Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen3/Eigen/src/Geometry/Scaling.h')
-rw-r--r--extern/Eigen3/Eigen/src/Geometry/Scaling.h182
1 files changed, 182 insertions, 0 deletions
diff --git a/extern/Eigen3/Eigen/src/Geometry/Scaling.h b/extern/Eigen3/Eigen/src/Geometry/Scaling.h
new file mode 100644
index 00000000000..c911d13e1d3
--- /dev/null
+++ b/extern/Eigen3/Eigen/src/Geometry/Scaling.h
@@ -0,0 +1,182 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_SCALING_H
+#define EIGEN_SCALING_H
+
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \class Scaling
+ *
+ * \brief Represents a generic uniform scaling transformation
+ *
+ * \param _Scalar the scalar type, i.e., the type of the coefficients.
+ *
+ * This class represent a uniform scaling transformation. It is the return
+ * type of Scaling(Scalar), and most of the time this is the only way it
+ * is used. In particular, this class is not aimed to be used to store a scaling transformation,
+ * but rather to make easier the constructions and updates of Transform objects.
+ *
+ * To represent an axis aligned scaling, use the DiagonalMatrix class.
+ *
+ * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
+ */
+template<typename _Scalar>
+class UniformScaling
+{
+public:
+ /** the scalar type of the coefficients */
+ typedef _Scalar Scalar;
+
+protected:
+
+ Scalar m_factor;
+
+public:
+
+ /** Default constructor without initialization. */
+ UniformScaling() {}
+ /** Constructs and initialize a uniform scaling transformation */
+ explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
+
+ inline const Scalar& factor() const { return m_factor; }
+ inline Scalar& factor() { return m_factor; }
+
+ /** Concatenates two uniform scaling */
+ inline UniformScaling operator* (const UniformScaling& other) const
+ { return UniformScaling(m_factor * other.factor()); }
+
+ /** Concatenates a uniform scaling and a translation */
+ template<int Dim>
+ inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
+
+ /** Concatenates a uniform scaling and an affine transformation */
+ template<int Dim, int Mode, int Options>
+ inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const;
+
+ /** Concatenates a uniform scaling and a linear transformation matrix */
+ // TODO returns an expression
+ template<typename Derived>
+ inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
+ { return other * m_factor; }
+
+ template<typename Derived,int Dim>
+ inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
+ { return r.toRotationMatrix() * m_factor; }
+
+ /** \returns the inverse scaling */
+ inline UniformScaling inverse() const
+ { return UniformScaling(Scalar(1)/m_factor); }
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ inline UniformScaling<NewScalarType> cast() const
+ { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
+ { m_factor = Scalar(other.factor()); }
+
+ /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+ * determined by \a prec.
+ *
+ * \sa MatrixBase::isApprox() */
+ bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
+ { return internal::isApprox(m_factor, other.factor(), prec); }
+
+};
+
+/** Concatenates a linear transformation matrix and a uniform scaling */
+// NOTE this operator is defiend in MatrixBase and not as a friend function
+// of UniformScaling to fix an internal crash of Intel's ICC
+template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
+MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
+{ return derived() * s.factor(); }
+
+/** Constructs a uniform scaling from scale factor \a s */
+static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
+/** Constructs a uniform scaling from scale factor \a s */
+static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
+/** Constructs a uniform scaling from scale factor \a s */
+template<typename RealScalar>
+static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
+{ return UniformScaling<std::complex<RealScalar> >(s); }
+
+/** Constructs a 2D axis aligned scaling */
+template<typename Scalar>
+static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy)
+{ return DiagonalMatrix<Scalar,2>(sx, sy); }
+/** Constructs a 3D axis aligned scaling */
+template<typename Scalar>
+static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz)
+{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
+
+/** Constructs an axis aligned scaling expression from vector expression \a coeffs
+ * This is an alias for coeffs.asDiagonal()
+ */
+template<typename Derived>
+static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
+{ return coeffs.asDiagonal(); }
+
+/** \addtogroup Geometry_Module */
+//@{
+/** \deprecated */
+typedef DiagonalMatrix<float, 2> AlignedScaling2f;
+/** \deprecated */
+typedef DiagonalMatrix<double,2> AlignedScaling2d;
+/** \deprecated */
+typedef DiagonalMatrix<float, 3> AlignedScaling3f;
+/** \deprecated */
+typedef DiagonalMatrix<double,3> AlignedScaling3d;
+//@}
+
+template<typename Scalar>
+template<int Dim>
+inline Transform<Scalar,Dim,Affine>
+UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
+{
+ Transform<Scalar,Dim,Affine> res;
+ res.matrix().setZero();
+ res.linear().diagonal().fill(factor());
+ res.translation() = factor() * t.vector();
+ res(Dim,Dim) = Scalar(1);
+ return res;
+}
+
+template<typename Scalar>
+template<int Dim,int Mode,int Options>
+inline Transform<Scalar,Dim,Mode>
+UniformScaling<Scalar>::operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
+{
+ Transform<Scalar,Dim,Mode> res = t;
+ res.prescale(factor());
+ return res;
+}
+
+#endif // EIGEN_SCALING_H