Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen3/Eigen/src/QR/FullPivHouseholderQR.h')
-rw-r--r--extern/Eigen3/Eigen/src/QR/FullPivHouseholderQR.h546
1 files changed, 546 insertions, 0 deletions
diff --git a/extern/Eigen3/Eigen/src/QR/FullPivHouseholderQR.h b/extern/Eigen3/Eigen/src/QR/FullPivHouseholderQR.h
new file mode 100644
index 00000000000..dde3013be9d
--- /dev/null
+++ b/extern/Eigen3/Eigen/src/QR/FullPivHouseholderQR.h
@@ -0,0 +1,546 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
+#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
+
+/** \ingroup QR_Module
+ *
+ * \class FullPivHouseholderQR
+ *
+ * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
+ *
+ * \param MatrixType the type of the matrix of which we are computing the QR decomposition
+ *
+ * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
+ * such that
+ * \f[
+ * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
+ * \f]
+ * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
+ * upper triangular matrix.
+ *
+ * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
+ * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
+ *
+ * \sa MatrixBase::fullPivHouseholderQr()
+ */
+template<typename _MatrixType> class FullPivHouseholderQR
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
+ typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+ typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
+
+ /** \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
+ */
+ FullPivHouseholderQR()
+ : m_qr(),
+ m_hCoeffs(),
+ m_rows_transpositions(),
+ m_cols_transpositions(),
+ m_cols_permutation(),
+ m_temp(),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa FullPivHouseholderQR()
+ */
+ FullPivHouseholderQR(Index rows, Index cols)
+ : m_qr(rows, cols),
+ m_hCoeffs((std::min)(rows,cols)),
+ m_rows_transpositions(rows),
+ m_cols_transpositions(cols),
+ m_cols_permutation(cols),
+ m_temp((std::min)(rows,cols)),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ FullPivHouseholderQR(const MatrixType& matrix)
+ : m_qr(matrix.rows(), matrix.cols()),
+ m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_rows_transpositions(matrix.rows()),
+ m_cols_transpositions(matrix.cols()),
+ m_cols_permutation(matrix.cols()),
+ m_temp((std::min)(matrix.rows(), matrix.cols())),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+ {
+ compute(matrix);
+ }
+
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the QR decomposition, if any exists.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \returns a solution.
+ *
+ * \note The case where b is a matrix is not yet implemented. Also, this
+ * code is space inefficient.
+ *
+ * \note_about_checking_solutions
+ *
+ * \note_about_arbitrary_choice_of_solution
+ *
+ * Example: \include FullPivHouseholderQR_solve.cpp
+ * Output: \verbinclude FullPivHouseholderQR_solve.out
+ */
+ template<typename Rhs>
+ inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
+ }
+
+ MatrixQType matrixQ(void) const;
+
+ /** \returns a reference to the matrix where the Householder QR decomposition is stored
+ */
+ const MatrixType& matrixQR() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_qr;
+ }
+
+ FullPivHouseholderQR& compute(const MatrixType& matrix);
+
+ const PermutationType& colsPermutation() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_cols_permutation;
+ }
+
+ const IntColVectorType& rowsTranspositions() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_rows_transpositions;
+ }
+
+ /** \returns the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar absDeterminant() const;
+
+ /** \returns the natural log of the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note This method is useful to work around the risk of overflow/underflow that's inherent
+ * to determinant computation.
+ *
+ * \sa absDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar logAbsDeterminant() const;
+
+ /** \returns the rank of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index rank() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
+ Index result = 0;
+ for(Index i = 0; i < m_nonzero_pivots; ++i)
+ result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold);
+ return result;
+ }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index dimensionOfKernel() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return cols() - rank();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return rank() == cols();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return rank() == rows();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return isInjective() && isSurjective();
+ }
+
+ /** \returns the inverse of the matrix of which *this is the QR decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ */ inline const
+ internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
+ inverse() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
+ (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
+ }
+
+ inline Index rows() const { return m_qr.rows(); }
+ inline Index cols() const { return m_qr.cols(); }
+ const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
+ * QR decomposition itself.
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this
+ * uses a formula to automatically determine a reasonable threshold.
+ * Once you have called the present method setThreshold(const RealScalar&),
+ * your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
+ */
+ FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
+ {
+ m_usePrescribedThreshold = true;
+ m_prescribedThreshold = threshold;
+ return *this;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
+ * determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code qr.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ FullPivHouseholderQR& setThreshold(Default_t)
+ {
+ m_usePrescribedThreshold = false;
+ return *this;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const
+ {
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
+ return m_usePrescribedThreshold ? m_prescribedThreshold
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
+ // and turns out to be identical to Higham's formula used already in LDLt.
+ : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
+ }
+
+ /** \returns the number of nonzero pivots in the QR decomposition.
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
+ * So that notion isn't really intrinsically interesting, but it is
+ * still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline Index nonzeroPivots() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return m_nonzero_pivots;
+ }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of U.
+ */
+ RealScalar maxPivot() const { return m_maxpivot; }
+
+ protected:
+ MatrixType m_qr;
+ HCoeffsType m_hCoeffs;
+ IntColVectorType m_rows_transpositions;
+ IntRowVectorType m_cols_transpositions;
+ PermutationType m_cols_permutation;
+ RowVectorType m_temp;
+ bool m_isInitialized, m_usePrescribedThreshold;
+ RealScalar m_prescribedThreshold, m_maxpivot;
+ Index m_nonzero_pivots;
+ RealScalar m_precision;
+ Index m_det_pq;
+};
+
+template<typename MatrixType>
+typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
+{
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return internal::abs(m_qr.diagonal().prod());
+}
+
+template<typename MatrixType>
+typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
+{
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return m_qr.diagonal().cwiseAbs().array().log().sum();
+}
+
+template<typename MatrixType>
+FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
+{
+ Index rows = matrix.rows();
+ Index cols = matrix.cols();
+ Index size = (std::min)(rows,cols);
+
+ m_qr = matrix;
+ m_hCoeffs.resize(size);
+
+ m_temp.resize(cols);
+
+ m_precision = NumTraits<Scalar>::epsilon() * size;
+
+ m_rows_transpositions.resize(matrix.rows());
+ m_cols_transpositions.resize(matrix.cols());
+ Index number_of_transpositions = 0;
+
+ RealScalar biggest(0);
+
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
+ m_maxpivot = RealScalar(0);
+
+ for (Index k = 0; k < size; ++k)
+ {
+ Index row_of_biggest_in_corner, col_of_biggest_in_corner;
+ RealScalar biggest_in_corner;
+
+ biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
+ .cwiseAbs()
+ .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
+ row_of_biggest_in_corner += k;
+ col_of_biggest_in_corner += k;
+ if(k==0) biggest = biggest_in_corner;
+
+ // if the corner is negligible, then we have less than full rank, and we can finish early
+ if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
+ {
+ m_nonzero_pivots = k;
+ for(Index i = k; i < size; i++)
+ {
+ m_rows_transpositions.coeffRef(i) = i;
+ m_cols_transpositions.coeffRef(i) = i;
+ m_hCoeffs.coeffRef(i) = Scalar(0);
+ }
+ break;
+ }
+
+ m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
+ m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
+ if(k != row_of_biggest_in_corner) {
+ m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
+ ++number_of_transpositions;
+ }
+ if(k != col_of_biggest_in_corner) {
+ m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+
+ RealScalar beta;
+ m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
+ m_qr.coeffRef(k,k) = beta;
+
+ // remember the maximum absolute value of diagonal coefficients
+ if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta);
+
+ m_qr.bottomRightCorner(rows-k, cols-k-1)
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
+ }
+
+ m_cols_permutation.setIdentity(cols);
+ for(Index k = 0; k < size; ++k)
+ m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+ m_isInitialized = true;
+
+ return *this;
+}
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
+ : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
+{
+ EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ const Index rows = dec().rows(), cols = dec().cols();
+ eigen_assert(rhs().rows() == rows);
+
+ // FIXME introduce nonzeroPivots() and use it here. and more generally,
+ // make the same improvements in this dec as in FullPivLU.
+ if(dec().rank()==0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename Rhs::PlainObject c(rhs());
+
+ Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
+ for (Index k = 0; k < dec().rank(); ++k)
+ {
+ Index remainingSize = rows-k;
+ c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
+ c.bottomRightCorner(remainingSize, rhs().cols())
+ .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
+ dec().hCoeffs().coeff(k), &temp.coeffRef(0));
+ }
+
+ if(!dec().isSurjective())
+ {
+ // is c is in the image of R ?
+ RealScalar biggest_in_upper_part_of_c = c.topRows( dec().rank() ).cwiseAbs().maxCoeff();
+ RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
+ // FIXME brain dead
+ const RealScalar m_precision = NumTraits<Scalar>::epsilon() * (std::min)(rows,cols);
+ // this internal:: prefix is needed by at least gcc 3.4 and ICC
+ if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
+ return;
+ }
+ dec().matrixQR()
+ .topLeftCorner(dec().rank(), dec().rank())
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(dec().rank()));
+
+ for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
+ for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
+ }
+};
+
+} // end namespace internal
+
+/** \returns the matrix Q */
+template<typename MatrixType>
+typename FullPivHouseholderQR<MatrixType>::MatrixQType FullPivHouseholderQR<MatrixType>::matrixQ() const
+{
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ // compute the product H'_0 H'_1 ... H'_n-1,
+ // where H_k is the k-th Householder transformation I - h_k v_k v_k'
+ // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
+ Index rows = m_qr.rows();
+ Index cols = m_qr.cols();
+ Index size = (std::min)(rows,cols);
+ MatrixQType res = MatrixQType::Identity(rows, rows);
+ Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
+ for (Index k = size-1; k >= 0; k--)
+ {
+ res.block(k, k, rows-k, rows-k)
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), internal::conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
+ res.row(k).swap(res.row(m_rows_transpositions.coeff(k)));
+ }
+ return res;
+}
+
+/** \return the full-pivoting Householder QR decomposition of \c *this.
+ *
+ * \sa class FullPivHouseholderQR
+ */
+template<typename Derived>
+const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::fullPivHouseholderQr() const
+{
+ return FullPivHouseholderQR<PlainObject>(eval());
+}
+
+#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H