Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Sparse/DynamicSparseMatrix.h')
-rw-r--r--extern/Eigen2/Eigen/src/Sparse/DynamicSparseMatrix.h297
1 files changed, 297 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/Sparse/DynamicSparseMatrix.h b/extern/Eigen2/Eigen/src/Sparse/DynamicSparseMatrix.h
new file mode 100644
index 00000000000..7119a84bd51
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/Sparse/DynamicSparseMatrix.h
@@ -0,0 +1,297 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
+#define EIGEN_DYNAMIC_SPARSEMATRIX_H
+
+/** \class DynamicSparseMatrix
+ *
+ * \brief A sparse matrix class designed for matrix assembly purpose
+ *
+ * \param _Scalar the scalar type, i.e. the type of the coefficients
+ *
+ * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
+ * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
+ * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
+ * otherwise.
+ *
+ * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
+ * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
+ * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
+ *
+ * \see SparseMatrix
+ */
+template<typename _Scalar, int _Flags>
+struct ei_traits<DynamicSparseMatrix<_Scalar, _Flags> >
+{
+ typedef _Scalar Scalar;
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ Flags = SparseBit | _Flags,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ SupportedAccessPatterns = OuterRandomAccessPattern
+ };
+};
+
+template<typename _Scalar, int _Flags>
+class DynamicSparseMatrix
+ : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Flags> >
+{
+ public:
+ EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(DynamicSparseMatrix)
+ // FIXME: why are these operator already alvailable ???
+ // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=)
+ // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
+ typedef MappedSparseMatrix<Scalar,Flags> Map;
+
+ protected:
+
+ enum { IsRowMajor = Base::IsRowMajor };
+ typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
+
+ int m_innerSize;
+ std::vector<CompressedStorage<Scalar> > m_data;
+
+ public:
+
+ inline int rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
+ inline int cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
+ inline int innerSize() const { return m_innerSize; }
+ inline int outerSize() const { return m_data.size(); }
+ inline int innerNonZeros(int j) const { return m_data[j].size(); }
+
+ std::vector<CompressedStorage<Scalar> >& _data() { return m_data; }
+ const std::vector<CompressedStorage<Scalar> >& _data() const { return m_data; }
+
+ /** \returns the coefficient value at given position \a row, \a col
+ * This operation involes a log(rho*outer_size) binary search.
+ */
+ inline Scalar coeff(int row, int col) const
+ {
+ const int outer = IsRowMajor ? row : col;
+ const int inner = IsRowMajor ? col : row;
+ return m_data[outer].at(inner);
+ }
+
+ /** \returns a reference to the coefficient value at given position \a row, \a col
+ * This operation involes a log(rho*outer_size) binary search. If the coefficient does not
+ * exist yet, then a sorted insertion into a sequential buffer is performed.
+ */
+ inline Scalar& coeffRef(int row, int col)
+ {
+ const int outer = IsRowMajor ? row : col;
+ const int inner = IsRowMajor ? col : row;
+ return m_data[outer].atWithInsertion(inner);
+ }
+
+ class InnerIterator;
+
+ inline void setZero()
+ {
+ for (int j=0; j<outerSize(); ++j)
+ m_data[j].clear();
+ }
+
+ /** \returns the number of non zero coefficients */
+ inline int nonZeros() const
+ {
+ int res = 0;
+ for (int j=0; j<outerSize(); ++j)
+ res += m_data[j].size();
+ return res;
+ }
+
+ /** Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
+ inline void startFill(int reserveSize = 1000)
+ {
+ if (outerSize()>0)
+ {
+ int reserveSizePerVector = std::max(reserveSize/outerSize(),4);
+ for (int j=0; j<outerSize(); ++j)
+ {
+ m_data[j].clear();
+ m_data[j].reserve(reserveSizePerVector);
+ }
+ }
+ }
+
+ /** inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
+ * 1 - the coefficient does not exist yet
+ * 2 - this the coefficient with greater inner coordinate for the given outer coordinate.
+ * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
+ * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
+ *
+ * \see fillrand(), coeffRef()
+ */
+ inline Scalar& fill(int row, int col)
+ {
+ const int outer = IsRowMajor ? row : col;
+ const int inner = IsRowMajor ? col : row;
+ ei_assert(outer<int(m_data.size()) && inner<m_innerSize);
+ ei_assert((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner));
+ m_data[outer].append(0, inner);
+ return m_data[outer].value(m_data[outer].size()-1);
+ }
+
+ /** Like fill() but with random inner coordinates.
+ * Compared to the generic coeffRef(), the unique limitation is that we assume
+ * the coefficient does not exist yet.
+ */
+ inline Scalar& fillrand(int row, int col)
+ {
+ const int outer = IsRowMajor ? row : col;
+ const int inner = IsRowMajor ? col : row;
+
+ int startId = 0;
+ int id = m_data[outer].size() - 1;
+ m_data[outer].resize(id+2,1);
+
+ while ( (id >= startId) && (m_data[outer].index(id) > inner) )
+ {
+ m_data[outer].index(id+1) = m_data[outer].index(id);
+ m_data[outer].value(id+1) = m_data[outer].value(id);
+ --id;
+ }
+ m_data[outer].index(id+1) = inner;
+ m_data[outer].value(id+1) = 0;
+ return m_data[outer].value(id+1);
+ }
+
+ /** Does nothing. Provided for compatibility with SparseMatrix. */
+ inline void endFill() {}
+
+ void prune(Scalar reference, RealScalar epsilon = precision<RealScalar>())
+ {
+ for (int j=0; j<outerSize(); ++j)
+ m_data[j].prune(reference,epsilon);
+ }
+
+ /** Resize the matrix without preserving the data (the matrix is set to zero)
+ */
+ void resize(int rows, int cols)
+ {
+ const int outerSize = IsRowMajor ? rows : cols;
+ m_innerSize = IsRowMajor ? cols : rows;
+ setZero();
+ if (int(m_data.size()) != outerSize)
+ {
+ m_data.resize(outerSize);
+ }
+ }
+
+ void resizeAndKeepData(int rows, int cols)
+ {
+ const int outerSize = IsRowMajor ? rows : cols;
+ const int innerSize = IsRowMajor ? cols : rows;
+ if (m_innerSize>innerSize)
+ {
+ // remove all coefficients with innerCoord>=innerSize
+ // TODO
+ std::cerr << "not implemented yet\n";
+ exit(2);
+ }
+ if (m_data.size() != outerSize)
+ {
+ m_data.resize(outerSize);
+ }
+ }
+
+ inline DynamicSparseMatrix()
+ : m_innerSize(0), m_data(0)
+ {
+ ei_assert(innerSize()==0 && outerSize()==0);
+ }
+
+ inline DynamicSparseMatrix(int rows, int cols)
+ : m_innerSize(0)
+ {
+ resize(rows, cols);
+ }
+
+ template<typename OtherDerived>
+ inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
+ : m_innerSize(0)
+ {
+ *this = other.derived();
+ }
+
+ inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
+ : Base(), m_innerSize(0)
+ {
+ *this = other.derived();
+ }
+
+ inline void swap(DynamicSparseMatrix& other)
+ {
+ //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
+ std::swap(m_innerSize, other.m_innerSize);
+ //std::swap(m_outerSize, other.m_outerSize);
+ m_data.swap(other.m_data);
+ }
+
+ inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
+ {
+ if (other.isRValue())
+ {
+ swap(other.const_cast_derived());
+ }
+ else
+ {
+ resize(other.rows(), other.cols());
+ m_data = other.m_data;
+ }
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ inline DynamicSparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
+ {
+ return SparseMatrixBase<DynamicSparseMatrix>::operator=(other.derived());
+ }
+
+ /** Destructor */
+ inline ~DynamicSparseMatrix() {}
+};
+
+template<typename Scalar, int _Flags>
+class DynamicSparseMatrix<Scalar,_Flags>::InnerIterator : public SparseVector<Scalar,_Flags>::InnerIterator
+{
+ typedef typename SparseVector<Scalar,_Flags>::InnerIterator Base;
+ public:
+ InnerIterator(const DynamicSparseMatrix& mat, int outer)
+ : Base(mat.m_data[outer]), m_outer(outer)
+ {}
+
+ inline int row() const { return IsRowMajor ? m_outer : Base::index(); }
+ inline int col() const { return IsRowMajor ? Base::index() : m_outer; }
+
+
+ protected:
+ const int m_outer;
+};
+
+#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H