatrixType>::DiagonalReturnType
-Tridiagonalization<MatrixType>::diagonal(void) const
-{
- return m_matrix.diagonal().nestByValue().real();
-}
-
-/** \returns an expression of the sub-diagonal vector */
-template<typename MatrixType>
-const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
-Tridiagonalization<MatrixType>::subDiagonal(void) const
-{
- int n = m_matrix.rows();
- return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
- .nestByValue().diagonal().nestByValue().real();
-}
-
-/** constructs and returns the tridiagonal matrix T.
- * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
- * Therefore, it might be often sufficient to directly use the packed matrix, or the vector
- * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
- */
-template<typename MatrixType>
-typename Tridiagonalization<MatrixType>::MatrixType
-Tridiagonalization<MatrixType>::matrixT(void) const
-{
- // FIXME should this function (and other similar ones) rather take a matrix as argument
- // and fill it ? (to avoid temporaries)
- int n = m_matrix.rows();
- MatrixType matT = m_matrix;
- matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate();
- if (n>2)
- {
- matT.corner(TopRight,n-2, n-2).template part<UpperTriangular>().setZero();
- matT.corner(BottomLeft,n-2, n-2).template part<LowerTriangular>().setZero();
- }
- return matT;
-}
-
-#ifndef EIGEN_HIDE_HEAVY_CODE
-
-/** \internal
- * Performs a tridiagonal decomposition of \a matA in place.
- *
- * \param matA the input selfadjoint matrix
- * \param hCoeffs returned Householder coefficients
- *
- * The result is written in the lower triangular part of \a matA.
- *
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
- *
- * \sa packedMatrix()
- */
-template<typename MatrixType>
-void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
-{
- assert(matA.rows()==matA.cols());
- int n = matA.rows();
-// std::cerr << matA << "\n\n";
- for (int i = 0; i<n-2; ++i)
- {
- // let's consider the vector v = i-th column starting at position i+1
-
- // start of the householder transformation
- // squared norm of the vector v skipping the first element
- RealScalar v1norm2 = matA.col(i).end(n-(i+2)).squaredNorm();
-
- // FIXME comparing against 1
- if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
- {
- hCoeffs.coeffRef(i) = 0.;
- }
- else
- {
- Scalar v0 = matA.col(i).coeff(i+1);
- RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
- if (ei_real(v0)>=0.)
- beta = -beta;
- matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta));
- matA.col(i).coeffRef(i+1) = beta;
- Scalar h = (beta - v0) / beta;
- // end of the householder transformation
-
- // Apply similarity transformation to remaining columns,
- // i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
-
- matA.col(i).coeffRef(i+1) = 1;
-
- /* This is the initial algorithm which minimize operation counts and maximize
- * the use of Eigen's expression. Unfortunately, the first matrix-vector product
- * using Part<LowerTriangular|Selfadjoint> is very very slow */
- #ifdef EIGEN_NEVER_DEFINED
- // matrix - vector product
- hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular|SelfAdjoint>()
- * (h * matA.col(i).end(n-i-1))).lazy();
- // simple axpy
- hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
- * matA.col(i).end(n-i-1);
- // rank-2 update
- //Block<MatrixType,Dynamic,1> B(matA,i+1,i,n-i-1,1);
- matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular>() -=
- (matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy()
- + (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy();
- #endif
- /* end initial algorithm */
-
- /* If we still want to minimize operation count (i.e., perform operation on the lower part only)
- * then we could provide the following algorithm for selfadjoint - vector product. However, a full
- * matrix-vector product is still faster (at least for dynamic size, and not too small, did not check
- * small matrices). The algo performs block matrix-vector and transposed matrix vector products. */
- #ifdef EIGEN_NEVER_DEFINED
- int n4 = (std::max(0,n-4)/4)*4;
- hCoeffs.end(n-i-1).setZero();
- for (int b=i+1; b<n4; b+=4)
- {
- // the ?x4 part:
- hCoeffs.end(b-4) +=
- Block<MatrixType,Dynamic,4>(matA,b+4,b,n-b-4,4) * matA.template block<4,1>(b,i);
- // the respective transposed part:
- Block<CoeffVectorType,4,1>(hCoeffs, b, 0, 4,1) +=
- Block<MatrixType,Dynamic,4>(matA,b+4,b,n-b-4,4).adjoint() * Block<MatrixType,Dynamic,1>(matA,b+4,i,n-b-4,1);
- // the 4x4 block diagonal:
- Block<CoeffVectorType,4,1>(hCoeffs, b, 0, 4,1) +=
- (Block<MatrixType,4,4>(matA,b,b,4,4).template part<LowerTriangular|SelfAdjoint>()
- * (h * Block<MatrixType,4,1>(matA,b,i,4,1))).lazy();
- }
- #endif
- // todo: handle the remaining part
- /* end optimized selfadjoint - vector product */
-
- /* Another interesting note: the above rank-2 update is much slower than the following hand written loop.
- * After an analyze of the ASM, it seems GCC (4.2) generate poor code because of the Block. Moreover,
- * if we remove the specialization of Block for Matrix then it is even worse, much worse ! */
- #ifdef EIGEN_NEVER_DEFINED
- for (int j1=i+1; j1<n; ++j1)
- for (int i1=j1; i1<n; ++i1)
- matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1))
- + hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i));
- #endif
- /* end hand writen partial rank-2 update */
-
- /* The current fastest implementation: the full matrix is used, no "optimization" to use/compute
- * only half of the matrix. Custom vectorization of the inner col -= alpha X + beta Y such that access
- * to col are always aligned. Once we support that in Assign, then the algorithm could be rewriten as
- * a single compact expression. This code is therefore a good benchmark when will do that. */
-
- // let's use the end of hCoeffs to store temporary values:
- hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1) * (h * matA.col(i).end(n-i-1))).lazy();
- // FIXME in the above expr a temporary is created because of the scalar multiple by h
-
- hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
- * matA.col(i).end(n-i-1);
-
- const Scalar* EIGEN_RESTRICT pb = &matA.coeffRef(0,i);
- const Scalar* EIGEN_RESTRICT pa = (&hCoeffs.coeffRef(0)) - 1;
- for (int j1=i+1; j1<n; ++j1)
- {
- int starti = i+1;
- int alignedEnd = starti;
- if (PacketSize>1)
- {
- int alignedStart = (starti) + ei_alignmentOffset(&matA.coeffRef(starti,j1), n-starti);
- alignedEnd = alignedStart + ((n-alignedStart)/PacketSize)*PacketSize;
-
- for (int i1=starti; i1<alignedStart; ++i1)
- matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1))
- + hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i));
-
- Packet tmp0 = ei_pset1(hCoeffs.coeff(j1-1));
- Packet tmp1 = ei_pset1(matA.coeff(j1,i));
- Scalar* pc = &matA.coeffRef(0,j1);
- for (int i1=alignedStart ; i1<alignedEnd; i1+=PacketSize)
- ei_pstore(pc+i1,ei_psub(ei_pload(pc+i1),
- ei_padd(ei_pmul(tmp0, ei_ploadu(pb+i1)),
- ei_pmul(tmp1, ei_ploadu(pa+i1)))));
- }
- for (int i1=alignedEnd; i1<n; ++i1)
- matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1))
- + hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i));
- }
- /* end optimized implementation */
-
- // note: at that point matA(i+1,i+1) is the (i+1)-th element of the final diagonal
- // note: the sequence of the beta values leads to the subdiagonal entries
- matA.col(i).coeffRef(i+1) = beta;
-
- hCoeffs.coeffRef(i) = h;
- }
- }
- if (NumTraits<Scalar>::IsComplex)
- {
- // Householder transformation on the remaining single scalar
- int i = n-2;
- Scalar v0 = matA.col(i).coeff(i+1);
- RealScalar beta = ei_abs(v0);
- if (ei_real(v0)>=0.)
- beta = -beta;
- matA.col(i).coeffRef(i+1) = beta;
- if(ei_isMuchSmallerThan(beta, Scalar(1))) hCoeffs.coeffRef(i) = Scalar(0);
- else hCoeffs.coeffRef(i) = (beta - v0) / beta;
- }
- else
- {
- hCoeffs.coeffRef(n-2) = 0;
- }
-}
-
-/** reconstructs and returns the matrix Q */
-template<typename MatrixType>
-typename Tridiagonalization<MatrixType>::MatrixType
-Tridiagonalization<MatrixType>::matrixQ(void) const
-{
- int n = m_matrix.rows();
- MatrixType matQ = MatrixType::Identity(n,n);
- for (int i = n-2; i>=0; i--)
- {
- Scalar tmp = m_matrix.coeff(i+1,i);
- m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
-
- matQ.corner(BottomRight,n-i-1,n-i-1) -=
- ((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) *
- (m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
-
- m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
- }
- return matQ;
-}
-
-/** Performs a full decomposition in place */
-template<typename MatrixType>
-void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
-{
- int n = mat.rows();
- ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1);
- if (n==3 && (!NumTraits<Scalar>::IsComplex) )
- {
- _decomposeInPlace3x3(mat, diag, subdiag, extractQ);
- }
- else
- {
- Tridiagonalization tridiag(mat);
- diag = tridiag.diagonal();
- subdiag = tridiag.subDiagonal();
- if (extractQ)
- mat = tridiag.matrixQ();
- }
-}
-
-/** \internal
- * Optimized path for 3x3 matrices.
- * Especially useful for plane fitting.
- */
-template<typename MatrixType>
-void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
-{
- diag[0] = ei_real(mat(0,0));
- RealScalar v1norm2 = ei_abs2(mat(0,2));
- if (ei_isMuchSmallerThan(v1norm2, RealScalar(1)))
- {
- diag[1] = ei_real(mat(1,1));
- diag[2] = ei_real(mat(2,2));
- subdiag[0] = ei_real(mat(0,1));
- subdiag[1] = ei_real(mat(1,2));
- if (extractQ)
- mat.setIdentity();
- }
- else
- {
- RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2);
- RealScalar invBeta = RealScalar(1)/beta;
- Scalar m01 = mat(0,1) * invBeta;
- Scalar m02 = mat(0,2) * invBeta;
- Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1));
- diag[1] = ei_real(mat(1,1) + m02*q);
- diag[2] = ei_real(mat(2,2) - m02*q);
- subdiag[0] = beta;
- subdiag[1] = ei_real(mat(1,2) - m01 * q);
- if (extractQ)
- {
- mat(0,0) = 1;
- mat(0,1) = 0;
- mat(0,2) = 0;
- mat(1,0) = 0;
- mat(1,1) = m01;
- mat(1,2) = m02;
- mat(2,0) = 0;
- mat(2,1) = m02;
- mat(2,2) = -m01;
- }
- }
-}
-
-#endif // EIGEN_HIDE_HEAVY_CODE
-
-#endif // EIGEN_TRIDIAGONALIZATION_H