Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Sparse/SparseLDLT.h')
-rw-r--r--extern/Eigen2/Eigen/src/Sparse/SparseLDLT.h346
1 files changed, 0 insertions, 346 deletions
diff --git a/extern/Eigen2/Eigen/src/Sparse/SparseLDLT.h b/extern/Eigen2/Eigen/src/Sparse/SparseLDLT.h
deleted file mode 100644
index a1bac4d084d..00000000000
--- a/extern/Eigen2/Eigen/src/Sparse/SparseLDLT.h
+++ /dev/null
@@ -1,346 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-/*
-
-NOTE: the _symbolic, and _numeric functions has been adapted from
- the LDL library:
-
-LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
-
-LDL License:
-
- Your use or distribution of LDL or any modified version of
- LDL implies that you agree to this License.
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
- USA
-
- Permission is hereby granted to use or copy this program under the
- terms of the GNU LGPL, provided that the Copyright, this License,
- and the Availability of the original version is retained on all copies.
- User documentation of any code that uses this code or any modified
- version of this code must cite the Copyright, this License, the
- Availability note, and "Used by permission." Permission to modify
- the code and to distribute modified code is granted, provided the
- Copyright, this License, and the Availability note are retained,
- and a notice that the code was modified is included.
- */
-
-#ifndef EIGEN_SPARSELDLT_H
-#define EIGEN_SPARSELDLT_H
-
-/** \ingroup Sparse_Module
- *
- * \class SparseLDLT
- *
- * \brief LDLT Cholesky decomposition of a sparse matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LDLT Cholesky decomposition
- *
- * \sa class LDLT, class LDLT
- */
-template<typename MatrixType, int Backend = DefaultBackend>
-class SparseLDLT
-{
- protected:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef SparseMatrix<Scalar,LowerTriangular|UnitDiagBit> CholMatrixType;
- typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType;
-
- enum {
- SupernodalFactorIsDirty = 0x10000,
- MatrixLIsDirty = 0x20000
- };
-
- public:
-
- /** Creates a dummy LDLT factorization object with flags \a flags. */
- SparseLDLT(int flags = 0)
- : m_flags(flags), m_status(0)
- {
- ei_assert((MatrixType::Flags&RowMajorBit)==0);
- m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
- }
-
- /** Creates a LDLT object and compute the respective factorization of \a matrix using
- * flags \a flags. */
- SparseLDLT(const MatrixType& matrix, int flags = 0)
- : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
- {
- ei_assert((MatrixType::Flags&RowMajorBit)==0);
- m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
- compute(matrix);
- }
-
- /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
- *
- * Setting a value greater than zero speeds up computation, and yields to an imcomplete
- * factorization with fewer non zero coefficients. Such approximate factors are especially
- * useful to initialize an iterative solver.
- *
- * \warning if precision is greater that zero, the LDLT factorization is not guaranteed to succeed
- * even if the matrix is positive definite.
- *
- * Note that the exact meaning of this parameter might depends on the actual
- * backend. Moreover, not all backends support this feature.
- *
- * \sa precision() */
- void setPrecision(RealScalar v) { m_precision = v; }
-
- /** \returns the current precision.
- *
- * \sa setPrecision() */
- RealScalar precision() const { return m_precision; }
-
- /** Sets the flags. Possible values are:
- * - CompleteFactorization
- * - IncompleteFactorization
- * - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
- * - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
- * overloads the MemoryEfficient flags)
- * - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
- * overloads the MemoryEfficient flags)
- *
- * \sa flags() */
- void settagss(int f) { m_flags = f; }
- /** \returns the current flags */
- int flags() const { return m_flags; }
-
- /** Computes/re-computes the LDLT factorization */
- void compute(const MatrixType& matrix);
-
- /** Perform a symbolic factorization */
- void _symbolic(const MatrixType& matrix);
- /** Perform the actual factorization using the previously
- * computed symbolic factorization */
- bool _numeric(const MatrixType& matrix);
-
- /** \returns the lower triangular matrix L */
- inline const CholMatrixType& matrixL(void) const { return m_matrix; }
-
- /** \returns the coefficients of the diagonal matrix D */
- inline VectorType vectorD(void) const { return m_diag; }
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &b) const;
-
- /** \returns true if the factorization succeeded */
- inline bool succeeded(void) const { return m_succeeded; }
-
- protected:
- CholMatrixType m_matrix;
- VectorType m_diag;
- VectorXi m_parent; // elimination tree
- VectorXi m_nonZerosPerCol;
-// VectorXi m_w; // workspace
- RealScalar m_precision;
- int m_flags;
- mutable int m_status;
- bool m_succeeded;
-};
-
-/** Computes / recomputes the LDLT decomposition of matrix \a a
- * using the default algorithm.
- */
-template<typename MatrixType, int Backend>
-void SparseLDLT<MatrixType,Backend>::compute(const MatrixType& a)
-{
- _symbolic(a);
- m_succeeded = _numeric(a);
-}
-
-template<typename MatrixType, int Backend>
-void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a)
-{
- assert(a.rows()==a.cols());
- const int size = a.rows();
- m_matrix.resize(size, size);
- m_parent.resize(size);
- m_nonZerosPerCol.resize(size);
- int * tags = ei_aligned_stack_new(int, size);
-
- const int* Ap = a._outerIndexPtr();
- const int* Ai = a._innerIndexPtr();
- int* Lp = m_matrix._outerIndexPtr();
- const int* P = 0;
- int* Pinv = 0;
-
- if (P)
- {
- /* If P is present then compute Pinv, the inverse of P */
- for (int k = 0; k < size; ++k)
- Pinv[P[k]] = k;
- }
- for (int k = 0; k < size; ++k)
- {
- /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
- m_parent[k] = -1; /* parent of k is not yet known */
- tags[k] = k; /* mark node k as visited */
- m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
- int kk = P ? P[k] : k; /* kth original, or permuted, column */
- int p2 = Ap[kk+1];
- for (int p = Ap[kk]; p < p2; ++p)
- {
- /* A (i,k) is nonzero (original or permuted A) */
- int i = Pinv ? Pinv[Ai[p]] : Ai[p];
- if (i < k)
- {
- /* follow path from i to root of etree, stop at flagged node */
- for (; tags[i] != k; i = m_parent[i])
- {
- /* find parent of i if not yet determined */
- if (m_parent[i] == -1)
- m_parent[i] = k;
- ++m_nonZerosPerCol[i]; /* L (k,i) is nonzero */
- tags[i] = k; /* mark i as visited */
- }
- }
- }
- }
- /* construct Lp index array from m_nonZerosPerCol column counts */
- Lp[0] = 0;
- for (int k = 0; k < size; ++k)
- Lp[k+1] = Lp[k] + m_nonZerosPerCol[k];
-
- m_matrix.resizeNonZeros(Lp[size]);
- ei_aligned_stack_delete(int, tags, size);
-}
-
-template<typename MatrixType, int Backend>
-bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a)
-{
- assert(a.rows()==a.cols());
- const int size = a.rows();
- assert(m_parent.size()==size);
- assert(m_nonZerosPerCol.size()==size);
-
- const int* Ap = a._outerIndexPtr();
- const int* Ai = a._innerIndexPtr();
- const Scalar* Ax = a._valuePtr();
- const int* Lp = m_matrix._outerIndexPtr();
- int* Li = m_matrix._innerIndexPtr();
- Scalar* Lx = m_matrix._valuePtr();
- m_diag.resize(size);
-
- Scalar * y = ei_aligned_stack_new(Scalar, size);
- int * pattern = ei_aligned_stack_new(int, size);
- int * tags = ei_aligned_stack_new(int, size);
-
- const int* P = 0;
- const int* Pinv = 0;
- bool ok = true;
-
- for (int k = 0; k < size; ++k)
- {
- /* compute nonzero pattern of kth row of L, in topological order */
- y[k] = 0.0; /* Y(0:k) is now all zero */
- int top = size; /* stack for pattern is empty */
- tags[k] = k; /* mark node k as visited */
- m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
- int kk = (P) ? (P[k]) : (k); /* kth original, or permuted, column */
- int p2 = Ap[kk+1];
- for (int p = Ap[kk]; p < p2; ++p)
- {
- int i = Pinv ? Pinv[Ai[p]] : Ai[p]; /* get A(i,k) */
- if (i <= k)
- {
- y[i] += Ax[p]; /* scatter A(i,k) into Y (sum duplicates) */
- int len;
- for (len = 0; tags[i] != k; i = m_parent[i])
- {
- pattern[len++] = i; /* L(k,i) is nonzero */
- tags[i] = k; /* mark i as visited */
- }
- while (len > 0)
- pattern[--top] = pattern[--len];
- }
- }
- /* compute numerical values kth row of L (a sparse triangular solve) */
- m_diag[k] = y[k]; /* get D(k,k) and clear Y(k) */
- y[k] = 0.0;
- for (; top < size; ++top)
- {
- int i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
- Scalar yi = y[i]; /* get and clear Y(i) */
- y[i] = 0.0;
- int p2 = Lp[i] + m_nonZerosPerCol[i];
- int p;
- for (p = Lp[i]; p < p2; ++p)
- y[Li[p]] -= Lx[p] * yi;
- Scalar l_ki = yi / m_diag[i]; /* the nonzero entry L(k,i) */
- m_diag[k] -= l_ki * yi;
- Li[p] = k; /* store L(k,i) in column form of L */
- Lx[p] = l_ki;
- ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
- }
- if (m_diag[k] == 0.0)
- {
- ok = false; /* failure, D(k,k) is zero */
- break;
- }
- }
-
- ei_aligned_stack_delete(Scalar, y, size);
- ei_aligned_stack_delete(int, pattern, size);
- ei_aligned_stack_delete(int, tags, size);
-
- return ok; /* success, diagonal of D is all nonzero */
-}
-
-/** Computes b = L^-T L^-1 b */
-template<typename MatrixType, int Backend>
-template<typename Derived>
-bool SparseLDLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
-{
- const int size = m_matrix.rows();
- ei_assert(size==b.rows());
- if (!m_succeeded)
- return false;
-
- if (m_matrix.nonZeros()>0) // otherwise L==I
- m_matrix.solveTriangularInPlace(b);
- b = b.cwise() / m_diag;
- // FIXME should be .adjoint() but it fails to compile...
-
- if (m_matrix.nonZeros()>0) // otherwise L==I
- m_matrix.transpose().solveTriangularInPlace(b);
-
- return true;
-}
-
-#endif // EIGEN_SPARSELDLT_H