Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen3/Eigen/src/Geometry/Rotation2D.h')
-rw-r--r--extern/Eigen3/Eigen/src/Geometry/Rotation2D.h85
1 files changed, 62 insertions, 23 deletions
diff --git a/extern/Eigen3/Eigen/src/Geometry/Rotation2D.h b/extern/Eigen3/Eigen/src/Geometry/Rotation2D.h
index a2d59fce10f..884b7d0ee95 100644
--- a/extern/Eigen3/Eigen/src/Geometry/Rotation2D.h
+++ b/extern/Eigen3/Eigen/src/Geometry/Rotation2D.h
@@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
- * \param _Scalar the scalar type, i.e., the type of the coefficients
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic
@@ -59,41 +59,79 @@ protected:
public:
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
- inline Rotation2D(const Scalar& a) : m_angle(a) {}
+ EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
/** Default constructor wihtout initialization. The represented rotation is undefined. */
- Rotation2D() {}
+ EIGEN_DEVICE_FUNC Rotation2D() {}
+
+ /** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
+ *
+ * \sa fromRotationMatrix()
+ */
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
+ {
+ fromRotationMatrix(m.derived());
+ }
/** \returns the rotation angle */
- inline Scalar angle() const { return m_angle; }
+ EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the rotation angle */
- inline Scalar& angle() { return m_angle; }
+ EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
+
+ /** \returns the rotation angle in [0,2pi] */
+ EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
+ Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
+ return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
+ }
+
+ /** \returns the rotation angle in [-pi,pi] */
+ EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
+ Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
+ if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI);
+ else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
+ return tmp;
+ }
/** \returns the inverse rotation */
- inline Rotation2D inverse() const { return -m_angle; }
+ EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
/** Concatenates two rotations */
- inline Rotation2D operator*(const Rotation2D& other) const
- { return m_angle + other.m_angle; }
+ EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
+ { return Rotation2D(m_angle + other.m_angle); }
/** Concatenates two rotations */
- inline Rotation2D& operator*=(const Rotation2D& other)
+ EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
{ m_angle += other.m_angle; return *this; }
/** Applies the rotation to a 2D vector */
- Vector2 operator* (const Vector2& vec) const
+ EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
{ return toRotationMatrix() * vec; }
template<typename Derived>
- Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix2 toRotationMatrix() const;
+ EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
+ EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
+
+ /** Set \c *this from a 2x2 rotation matrix \a mat.
+ * In other words, this function extract the rotation angle from the rotation matrix.
+ *
+ * This method is an alias for fromRotationMatrix()
+ *
+ * \sa fromRotationMatrix()
+ */
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m)
+ { return fromRotationMatrix(m.derived()); }
/** \returns the spherical interpolation between \c *this and \a other using
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
- inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
- { return m_angle * (1-t) + other.angle() * t; }
+ EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
+ {
+ Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
+ return Rotation2D(m_angle + dist*t);
+ }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@@ -101,24 +139,25 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
- inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
+ EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
{
m_angle = Scalar(other.angle());
}
- static inline Rotation2D Identity() { return Rotation2D(0); }
+ EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
- bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return internal::isApprox(m_angle,other.m_angle, prec); }
+
};
/** \ingroup Geometry_Module
@@ -134,9 +173,9 @@ typedef Rotation2D<double> Rotation2Dd;
*/
template<typename Scalar>
template<typename Derived>
-Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
+EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
- using std::atan2;
+ EIGEN_USING_STD_MATH(atan2)
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
return *this;
@@ -146,10 +185,10 @@ Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Deri
*/
template<typename Scalar>
typename Rotation2D<Scalar>::Matrix2
-Rotation2D<Scalar>::toRotationMatrix(void) const
+EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
{
- using std::sin;
- using std::cos;
+ EIGEN_USING_STD_MATH(sin)
+ EIGEN_USING_STD_MATH(cos)
Scalar sinA = sin(m_angle);
Scalar cosA = cos(m_angle);
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();