Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen3/Eigen/src/IterativeLinearSolvers')
-rw-r--r--extern/Eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h31
-rw-r--r--extern/Eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h26
-rw-r--r--extern/Eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h215
-rw-r--r--extern/Eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h2
4 files changed, 155 insertions, 119 deletions
diff --git a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
index 126341be8d8..6fc6ab85225 100644
--- a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
+++ b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
@@ -39,10 +39,17 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
int maxIters = iters;
int n = mat.cols();
+ x = precond.solve(x);
VectorType r = rhs - mat * x;
VectorType r0 = r;
RealScalar r0_sqnorm = r0.squaredNorm();
+ RealScalar rhs_sqnorm = rhs.squaredNorm();
+ if(rhs_sqnorm == 0)
+ {
+ x.setZero();
+ return true;
+ }
Scalar rho = 1;
Scalar alpha = 1;
Scalar w = 1;
@@ -55,13 +62,22 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
RealScalar tol2 = tol*tol;
int i = 0;
+ int restarts = 0;
- while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
+ while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
{
Scalar rho_old = rho;
rho = r0.dot(r);
- if (rho == Scalar(0)) return false; /* New search directions cannot be found */
+ if (internal::isMuchSmallerThan(rho,r0_sqnorm))
+ {
+ // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
+ // Let's restart with a new r0:
+ r0 = r;
+ rho = r0_sqnorm = r.squaredNorm();
+ if(restarts++ == 0)
+ i = 0;
+ }
Scalar beta = (rho/rho_old) * (alpha / w);
p = r + beta * (p - w * v);
@@ -75,12 +91,16 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
z = precond.solve(s);
t.noalias() = mat * z;
- w = t.dot(s) / t.squaredNorm();
+ RealScalar tmp = t.squaredNorm();
+ if(tmp>RealScalar(0))
+ w = t.dot(s) / tmp;
+ else
+ w = Scalar(0);
x += alpha * y + w * z;
r = s - w * t;
++i;
}
- tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
+ tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
iters = i;
return true;
}
@@ -223,7 +243,8 @@ public:
template<typename Rhs,typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
- x.setZero();
+// x.setZero();
+ x = b;
_solveWithGuess(b,x);
}
diff --git a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
index f64f2534d28..a74a8155e68 100644
--- a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
+++ b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
@@ -41,15 +41,29 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
int n = mat.cols();
VectorType residual = rhs - mat * x; //initial residual
- VectorType p(n);
+ RealScalar rhsNorm2 = rhs.squaredNorm();
+ if(rhsNorm2 == 0)
+ {
+ x.setZero();
+ iters = 0;
+ tol_error = 0;
+ return;
+ }
+ RealScalar threshold = tol*tol*rhsNorm2;
+ RealScalar residualNorm2 = residual.squaredNorm();
+ if (residualNorm2 < threshold)
+ {
+ iters = 0;
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
+ return;
+ }
+
+ VectorType p(n);
p = precond.solve(residual); //initial search direction
VectorType z(n), tmp(n);
- RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
- RealScalar rhsNorm2 = rhs.squaredNorm();
- RealScalar residualNorm2 = 0;
- RealScalar threshold = tol*tol*rhsNorm2;
+ RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
int i = 0;
while(i < maxIters)
{
@@ -66,7 +80,7 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
z = precond.solve(residual); // approximately solve for "A z = residual"
RealScalar absOld = absNew;
- absNew = internal::real(residual.dot(z)); // update the absolute value of r
+ absNew = numext::real(residual.dot(z)); // update the absolute value of r
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
p = z + beta * p; // update search direction
i++;
diff --git a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
index 224304f0eb8..b55afc13636 100644
--- a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -10,36 +10,88 @@
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
+
namespace Eigen {
-/**
- * \brief Incomplete LU factorization with dual-threshold strategy
- * During the numerical factorization, two dropping rules are used :
- * 1) any element whose magnitude is less than some tolerance is dropped.
- * This tolerance is obtained by multiplying the input tolerance @p droptol
- * by the average magnitude of all the original elements in the current row.
- * 2) After the elimination of the row, only the @p fill largest elements in
- * the L part and the @p fill largest elements in the U part are kept
- * (in addition to the diagonal element ). Note that @p fill is computed from
- * the input parameter @p fillfactor which is used the ratio to control the fill_in
- * relatively to the initial number of nonzero elements.
- *
- * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
- * and when @p fill=n/2 with @p droptol being different to zero.
- *
- * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
- * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
- *
- * NOTE : The following implementation is derived from the ILUT implementation
- * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
- * released under the terms of the GNU LGPL:
- * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
- * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
- * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
- * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
- * alternatively, on GMANE:
- * http://comments.gmane.org/gmane.comp.lib.eigen/3302
- */
+namespace internal {
+
+/** \internal
+ * Compute a quick-sort split of a vector
+ * On output, the vector row is permuted such that its elements satisfy
+ * abs(row(i)) >= abs(row(ncut)) if i<ncut
+ * abs(row(i)) <= abs(row(ncut)) if i>ncut
+ * \param row The vector of values
+ * \param ind The array of index for the elements in @p row
+ * \param ncut The number of largest elements to keep
+ **/
+template <typename VectorV, typename VectorI, typename Index>
+Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
+{
+ typedef typename VectorV::RealScalar RealScalar;
+ using std::swap;
+ using std::abs;
+ Index mid;
+ Index n = row.size(); /* length of the vector */
+ Index first, last ;
+
+ ncut--; /* to fit the zero-based indices */
+ first = 0;
+ last = n-1;
+ if (ncut < first || ncut > last ) return 0;
+
+ do {
+ mid = first;
+ RealScalar abskey = abs(row(mid));
+ for (Index j = first + 1; j <= last; j++) {
+ if ( abs(row(j)) > abskey) {
+ ++mid;
+ swap(row(mid), row(j));
+ swap(ind(mid), ind(j));
+ }
+ }
+ /* Interchange for the pivot element */
+ swap(row(mid), row(first));
+ swap(ind(mid), ind(first));
+
+ if (mid > ncut) last = mid - 1;
+ else if (mid < ncut ) first = mid + 1;
+ } while (mid != ncut );
+
+ return 0; /* mid is equal to ncut */
+}
+
+}// end namespace internal
+
+/** \ingroup IterativeLinearSolvers_Module
+ * \class IncompleteLUT
+ * \brief Incomplete LU factorization with dual-threshold strategy
+ *
+ * During the numerical factorization, two dropping rules are used :
+ * 1) any element whose magnitude is less than some tolerance is dropped.
+ * This tolerance is obtained by multiplying the input tolerance @p droptol
+ * by the average magnitude of all the original elements in the current row.
+ * 2) After the elimination of the row, only the @p fill largest elements in
+ * the L part and the @p fill largest elements in the U part are kept
+ * (in addition to the diagonal element ). Note that @p fill is computed from
+ * the input parameter @p fillfactor which is used the ratio to control the fill_in
+ * relatively to the initial number of nonzero elements.
+ *
+ * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
+ * and when @p fill=n/2 with @p droptol being different to zero.
+ *
+ * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
+ * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
+ *
+ * NOTE : The following implementation is derived from the ILUT implementation
+ * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
+ * released under the terms of the GNU LGPL:
+ * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
+ * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
+ * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
+ * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
+ * alternatively, on GMANE:
+ * http://comments.gmane.org/gmane.comp.lib.eigen/3302
+ */
template <typename _Scalar>
class IncompleteLUT : internal::noncopyable
{
@@ -59,7 +111,7 @@ class IncompleteLUT : internal::noncopyable
{}
template<typename MatrixType>
- IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
+ IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
: m_droptol(droptol),m_fillfactor(fillfactor),
m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
{
@@ -98,12 +150,11 @@ class IncompleteLUT : internal::noncopyable
{
analyzePattern(amat);
factorize(amat);
- eigen_assert(m_factorizationIsOk == true);
- m_isInitialized = true;
+ m_isInitialized = m_factorizationIsOk;
return *this;
}
- void setDroptol(RealScalar droptol);
+ void setDroptol(const RealScalar& droptol);
void setFillfactor(int fillfactor);
template<typename Rhs, typename Dest>
@@ -126,10 +177,6 @@ class IncompleteLUT : internal::noncopyable
protected:
- template <typename VectorV, typename VectorI>
- int QuickSplit(VectorV &row, VectorI &ind, int ncut);
-
-
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
@@ -156,7 +203,7 @@ protected:
* \param droptol Drop any element whose magnitude is less than this tolerance
**/
template<typename Scalar>
-void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
+void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
{
this->m_droptol = droptol;
}
@@ -171,51 +218,6 @@ void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
this->m_fillfactor = fillfactor;
}
-
-/**
- * Compute a quick-sort split of a vector
- * On output, the vector row is permuted such that its elements satisfy
- * abs(row(i)) >= abs(row(ncut)) if i<ncut
- * abs(row(i)) <= abs(row(ncut)) if i>ncut
- * \param row The vector of values
- * \param ind The array of index for the elements in @p row
- * \param ncut The number of largest elements to keep
- **/
-template <typename Scalar>
-template <typename VectorV, typename VectorI>
-int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
-{
- using std::swap;
- int mid;
- int n = row.size(); /* length of the vector */
- int first, last ;
-
- ncut--; /* to fit the zero-based indices */
- first = 0;
- last = n-1;
- if (ncut < first || ncut > last ) return 0;
-
- do {
- mid = first;
- RealScalar abskey = std::abs(row(mid));
- for (int j = first + 1; j <= last; j++) {
- if ( std::abs(row(j)) > abskey) {
- ++mid;
- swap(row(mid), row(j));
- swap(ind(mid), ind(j));
- }
- }
- /* Interchange for the pivot element */
- swap(row(mid), row(first));
- swap(ind(mid), ind(first));
-
- if (mid > ncut) last = mid - 1;
- else if (mid < ncut ) first = mid + 1;
- } while (mid != ncut );
-
- return 0; /* mid is equal to ncut */
-}
-
template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
@@ -244,7 +246,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
using std::abs;
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
- int n = amat.cols(); // Size of the matrix
+ Index n = amat.cols(); // Size of the matrix
m_lu.resize(n,n);
// Declare Working vectors and variables
Vector u(n) ; // real values of the row -- maximum size is n --
@@ -262,21 +264,21 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
u.fill(0);
// number of largest elements to keep in each row:
- int fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
+ Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
if (fill_in > n) fill_in = n;
// number of largest nonzero elements to keep in the L and the U part of the current row:
- int nnzL = fill_in/2;
- int nnzU = nnzL;
+ Index nnzL = fill_in/2;
+ Index nnzU = nnzL;
m_lu.reserve(n * (nnzL + nnzU + 1));
// global loop over the rows of the sparse matrix
- for (int ii = 0; ii < n; ii++)
+ for (Index ii = 0; ii < n; ii++)
{
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
- int sizeu = 1; // number of nonzero elements in the upper part of the current row
- int sizel = 0; // number of nonzero elements in the lower part of the current row
+ Index sizeu = 1; // number of nonzero elements in the upper part of the current row
+ Index sizel = 0; // number of nonzero elements in the lower part of the current row
ju(ii) = ii;
u(ii) = 0;
jr(ii) = ii;
@@ -285,7 +287,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
for (; j_it; ++j_it)
{
- int k = j_it.index();
+ Index k = j_it.index();
if (k < ii)
{
// copy the lower part
@@ -301,13 +303,13 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
else
{
// copy the upper part
- int jpos = ii + sizeu;
+ Index jpos = ii + sizeu;
ju(jpos) = k;
u(jpos) = j_it.value();
jr(k) = jpos;
++sizeu;
}
- rownorm += internal::abs2(j_it.value());
+ rownorm += numext::abs2(j_it.value());
}
// 2 - detect possible zero row
@@ -320,19 +322,19 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
rownorm = sqrt(rownorm);
// 3 - eliminate the previous nonzero rows
- int jj = 0;
- int len = 0;
+ Index jj = 0;
+ Index len = 0;
while (jj < sizel)
{
// In order to eliminate in the correct order,
// we must select first the smallest column index among ju(jj:sizel)
- int k;
- int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
+ Index k;
+ Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
k += jj;
if (minrow != ju(jj))
{
// swap the two locations
- int j = ju(jj);
+ Index j = ju(jj);
swap(ju(jj), ju(k));
jr(minrow) = jj; jr(j) = k;
swap(u(jj), u(k));
@@ -358,11 +360,11 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
for (; ki_it; ++ki_it)
{
Scalar prod = fact * ki_it.value();
- int j = ki_it.index();
- int jpos = jr(j);
+ Index j = ki_it.index();
+ Index jpos = jr(j);
if (jpos == -1) // fill-in element
{
- int newpos;
+ Index newpos;
if (j >= ii) // dealing with the upper part
{
newpos = ii + sizeu;
@@ -391,7 +393,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
} // end of the elimination on the row ii
// reset the upper part of the pointer jr to zero
- for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
+ for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
// 4 - partially sort and insert the elements in the m_lu matrix
@@ -400,11 +402,11 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
- QuickSplit(ul, jul, len);
+ internal::QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part
m_lu.startVec(ii);
- for(int k = 0; k < len; k++)
+ for(Index k = 0; k < len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
// store the diagonal element
@@ -416,7 +418,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
// sort the U-part of the row
// apply the dropping rule first
len = 0;
- for(int k = 1; k < sizeu; k++)
+ for(Index k = 1; k < sizeu; k++)
{
if(abs(u(ii+k)) > m_droptol * rownorm )
{
@@ -429,10 +431,10 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
- QuickSplit(uu, juu, len);
+ internal::QuickSplit(uu, juu, len);
// store the largest elements of the U part
- for(int k = ii + 1; k < ii + len; k++)
+ for(Index k = ii + 1; k < ii + len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
@@ -463,4 +465,3 @@ struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LUT_H
-
diff --git a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
index 11706cebabd..2036922d69c 100644
--- a/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
+++ b/extern/Eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
@@ -120,7 +120,7 @@ public:
RealScalar tolerance() const { return m_tolerance; }
/** Sets the tolerance threshold used by the stopping criteria */
- Derived& setTolerance(RealScalar tolerance)
+ Derived& setTolerance(const RealScalar& tolerance)
{
m_tolerance = tolerance;
return derived();