Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h')
-rw-r--r--extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h651
1 files changed, 651 insertions, 0 deletions
diff --git a/extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h b/extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h
new file mode 100644
index 00000000000..0e175ec6e71
--- /dev/null
+++ b/extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h
@@ -0,0 +1,651 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_SPARSEMATRIX_H
+#define EIGEN_SPARSEMATRIX_H
+
+/** \ingroup Sparse_Module
+ *
+ * \class SparseMatrix
+ *
+ * \brief The main sparse matrix class
+ *
+ * This class implements a sparse matrix using the very common compressed row/column storage
+ * scheme.
+ *
+ * \tparam _Scalar the scalar type, i.e. the type of the coefficients
+ * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
+ * is RowMajor. The default is 0 which means column-major.
+ * \tparam _Index the type of the indices. Default is \c int.
+ *
+ * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
+ */
+
+namespace internal {
+template<typename _Scalar, int _Options, typename _Index>
+struct traits<SparseMatrix<_Scalar, _Options, _Index> >
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef Sparse StorageKind;
+ typedef MatrixXpr XprKind;
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ Flags = _Options | NestByRefBit | LvalueBit,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ SupportedAccessPatterns = InnerRandomAccessPattern
+ };
+};
+
+} // end namespace internal
+
+template<typename _Scalar, int _Options, typename _Index>
+class SparseMatrix
+ : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
+{
+ public:
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
+// using Base::operator=;
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
+ // FIXME: why are these operator already alvailable ???
+ // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, *=)
+ // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, /=)
+
+ typedef MappedSparseMatrix<Scalar,Flags> Map;
+ using Base::IsRowMajor;
+ typedef CompressedStorage<Scalar,Index> Storage;
+ enum {
+ Options = _Options
+ };
+
+ protected:
+
+ typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
+
+ Index m_outerSize;
+ Index m_innerSize;
+ Index* m_outerIndex;
+ CompressedStorage<Scalar,Index> m_data;
+
+ public:
+
+ inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
+ inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
+
+ inline Index innerSize() const { return m_innerSize; }
+ inline Index outerSize() const { return m_outerSize; }
+ inline Index innerNonZeros(Index j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
+
+ inline const Scalar* _valuePtr() const { return &m_data.value(0); }
+ inline Scalar* _valuePtr() { return &m_data.value(0); }
+
+ inline const Index* _innerIndexPtr() const { return &m_data.index(0); }
+ inline Index* _innerIndexPtr() { return &m_data.index(0); }
+
+ inline const Index* _outerIndexPtr() const { return m_outerIndex; }
+ inline Index* _outerIndexPtr() { return m_outerIndex; }
+
+ inline Storage& data() { return m_data; }
+ inline const Storage& data() const { return m_data; }
+
+ inline Scalar coeff(Index row, Index col) const
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+ return m_data.atInRange(m_outerIndex[outer], m_outerIndex[outer+1], inner);
+ }
+
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index start = m_outerIndex[outer];
+ Index end = m_outerIndex[outer+1];
+ eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
+ eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
+ const Index p = m_data.searchLowerIndex(start,end-1,inner);
+ eigen_assert((p<end) && (m_data.index(p)==inner) && "coeffRef cannot be called on a zero coefficient");
+ return m_data.value(p);
+ }
+
+ public:
+
+ class InnerIterator;
+
+ /** Removes all non zeros */
+ inline void setZero()
+ {
+ m_data.clear();
+ memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
+ }
+
+ /** \returns the number of non zero coefficients */
+ inline Index nonZeros() const { return static_cast<Index>(m_data.size()); }
+
+ /** Preallocates \a reserveSize non zeros */
+ inline void reserve(Index reserveSize)
+ {
+ m_data.reserve(reserveSize);
+ }
+
+ //--- low level purely coherent filling ---
+
+ /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
+ * - the nonzero does not already exist
+ * - the new coefficient is the last one according to the storage order
+ *
+ * Before filling a given inner vector you must call the statVec(Index) function.
+ *
+ * After an insertion session, you should call the finalize() function.
+ *
+ * \sa insert, insertBackByOuterInner, startVec */
+ inline Scalar& insertBack(Index row, Index col)
+ {
+ return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
+ }
+
+ /** \sa insertBack, startVec */
+ inline Scalar& insertBackByOuterInner(Index outer, Index inner)
+ {
+ eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
+ eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
+ Index p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+ m_data.append(0, inner);
+ return m_data.value(p);
+ }
+
+ /** \warning use it only if you know what you are doing */
+ inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
+ {
+ Index p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+ m_data.append(0, inner);
+ return m_data.value(p);
+ }
+
+ /** \sa insertBack, insertBackByOuterInner */
+ inline void startVec(Index outer)
+ {
+ eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially");
+ eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
+ m_outerIndex[outer+1] = m_outerIndex[outer];
+ }
+
+ //---
+
+ /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
+ * The non zero coefficient must \b not already exist.
+ *
+ * \warning This function can be extremely slow if the non zero coefficients
+ * are not inserted in a coherent order.
+ *
+ * After an insertion session, you should call the finalize() function.
+ */
+ EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index previousOuter = outer;
+ if (m_outerIndex[outer+1]==0)
+ {
+ // we start a new inner vector
+ while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
+ {
+ m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
+ --previousOuter;
+ }
+ m_outerIndex[outer+1] = m_outerIndex[outer];
+ }
+
+ // here we have to handle the tricky case where the outerIndex array
+ // starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
+ // the 2nd inner vector...
+ bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
+ && (size_t(m_outerIndex[outer+1]) == m_data.size());
+
+ size_t startId = m_outerIndex[outer];
+ // FIXME let's make sure sizeof(long int) == sizeof(size_t)
+ size_t p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+
+ float reallocRatio = 1;
+ if (m_data.allocatedSize()<=m_data.size())
+ {
+ // if there is no preallocated memory, let's reserve a minimum of 32 elements
+ if (m_data.size()==0)
+ {
+ m_data.reserve(32);
+ }
+ else
+ {
+ // we need to reallocate the data, to reduce multiple reallocations
+ // we use a smart resize algorithm based on the current filling ratio
+ // in addition, we use float to avoid integers overflows
+ float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
+ reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
+ // furthermore we bound the realloc ratio to:
+ // 1) reduce multiple minor realloc when the matrix is almost filled
+ // 2) avoid to allocate too much memory when the matrix is almost empty
+ reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
+ }
+ }
+ m_data.resize(m_data.size()+1,reallocRatio);
+
+ if (!isLastVec)
+ {
+ if (previousOuter==-1)
+ {
+ // oops wrong guess.
+ // let's correct the outer offsets
+ for (Index k=0; k<=(outer+1); ++k)
+ m_outerIndex[k] = 0;
+ Index k=outer+1;
+ while(m_outerIndex[k]==0)
+ m_outerIndex[k++] = 1;
+ while (k<=m_outerSize && m_outerIndex[k]!=0)
+ m_outerIndex[k++]++;
+ p = 0;
+ --k;
+ k = m_outerIndex[k]-1;
+ while (k>0)
+ {
+ m_data.index(k) = m_data.index(k-1);
+ m_data.value(k) = m_data.value(k-1);
+ k--;
+ }
+ }
+ else
+ {
+ // we are not inserting into the last inner vec
+ // update outer indices:
+ Index j = outer+2;
+ while (j<=m_outerSize && m_outerIndex[j]!=0)
+ m_outerIndex[j++]++;
+ --j;
+ // shift data of last vecs:
+ Index k = m_outerIndex[j]-1;
+ while (k>=Index(p))
+ {
+ m_data.index(k) = m_data.index(k-1);
+ m_data.value(k) = m_data.value(k-1);
+ k--;
+ }
+ }
+ }
+
+ while ( (p > startId) && (m_data.index(p-1) > inner) )
+ {
+ m_data.index(p) = m_data.index(p-1);
+ m_data.value(p) = m_data.value(p-1);
+ --p;
+ }
+
+ m_data.index(p) = inner;
+ return (m_data.value(p) = 0);
+ }
+
+
+
+
+ /** Must be called after inserting a set of non zero entries.
+ */
+ inline void finalize()
+ {
+ Index size = static_cast<Index>(m_data.size());
+ Index i = m_outerSize;
+ // find the last filled column
+ while (i>=0 && m_outerIndex[i]==0)
+ --i;
+ ++i;
+ while (i<=m_outerSize)
+ {
+ m_outerIndex[i] = size;
+ ++i;
+ }
+ }
+
+ /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
+ void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ prune(default_prunning_func(reference,epsilon));
+ }
+
+ /** Suppress all nonzeros which do not satisfy the predicate \a keep.
+ * The functor type \a KeepFunc must implement the following function:
+ * \code
+ * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
+ * \endcode
+ * \sa prune(Scalar,RealScalar)
+ */
+ template<typename KeepFunc>
+ void prune(const KeepFunc& keep = KeepFunc())
+ {
+ Index k = 0;
+ for(Index j=0; j<m_outerSize; ++j)
+ {
+ Index previousStart = m_outerIndex[j];
+ m_outerIndex[j] = k;
+ Index end = m_outerIndex[j+1];
+ for(Index i=previousStart; i<end; ++i)
+ {
+ if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
+ {
+ m_data.value(k) = m_data.value(i);
+ m_data.index(k) = m_data.index(i);
+ ++k;
+ }
+ }
+ }
+ m_outerIndex[m_outerSize] = k;
+ m_data.resize(k,0);
+ }
+
+ /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
+ * \sa resizeNonZeros(Index), reserve(), setZero()
+ */
+ void resize(Index rows, Index cols)
+ {
+ const Index outerSize = IsRowMajor ? rows : cols;
+ m_innerSize = IsRowMajor ? cols : rows;
+ m_data.clear();
+ if (m_outerSize != outerSize || m_outerSize==0)
+ {
+ delete[] m_outerIndex;
+ m_outerIndex = new Index [outerSize+1];
+ m_outerSize = outerSize;
+ }
+ memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
+ }
+
+ /** Low level API
+ * Resize the nonzero vector to \a size */
+ void resizeNonZeros(Index size)
+ {
+ m_data.resize(size);
+ }
+
+ /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
+ inline SparseMatrix()
+ : m_outerSize(-1), m_innerSize(0), m_outerIndex(0)
+ {
+ resize(0, 0);
+ }
+
+ /** Constructs a \a rows \c x \a cols empty matrix */
+ inline SparseMatrix(Index rows, Index cols)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
+ {
+ resize(rows, cols);
+ }
+
+ /** Constructs a sparse matrix from the sparse expression \a other */
+ template<typename OtherDerived>
+ inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
+ {
+ *this = other.derived();
+ }
+
+ /** Copy constructor */
+ inline SparseMatrix(const SparseMatrix& other)
+ : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0)
+ {
+ *this = other.derived();
+ }
+
+ /** Swap the content of two sparse matrices of same type (optimization) */
+ inline void swap(SparseMatrix& other)
+ {
+ //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
+ std::swap(m_outerIndex, other.m_outerIndex);
+ std::swap(m_innerSize, other.m_innerSize);
+ std::swap(m_outerSize, other.m_outerSize);
+ m_data.swap(other.m_data);
+ }
+
+ inline SparseMatrix& operator=(const SparseMatrix& other)
+ {
+// std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
+ if (other.isRValue())
+ {
+ swap(other.const_cast_derived());
+ }
+ else
+ {
+ resize(other.rows(), other.cols());
+ memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
+ m_data = other.m_data;
+ }
+ return *this;
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename Lhs, typename Rhs>
+ inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
+ { return Base::operator=(product); }
+
+ template<typename OtherDerived>
+ inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
+ { return Base::operator=(other); }
+
+ template<typename OtherDerived>
+ inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
+ { return Base::operator=(other); }
+ #endif
+
+ template<typename OtherDerived>
+ EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
+ {
+ const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
+ if (needToTranspose)
+ {
+ // two passes algorithm:
+ // 1 - compute the number of coeffs per dest inner vector
+ // 2 - do the actual copy/eval
+ // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
+ typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
+ typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
+ OtherCopy otherCopy(other.derived());
+
+ resize(other.rows(), other.cols());
+ Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero();
+ // pass 1
+ // FIXME the above copy could be merged with that pass
+ for (Index j=0; j<otherCopy.outerSize(); ++j)
+ for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
+ ++m_outerIndex[it.index()];
+
+ // prefix sum
+ Index count = 0;
+ VectorXi positions(outerSize());
+ for (Index j=0; j<outerSize(); ++j)
+ {
+ Index tmp = m_outerIndex[j];
+ m_outerIndex[j] = count;
+ positions[j] = count;
+ count += tmp;
+ }
+ m_outerIndex[outerSize()] = count;
+ // alloc
+ m_data.resize(count);
+ // pass 2
+ for (Index j=0; j<otherCopy.outerSize(); ++j)
+ {
+ for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
+ {
+ Index pos = positions[it.index()]++;
+ m_data.index(pos) = j;
+ m_data.value(pos) = it.value();
+ }
+ }
+ return *this;
+ }
+ else
+ {
+ // there is no special optimization
+ return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
+ }
+ }
+
+ friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
+ {
+ EIGEN_DBG_SPARSE(
+ s << "Nonzero entries:\n";
+ for (Index i=0; i<m.nonZeros(); ++i)
+ {
+ s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
+ }
+ s << std::endl;
+ s << std::endl;
+ s << "Column pointers:\n";
+ for (Index i=0; i<m.outerSize(); ++i)
+ {
+ s << m.m_outerIndex[i] << " ";
+ }
+ s << " $" << std::endl;
+ s << std::endl;
+ );
+ s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
+ return s;
+ }
+
+ /** Destructor */
+ inline ~SparseMatrix()
+ {
+ delete[] m_outerIndex;
+ }
+
+ /** Overloaded for performance */
+ Scalar sum() const;
+
+ public:
+
+ /** \deprecated use setZero() and reserve()
+ * Initializes the filling process of \c *this.
+ * \param reserveSize approximate number of nonzeros
+ * Note that the matrix \c *this is zero-ed.
+ */
+ EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
+ {
+ setZero();
+ m_data.reserve(reserveSize);
+ }
+
+ /** \deprecated use insert()
+ * Like fill() but with random inner coordinates.
+ */
+ EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
+ {
+ return insert(row,col);
+ }
+
+ /** \deprecated use insert()
+ */
+ EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ if (m_outerIndex[outer+1]==0)
+ {
+ // we start a new inner vector
+ Index i = outer;
+ while (i>=0 && m_outerIndex[i]==0)
+ {
+ m_outerIndex[i] = m_data.size();
+ --i;
+ }
+ m_outerIndex[outer+1] = m_outerIndex[outer];
+ }
+ else
+ {
+ eigen_assert(m_data.index(m_data.size()-1)<inner && "wrong sorted insertion");
+ }
+// std::cerr << size_t(m_outerIndex[outer+1]) << " == " << m_data.size() << "\n";
+ assert(size_t(m_outerIndex[outer+1]) == m_data.size());
+ Index p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+
+ m_data.append(0, inner);
+ return m_data.value(p);
+ }
+
+ /** \deprecated use finalize */
+ EIGEN_DEPRECATED void endFill() { finalize(); }
+
+# ifdef EIGEN_SPARSEMATRIX_PLUGIN
+# include EIGEN_SPARSEMATRIX_PLUGIN
+# endif
+
+private:
+ struct default_prunning_func {
+ default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {}
+ inline bool operator() (const Index&, const Index&, const Scalar& value) const
+ {
+ return !internal::isMuchSmallerThan(value, reference, epsilon);
+ }
+ Scalar reference;
+ RealScalar epsilon;
+ };
+};
+
+template<typename Scalar, int _Options, typename _Index>
+class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
+{
+ public:
+ InnerIterator(const SparseMatrix& mat, Index outer)
+ : m_values(mat._valuePtr()), m_indices(mat._innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer]), m_end(mat.m_outerIndex[outer+1])
+ {}
+
+ inline InnerIterator& operator++() { m_id++; return *this; }
+
+ inline const Scalar& value() const { return m_values[m_id]; }
+ inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
+
+ inline Index index() const { return m_indices[m_id]; }
+ inline Index outer() const { return m_outer; }
+ inline Index row() const { return IsRowMajor ? m_outer : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer; }
+
+ inline operator bool() const { return (m_id < m_end); }
+
+ protected:
+ const Scalar* m_values;
+ const Index* m_indices;
+ const Index m_outer;
+ Index m_id;
+ const Index m_end;
+};
+
+#endif // EIGEN_SPARSEMATRIX_H