Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen3/Eigen/src/Core/MathFunctions.h')
-rw-r--r--extern/Eigen3/Eigen/src/Core/MathFunctions.h881
1 files changed, 764 insertions, 117 deletions
diff --git a/extern/Eigen3/Eigen/src/Core/MathFunctions.h b/extern/Eigen3/Eigen/src/Core/MathFunctions.h
index adf2f9c511b..b249ce0c8b0 100644
--- a/extern/Eigen3/Eigen/src/Core/MathFunctions.h
+++ b/extern/Eigen3/Eigen/src/Core/MathFunctions.h
@@ -10,11 +10,25 @@
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
+// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
+// TODO this should better be moved to NumTraits
+#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L
+
+
namespace Eigen {
+// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
+// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
+#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
+long abs(long x) { return (labs(x)); }
+double abs(double x) { return (fabs(x)); }
+float abs(float x) { return (fabsf(x)); }
+long double abs(long double x) { return (fabsl(x)); }
+#endif
+
namespace internal {
-/** \internal \struct global_math_functions_filtering_base
+/** \internal \class global_math_functions_filtering_base
*
* What it does:
* Defines a typedef 'type' as follows:
@@ -62,6 +76,7 @@ template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct real_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return x;
@@ -72,6 +87,7 @@ template<typename Scalar>
struct real_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
using std::real;
@@ -81,13 +97,25 @@ struct real_default_impl<Scalar,true>
template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
+#ifdef __CUDA_ARCH__
+template<typename T>
+struct real_impl<std::complex<T> >
+{
+ typedef T RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline T run(const std::complex<T>& x)
+ {
+ return x.real();
+ }
+};
+#endif
+
template<typename Scalar>
struct real_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
-
/****************************************************************************
* Implementation of imag *
****************************************************************************/
@@ -96,6 +124,7 @@ template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct imag_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar&)
{
return RealScalar(0);
@@ -106,6 +135,7 @@ template<typename Scalar>
struct imag_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
using std::imag;
@@ -115,6 +145,19 @@ struct imag_default_impl<Scalar,true>
template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
+#ifdef __CUDA_ARCH__
+template<typename T>
+struct imag_impl<std::complex<T> >
+{
+ typedef T RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline T run(const std::complex<T>& x)
+ {
+ return x.imag();
+ }
+};
+#endif
+
template<typename Scalar>
struct imag_retval
{
@@ -129,10 +172,12 @@ template<typename Scalar>
struct real_ref_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[0];
}
+ EIGEN_DEVICE_FUNC
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<const RealScalar*>(&x)[0];
@@ -153,10 +198,12 @@ template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
+ EIGEN_DEVICE_FUNC
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
@@ -166,10 +213,12 @@ struct imag_ref_default_impl
template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
+ EIGEN_DEVICE_FUNC
static inline Scalar run(Scalar&)
{
return Scalar(0);
}
+ EIGEN_DEVICE_FUNC
static inline const Scalar run(const Scalar&)
{
return Scalar(0);
@@ -192,6 +241,7 @@ struct imag_ref_retval
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct conj_impl
{
+ EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
return x;
@@ -201,6 +251,7 @@ struct conj_impl
template<typename Scalar>
struct conj_impl<Scalar,true>
{
+ EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
using std::conj;
@@ -218,26 +269,40 @@ struct conj_retval
* Implementation of abs2 *
****************************************************************************/
-template<typename Scalar>
-struct abs2_impl
+template<typename Scalar,bool IsComplex>
+struct abs2_impl_default
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return x*x;
}
};
-template<typename RealScalar>
-struct abs2_impl<std::complex<RealScalar> >
+template<typename Scalar>
+struct abs2_impl_default<Scalar, true> // IsComplex
{
- static inline RealScalar run(const std::complex<RealScalar>& x)
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
{
return real(x)*real(x) + imag(x)*imag(x);
}
};
template<typename Scalar>
+struct abs2_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
+ }
+};
+
+template<typename Scalar>
struct abs2_retval
{
typedef typename NumTraits<Scalar>::Real type;
@@ -251,9 +316,10 @@ template<typename Scalar, bool IsComplex>
struct norm1_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
- using std::abs;
+ EIGEN_USING_STD_MATH(abs);
return abs(real(x)) + abs(imag(x));
}
};
@@ -261,9 +327,10 @@ struct norm1_default_impl
template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
+ EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
- using std::abs;
+ EIGEN_USING_STD_MATH(abs);
return abs(x);
}
};
@@ -281,25 +348,7 @@ struct norm1_retval
* Implementation of hypot *
****************************************************************************/
-template<typename Scalar>
-struct hypot_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x, const Scalar& y)
- {
- using std::max;
- using std::min;
- using std::abs;
- using std::sqrt;
- RealScalar _x = abs(x);
- RealScalar _y = abs(y);
- RealScalar p = (max)(_x, _y);
- if(p==RealScalar(0)) return RealScalar(0);
- RealScalar q = (min)(_x, _y);
- RealScalar qp = q/p;
- return p * sqrt(RealScalar(1) + qp*qp);
- }
-};
+template<typename Scalar> struct hypot_impl;
template<typename Scalar>
struct hypot_retval
@@ -314,6 +363,7 @@ struct hypot_retval
template<typename OldType, typename NewType>
struct cast_impl
{
+ EIGEN_DEVICE_FUNC
static inline NewType run(const OldType& x)
{
return static_cast<NewType>(x);
@@ -323,48 +373,124 @@ struct cast_impl
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
template<typename OldType, typename NewType>
+EIGEN_DEVICE_FUNC
inline NewType cast(const OldType& x)
{
return cast_impl<OldType, NewType>::run(x);
}
/****************************************************************************
-* Implementation of atanh2 *
+* Implementation of round *
****************************************************************************/
-template<typename Scalar, bool IsInteger>
-struct atanh2_default_impl
-{
- typedef Scalar retval;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline Scalar run(const Scalar& x, const Scalar& y)
+#if EIGEN_HAS_CXX11_MATH
+ template<typename Scalar>
+ struct round_impl {
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
+ using std::round;
+ return round(x);
+ }
+ };
+#else
+ template<typename Scalar>
+ struct round_impl
{
- using std::abs;
- using std::log;
- using std::sqrt;
- Scalar z = x / y;
- if (y == Scalar(0) || abs(z) > sqrt(NumTraits<RealScalar>::epsilon()))
- return RealScalar(0.5) * log((y + x) / (y - x));
- else
- return z + z*z*z / RealScalar(3);
- }
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
+ EIGEN_USING_STD_MATH(floor);
+ EIGEN_USING_STD_MATH(ceil);
+ return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
+ }
+ };
+#endif
+
+template<typename Scalar>
+struct round_retval
+{
+ typedef Scalar type;
};
+/****************************************************************************
+* Implementation of arg *
+****************************************************************************/
+
+#if EIGEN_HAS_CXX11_MATH
+ template<typename Scalar>
+ struct arg_impl {
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_USING_STD_MATH(arg);
+ return arg(x);
+ }
+ };
+#else
+ template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
+ struct arg_default_impl
+ {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
+ };
+
+ template<typename Scalar>
+ struct arg_default_impl<Scalar,true>
+ {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ EIGEN_USING_STD_MATH(arg);
+ return arg(x);
+ }
+ };
+
+ template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
+#endif
+
template<typename Scalar>
-struct atanh2_default_impl<Scalar, true>
+struct arg_retval
{
- static inline Scalar run(const Scalar&, const Scalar&)
+ typedef typename NumTraits<Scalar>::Real type;
+};
+
+/****************************************************************************
+* Implementation of log1p *
+****************************************************************************/
+
+namespace std_fallback {
+ // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar,
+ // or that there is no suitable std::log1p function available
+ template<typename Scalar>
+ EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_USING_STD_MATH(log);
+ Scalar x1p = RealScalar(1) + x;
+ return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
+ }
+}
+
+template<typename Scalar>
+struct log1p_impl {
+ static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- return Scalar(0);
+ #if EIGEN_HAS_CXX11_MATH
+ using std::log1p;
+ #endif
+ using std_fallback::log1p;
+ return log1p(x);
}
};
-template<typename Scalar>
-struct atanh2_impl : atanh2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
-struct atanh2_retval
+struct log1p_retval
{
typedef Scalar type;
};
@@ -373,24 +499,26 @@ struct atanh2_retval
* Implementation of pow *
****************************************************************************/
-template<typename Scalar, bool IsInteger>
-struct pow_default_impl
+template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
+struct pow_impl
{
- typedef Scalar retval;
- static inline Scalar run(const Scalar& x, const Scalar& y)
+ //typedef Scalar retval;
+ typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type;
+ static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y)
{
- using std::pow;
+ EIGEN_USING_STD_MATH(pow);
return pow(x, y);
}
};
-template<typename Scalar>
-struct pow_default_impl<Scalar, true>
+template<typename ScalarX,typename ScalarY>
+struct pow_impl<ScalarX,ScalarY, true>
{
- static inline Scalar run(Scalar x, Scalar y)
+ typedef ScalarX result_type;
+ static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y)
{
- Scalar res(1);
- eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
+ ScalarX res(1);
+ eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
if(y & 1) res *= x;
y >>= 1;
while(y)
@@ -403,15 +531,6 @@ struct pow_default_impl<Scalar, true>
}
};
-template<typename Scalar>
-struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar>
-struct pow_retval
-{
- typedef Scalar type;
-};
-
/****************************************************************************
* Implementation of random *
****************************************************************************/
@@ -447,48 +566,48 @@ struct random_default_impl<Scalar, false, false>
};
enum {
- floor_log2_terminate,
- floor_log2_move_up,
- floor_log2_move_down,
- floor_log2_bogus
+ meta_floor_log2_terminate,
+ meta_floor_log2_move_up,
+ meta_floor_log2_move_down,
+ meta_floor_log2_bogus
};
-template<unsigned int n, int lower, int upper> struct floor_log2_selector
+template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
{
enum { middle = (lower + upper) / 2,
- value = (upper <= lower + 1) ? int(floor_log2_terminate)
- : (n < (1 << middle)) ? int(floor_log2_move_down)
- : (n==0) ? int(floor_log2_bogus)
- : int(floor_log2_move_up)
+ value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
+ : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
+ : (n==0) ? int(meta_floor_log2_bogus)
+ : int(meta_floor_log2_move_up)
};
};
template<unsigned int n,
int lower = 0,
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
- int selector = floor_log2_selector<n, lower, upper>::value>
-struct floor_log2 {};
+ int selector = meta_floor_log2_selector<n, lower, upper>::value>
+struct meta_floor_log2 {};
template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_move_down>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
{
- enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
+ enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
};
template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_move_up>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
{
- enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
+ enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
};
template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_terminate>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
{
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};
template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_bogus>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
{
// no value, error at compile time
};
@@ -496,11 +615,31 @@ struct floor_log2<n, lower, upper, floor_log2_bogus>
template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
- typedef typename NumTraits<Scalar>::NonInteger NonInteger;
-
static inline Scalar run(const Scalar& x, const Scalar& y)
{
- return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
+ if (y <= x)
+ return x;
+ // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself.
+ typedef typename make_unsigned<Scalar>::type ScalarU;
+ // ScalarX is the widest of ScalarU and unsigned int.
+ // We'll deal only with ScalarX and unsigned int below thus avoiding signed
+ // types and arithmetic and signed overflows (which are undefined behavior).
+ typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX;
+ // The following difference doesn't overflow, provided our integer types are two's
+ // complement and have the same number of padding bits in signed and unsigned variants.
+ // This is the case in most modern implementations of C++.
+ ScalarX range = ScalarX(y) - ScalarX(x);
+ ScalarX offset = 0;
+ ScalarX divisor = 1;
+ ScalarX multiplier = 1;
+ const unsigned rand_max = RAND_MAX;
+ if (range <= rand_max) divisor = (rand_max + 1) / (range + 1);
+ else multiplier = 1 + range / (rand_max + 1);
+ // Rejection sampling.
+ do {
+ offset = (unsigned(std::rand()) * multiplier) / divisor;
+ } while (offset > range);
+ return Scalar(ScalarX(x) + offset);
}
static inline Scalar run()
@@ -508,7 +647,7 @@ struct random_default_impl<Scalar, false, true>
#ifdef EIGEN_MAKING_DOCS
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
- enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
+ enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
scalar_bits = sizeof(Scalar) * CHAR_BIT,
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
@@ -545,97 +684,602 @@ inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}
+// Implementatin of is* functions
+
+// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
+#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
+#define EIGEN_USE_STD_FPCLASSIFY 1
+#else
+#define EIGEN_USE_STD_FPCLASSIFY 0
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<internal::is_integral<T>::value,bool>::type
+isnan_impl(const T&) { return false; }
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<internal::is_integral<T>::value,bool>::type
+isinf_impl(const T&) { return false; }
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<internal::is_integral<T>::value,bool>::type
+isfinite_impl(const T&) { return true; }
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
+isfinite_impl(const T& x)
+{
+ #ifdef __CUDA_ARCH__
+ return (::isfinite)(x);
+ #elif EIGEN_USE_STD_FPCLASSIFY
+ using std::isfinite;
+ return isfinite EIGEN_NOT_A_MACRO (x);
+ #else
+ return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
+ #endif
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
+isinf_impl(const T& x)
+{
+ #ifdef __CUDA_ARCH__
+ return (::isinf)(x);
+ #elif EIGEN_USE_STD_FPCLASSIFY
+ using std::isinf;
+ return isinf EIGEN_NOT_A_MACRO (x);
+ #else
+ return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
+ #endif
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
+isnan_impl(const T& x)
+{
+ #ifdef __CUDA_ARCH__
+ return (::isnan)(x);
+ #elif EIGEN_USE_STD_FPCLASSIFY
+ using std::isnan;
+ return isnan EIGEN_NOT_A_MACRO (x);
+ #else
+ return x != x;
+ #endif
+}
+
+#if (!EIGEN_USE_STD_FPCLASSIFY)
+
+#if EIGEN_COMP_MSVC
+
+template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
+{
+ return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
+}
+
+//MSVC defines a _isnan builtin function, but for double only
+EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
+EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
+EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
+
+EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
+EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
+EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
+
+#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
+
+#if EIGEN_GNUC_AT_LEAST(5,0)
+ #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
+#else
+ // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
+ // while the second prevent too aggressive optimizations in fast-math mode:
+ #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
+#endif
+
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
+
+#undef EIGEN_TMP_NOOPT_ATTRIB
+
+#endif
+
+#endif
+
+// The following overload are defined at the end of this file
+template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
+template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
+template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
+
+template<typename T> T generic_fast_tanh_float(const T& a_x);
+
} // end namespace internal
/****************************************************************************
-* Generic math function *
+* Generic math functions *
****************************************************************************/
namespace numext {
+#ifndef __CUDA_ARCH__
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
+{
+ EIGEN_USING_STD_MATH(min);
+ return min EIGEN_NOT_A_MACRO (x,y);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
+{
+ EIGEN_USING_STD_MATH(max);
+ return max EIGEN_NOT_A_MACRO (x,y);
+}
+#else
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
+{
+ return y < x ? y : x;
+}
+template<>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
+{
+ return fminf(x, y);
+}
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
+{
+ return x < y ? y : x;
+}
+template<>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
+{
+ return fmaxf(x, y);
+}
+#endif
+
+
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
-}
+}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
return internal::real_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
return internal::imag_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}
template<typename Scalar>
+EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}
template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
{
- return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
+ return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
}
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float log1p(const float &x) { return ::log1pf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double log1p(const double &x) { return ::log1p(x); }
+#endif
+
+template<typename ScalarX,typename ScalarY>
+EIGEN_DEVICE_FUNC
+inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y)
+{
+ return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
+}
+
+template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
+template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
+template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
+
template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+T (floor)(const T& x)
+{
+ EIGEN_USING_STD_MATH(floor);
+ return floor(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float floor(const float &x) { return ::floorf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double floor(const double &x) { return ::floor(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+T (ceil)(const T& x)
+{
+ EIGEN_USING_STD_MATH(ceil);
+ return ceil(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float ceil(const float &x) { return ::ceilf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double ceil(const double &x) { return ::ceil(x); }
+#endif
+
+
+/** Log base 2 for 32 bits positive integers.
+ * Conveniently returns 0 for x==0. */
+inline int log2(int x)
{
- return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
+ eigen_assert(x>=0);
+ unsigned int v(x);
+ static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return table[(v * 0x07C4ACDDU) >> 27];
}
-// std::isfinite is non standard, so let's define our own version,
-// even though it is not very efficient.
-template<typename T> bool (isfinite)(const T& x)
+/** \returns the square root of \a x.
+ *
+ * It is essentially equivalent to
+ * \code using std::sqrt; return sqrt(x); \endcode
+ * but slightly faster for float/double and some compilers (e.g., gcc), thanks to
+ * specializations when SSE is enabled.
+ *
+ * It's usage is justified in performance critical functions, like norm/normalize.
+ */
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T sqrt(const T &x)
{
- return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
+ EIGEN_USING_STD_MATH(sqrt);
+ return sqrt(x);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T log(const T &x) {
+ EIGEN_USING_STD_MATH(log);
+ return log(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float log(const float &x) { return ::logf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double log(const double &x) { return ::log(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
+abs(const T &x) {
+ EIGEN_USING_STD_MATH(abs);
+ return abs(x);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
+abs(const T &x) {
+ return x;
+}
+
+#if defined(__SYCL_DEVICE_ONLY__)
+EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); }
+EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); }
+#endif // defined(__SYCL_DEVICE_ONLY__)
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float abs(const float &x) { return ::fabsf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double abs(const double &x) { return ::fabs(x); }
+
+template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float abs(const std::complex<float>& x) {
+ return ::hypotf(x.real(), x.imag());
+}
+
+template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double abs(const std::complex<double>& x) {
+ return ::hypot(x.real(), x.imag());
+}
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T exp(const T &x) {
+ EIGEN_USING_STD_MATH(exp);
+ return exp(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float exp(const float &x) { return ::expf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double exp(const double &x) { return ::exp(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T cos(const T &x) {
+ EIGEN_USING_STD_MATH(cos);
+ return cos(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float cos(const float &x) { return ::cosf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double cos(const double &x) { return ::cos(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T sin(const T &x) {
+ EIGEN_USING_STD_MATH(sin);
+ return sin(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float sin(const float &x) { return ::sinf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double sin(const double &x) { return ::sin(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T tan(const T &x) {
+ EIGEN_USING_STD_MATH(tan);
+ return tan(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float tan(const float &x) { return ::tanf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double tan(const double &x) { return ::tan(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T acos(const T &x) {
+ EIGEN_USING_STD_MATH(acos);
+ return acos(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float acos(const float &x) { return ::acosf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double acos(const double &x) { return ::acos(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T asin(const T &x) {
+ EIGEN_USING_STD_MATH(asin);
+ return asin(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float asin(const float &x) { return ::asinf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double asin(const double &x) { return ::asin(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T atan(const T &x) {
+ EIGEN_USING_STD_MATH(atan);
+ return atan(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float atan(const float &x) { return ::atanf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double atan(const double &x) { return ::atan(x); }
+#endif
+
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T cosh(const T &x) {
+ EIGEN_USING_STD_MATH(cosh);
+ return cosh(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float cosh(const float &x) { return ::coshf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double cosh(const double &x) { return ::cosh(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T sinh(const T &x) {
+ EIGEN_USING_STD_MATH(sinh);
+ return sinh(x);
}
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float sinh(const float &x) { return ::sinhf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double sinh(const double &x) { return ::sinh(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T tanh(const T &x) {
+ EIGEN_USING_STD_MATH(tanh);
+ return tanh(x);
+}
+
+#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float tanh(float x) { return internal::generic_fast_tanh_float(x); }
+#endif
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float tanh(const float &x) { return ::tanhf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double tanh(const double &x) { return ::tanh(x); }
+#endif
+
+template <typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T fmod(const T& a, const T& b) {
+ EIGEN_USING_STD_MATH(fmod);
+ return fmod(a, b);
+}
+
+#ifdef __CUDACC__
+template <>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float fmod(const float& a, const float& b) {
+ return ::fmodf(a, b);
+}
+
+template <>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double fmod(const double& a, const double& b) {
+ return ::fmod(a, b);
+}
+#endif
+
} // end namespace numext
namespace internal {
+template<typename T>
+EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
+{
+ return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
+{
+ return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
+{
+ return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
+}
+
/****************************************************************************
* Implementation of fuzzy comparisons *
****************************************************************************/
@@ -649,18 +1293,17 @@ template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar>
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
- using std::abs;
- return abs(x) <= abs(y) * prec;
+ return numext::abs(x) <= numext::abs(y) * prec;
}
+ EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
- using std::min;
- using std::abs;
- return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
+ return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
}
+ EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return x <= y || isApprox(x, y, prec);
@@ -671,15 +1314,17 @@ template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar>
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
{
return x == Scalar(0);
}
+ EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x == y;
}
+ EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x <= y;
@@ -690,38 +1335,38 @@ template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar>
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return numext::abs2(x) <= numext::abs2(y) * prec * prec;
}
+ EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
- using std::min;
- return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
+ return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
}
};
template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
-template<typename Scalar, typename OtherScalar>
+template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
+ const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}
-template<typename Scalar>
+template<typename Scalar> EIGEN_DEVICE_FUNC
inline bool isApprox(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
+ const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}
-template<typename Scalar>
+template<typename Scalar> EIGEN_DEVICE_FUNC
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
+ const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}
@@ -742,17 +1387,19 @@ template<> struct scalar_fuzzy_impl<bool>
{
typedef bool RealScalar;
- template<typename OtherScalar>
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
{
return !x;
}
+ EIGEN_DEVICE_FUNC
static inline bool isApprox(bool x, bool y, bool)
{
return x == y;
}
+ EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
{
return (!x) || y;