Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h')
-rw-r--r--extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h651
1 files changed, 0 insertions, 651 deletions
diff --git a/extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h b/extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h
deleted file mode 100644
index 0e175ec6e71..00000000000
--- a/extern/Eigen3/Eigen/src/Sparse/SparseMatrix.h
+++ /dev/null
@@ -1,651 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_SPARSEMATRIX_H
-#define EIGEN_SPARSEMATRIX_H
-
-/** \ingroup Sparse_Module
- *
- * \class SparseMatrix
- *
- * \brief The main sparse matrix class
- *
- * This class implements a sparse matrix using the very common compressed row/column storage
- * scheme.
- *
- * \tparam _Scalar the scalar type, i.e. the type of the coefficients
- * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
- * is RowMajor. The default is 0 which means column-major.
- * \tparam _Index the type of the indices. Default is \c int.
- *
- * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
- */
-
-namespace internal {
-template<typename _Scalar, int _Options, typename _Index>
-struct traits<SparseMatrix<_Scalar, _Options, _Index> >
-{
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = _Options | NestByRefBit | LvalueBit,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- SupportedAccessPatterns = InnerRandomAccessPattern
- };
-};
-
-} // end namespace internal
-
-template<typename _Scalar, int _Options, typename _Index>
-class SparseMatrix
- : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
-{
- public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
-// using Base::operator=;
- EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
- EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
- // FIXME: why are these operator already alvailable ???
- // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, *=)
- // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, /=)
-
- typedef MappedSparseMatrix<Scalar,Flags> Map;
- using Base::IsRowMajor;
- typedef CompressedStorage<Scalar,Index> Storage;
- enum {
- Options = _Options
- };
-
- protected:
-
- typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
-
- Index m_outerSize;
- Index m_innerSize;
- Index* m_outerIndex;
- CompressedStorage<Scalar,Index> m_data;
-
- public:
-
- inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
- inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
-
- inline Index innerSize() const { return m_innerSize; }
- inline Index outerSize() const { return m_outerSize; }
- inline Index innerNonZeros(Index j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
-
- inline const Scalar* _valuePtr() const { return &m_data.value(0); }
- inline Scalar* _valuePtr() { return &m_data.value(0); }
-
- inline const Index* _innerIndexPtr() const { return &m_data.index(0); }
- inline Index* _innerIndexPtr() { return &m_data.index(0); }
-
- inline const Index* _outerIndexPtr() const { return m_outerIndex; }
- inline Index* _outerIndexPtr() { return m_outerIndex; }
-
- inline Storage& data() { return m_data; }
- inline const Storage& data() const { return m_data; }
-
- inline Scalar coeff(Index row, Index col) const
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- return m_data.atInRange(m_outerIndex[outer], m_outerIndex[outer+1], inner);
- }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index start = m_outerIndex[outer];
- Index end = m_outerIndex[outer+1];
- eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
- eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
- const Index p = m_data.searchLowerIndex(start,end-1,inner);
- eigen_assert((p<end) && (m_data.index(p)==inner) && "coeffRef cannot be called on a zero coefficient");
- return m_data.value(p);
- }
-
- public:
-
- class InnerIterator;
-
- /** Removes all non zeros */
- inline void setZero()
- {
- m_data.clear();
- memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
- }
-
- /** \returns the number of non zero coefficients */
- inline Index nonZeros() const { return static_cast<Index>(m_data.size()); }
-
- /** Preallocates \a reserveSize non zeros */
- inline void reserve(Index reserveSize)
- {
- m_data.reserve(reserveSize);
- }
-
- //--- low level purely coherent filling ---
-
- /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
- * - the nonzero does not already exist
- * - the new coefficient is the last one according to the storage order
- *
- * Before filling a given inner vector you must call the statVec(Index) function.
- *
- * After an insertion session, you should call the finalize() function.
- *
- * \sa insert, insertBackByOuterInner, startVec */
- inline Scalar& insertBack(Index row, Index col)
- {
- return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
- }
-
- /** \sa insertBack, startVec */
- inline Scalar& insertBackByOuterInner(Index outer, Index inner)
- {
- eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
- eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
- Index p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
- m_data.append(0, inner);
- return m_data.value(p);
- }
-
- /** \warning use it only if you know what you are doing */
- inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
- {
- Index p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
- m_data.append(0, inner);
- return m_data.value(p);
- }
-
- /** \sa insertBack, insertBackByOuterInner */
- inline void startVec(Index outer)
- {
- eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially");
- eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
- m_outerIndex[outer+1] = m_outerIndex[outer];
- }
-
- //---
-
- /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
- * The non zero coefficient must \b not already exist.
- *
- * \warning This function can be extremely slow if the non zero coefficients
- * are not inserted in a coherent order.
- *
- * After an insertion session, you should call the finalize() function.
- */
- EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index previousOuter = outer;
- if (m_outerIndex[outer+1]==0)
- {
- // we start a new inner vector
- while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
- {
- m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
- --previousOuter;
- }
- m_outerIndex[outer+1] = m_outerIndex[outer];
- }
-
- // here we have to handle the tricky case where the outerIndex array
- // starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
- // the 2nd inner vector...
- bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
- && (size_t(m_outerIndex[outer+1]) == m_data.size());
-
- size_t startId = m_outerIndex[outer];
- // FIXME let's make sure sizeof(long int) == sizeof(size_t)
- size_t p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
-
- float reallocRatio = 1;
- if (m_data.allocatedSize()<=m_data.size())
- {
- // if there is no preallocated memory, let's reserve a minimum of 32 elements
- if (m_data.size()==0)
- {
- m_data.reserve(32);
- }
- else
- {
- // we need to reallocate the data, to reduce multiple reallocations
- // we use a smart resize algorithm based on the current filling ratio
- // in addition, we use float to avoid integers overflows
- float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
- reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
- // furthermore we bound the realloc ratio to:
- // 1) reduce multiple minor realloc when the matrix is almost filled
- // 2) avoid to allocate too much memory when the matrix is almost empty
- reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
- }
- }
- m_data.resize(m_data.size()+1,reallocRatio);
-
- if (!isLastVec)
- {
- if (previousOuter==-1)
- {
- // oops wrong guess.
- // let's correct the outer offsets
- for (Index k=0; k<=(outer+1); ++k)
- m_outerIndex[k] = 0;
- Index k=outer+1;
- while(m_outerIndex[k]==0)
- m_outerIndex[k++] = 1;
- while (k<=m_outerSize && m_outerIndex[k]!=0)
- m_outerIndex[k++]++;
- p = 0;
- --k;
- k = m_outerIndex[k]-1;
- while (k>0)
- {
- m_data.index(k) = m_data.index(k-1);
- m_data.value(k) = m_data.value(k-1);
- k--;
- }
- }
- else
- {
- // we are not inserting into the last inner vec
- // update outer indices:
- Index j = outer+2;
- while (j<=m_outerSize && m_outerIndex[j]!=0)
- m_outerIndex[j++]++;
- --j;
- // shift data of last vecs:
- Index k = m_outerIndex[j]-1;
- while (k>=Index(p))
- {
- m_data.index(k) = m_data.index(k-1);
- m_data.value(k) = m_data.value(k-1);
- k--;
- }
- }
- }
-
- while ( (p > startId) && (m_data.index(p-1) > inner) )
- {
- m_data.index(p) = m_data.index(p-1);
- m_data.value(p) = m_data.value(p-1);
- --p;
- }
-
- m_data.index(p) = inner;
- return (m_data.value(p) = 0);
- }
-
-
-
-
- /** Must be called after inserting a set of non zero entries.
- */
- inline void finalize()
- {
- Index size = static_cast<Index>(m_data.size());
- Index i = m_outerSize;
- // find the last filled column
- while (i>=0 && m_outerIndex[i]==0)
- --i;
- ++i;
- while (i<=m_outerSize)
- {
- m_outerIndex[i] = size;
- ++i;
- }
- }
-
- /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
- void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
- {
- prune(default_prunning_func(reference,epsilon));
- }
-
- /** Suppress all nonzeros which do not satisfy the predicate \a keep.
- * The functor type \a KeepFunc must implement the following function:
- * \code
- * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
- * \endcode
- * \sa prune(Scalar,RealScalar)
- */
- template<typename KeepFunc>
- void prune(const KeepFunc& keep = KeepFunc())
- {
- Index k = 0;
- for(Index j=0; j<m_outerSize; ++j)
- {
- Index previousStart = m_outerIndex[j];
- m_outerIndex[j] = k;
- Index end = m_outerIndex[j+1];
- for(Index i=previousStart; i<end; ++i)
- {
- if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
- {
- m_data.value(k) = m_data.value(i);
- m_data.index(k) = m_data.index(i);
- ++k;
- }
- }
- }
- m_outerIndex[m_outerSize] = k;
- m_data.resize(k,0);
- }
-
- /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
- * \sa resizeNonZeros(Index), reserve(), setZero()
- */
- void resize(Index rows, Index cols)
- {
- const Index outerSize = IsRowMajor ? rows : cols;
- m_innerSize = IsRowMajor ? cols : rows;
- m_data.clear();
- if (m_outerSize != outerSize || m_outerSize==0)
- {
- delete[] m_outerIndex;
- m_outerIndex = new Index [outerSize+1];
- m_outerSize = outerSize;
- }
- memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
- }
-
- /** Low level API
- * Resize the nonzero vector to \a size */
- void resizeNonZeros(Index size)
- {
- m_data.resize(size);
- }
-
- /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
- inline SparseMatrix()
- : m_outerSize(-1), m_innerSize(0), m_outerIndex(0)
- {
- resize(0, 0);
- }
-
- /** Constructs a \a rows \c x \a cols empty matrix */
- inline SparseMatrix(Index rows, Index cols)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
- {
- resize(rows, cols);
- }
-
- /** Constructs a sparse matrix from the sparse expression \a other */
- template<typename OtherDerived>
- inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
- {
- *this = other.derived();
- }
-
- /** Copy constructor */
- inline SparseMatrix(const SparseMatrix& other)
- : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0)
- {
- *this = other.derived();
- }
-
- /** Swap the content of two sparse matrices of same type (optimization) */
- inline void swap(SparseMatrix& other)
- {
- //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
- std::swap(m_outerIndex, other.m_outerIndex);
- std::swap(m_innerSize, other.m_innerSize);
- std::swap(m_outerSize, other.m_outerSize);
- m_data.swap(other.m_data);
- }
-
- inline SparseMatrix& operator=(const SparseMatrix& other)
- {
-// std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
- if (other.isRValue())
- {
- swap(other.const_cast_derived());
- }
- else
- {
- resize(other.rows(), other.cols());
- memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
- m_data = other.m_data;
- }
- return *this;
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename Lhs, typename Rhs>
- inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
- { return Base::operator=(product); }
-
- template<typename OtherDerived>
- inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
- { return Base::operator=(other); }
-
- template<typename OtherDerived>
- inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
- { return Base::operator=(other); }
- #endif
-
- template<typename OtherDerived>
- EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
- {
- const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- if (needToTranspose)
- {
- // two passes algorithm:
- // 1 - compute the number of coeffs per dest inner vector
- // 2 - do the actual copy/eval
- // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
- typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
- typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
- OtherCopy otherCopy(other.derived());
-
- resize(other.rows(), other.cols());
- Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero();
- // pass 1
- // FIXME the above copy could be merged with that pass
- for (Index j=0; j<otherCopy.outerSize(); ++j)
- for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
- ++m_outerIndex[it.index()];
-
- // prefix sum
- Index count = 0;
- VectorXi positions(outerSize());
- for (Index j=0; j<outerSize(); ++j)
- {
- Index tmp = m_outerIndex[j];
- m_outerIndex[j] = count;
- positions[j] = count;
- count += tmp;
- }
- m_outerIndex[outerSize()] = count;
- // alloc
- m_data.resize(count);
- // pass 2
- for (Index j=0; j<otherCopy.outerSize(); ++j)
- {
- for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
- {
- Index pos = positions[it.index()]++;
- m_data.index(pos) = j;
- m_data.value(pos) = it.value();
- }
- }
- return *this;
- }
- else
- {
- // there is no special optimization
- return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
- }
- }
-
- friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
- {
- EIGEN_DBG_SPARSE(
- s << "Nonzero entries:\n";
- for (Index i=0; i<m.nonZeros(); ++i)
- {
- s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
- }
- s << std::endl;
- s << std::endl;
- s << "Column pointers:\n";
- for (Index i=0; i<m.outerSize(); ++i)
- {
- s << m.m_outerIndex[i] << " ";
- }
- s << " $" << std::endl;
- s << std::endl;
- );
- s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
- return s;
- }
-
- /** Destructor */
- inline ~SparseMatrix()
- {
- delete[] m_outerIndex;
- }
-
- /** Overloaded for performance */
- Scalar sum() const;
-
- public:
-
- /** \deprecated use setZero() and reserve()
- * Initializes the filling process of \c *this.
- * \param reserveSize approximate number of nonzeros
- * Note that the matrix \c *this is zero-ed.
- */
- EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
- {
- setZero();
- m_data.reserve(reserveSize);
- }
-
- /** \deprecated use insert()
- * Like fill() but with random inner coordinates.
- */
- EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
- {
- return insert(row,col);
- }
-
- /** \deprecated use insert()
- */
- EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- if (m_outerIndex[outer+1]==0)
- {
- // we start a new inner vector
- Index i = outer;
- while (i>=0 && m_outerIndex[i]==0)
- {
- m_outerIndex[i] = m_data.size();
- --i;
- }
- m_outerIndex[outer+1] = m_outerIndex[outer];
- }
- else
- {
- eigen_assert(m_data.index(m_data.size()-1)<inner && "wrong sorted insertion");
- }
-// std::cerr << size_t(m_outerIndex[outer+1]) << " == " << m_data.size() << "\n";
- assert(size_t(m_outerIndex[outer+1]) == m_data.size());
- Index p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
-
- m_data.append(0, inner);
- return m_data.value(p);
- }
-
- /** \deprecated use finalize */
- EIGEN_DEPRECATED void endFill() { finalize(); }
-
-# ifdef EIGEN_SPARSEMATRIX_PLUGIN
-# include EIGEN_SPARSEMATRIX_PLUGIN
-# endif
-
-private:
- struct default_prunning_func {
- default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {}
- inline bool operator() (const Index&, const Index&, const Scalar& value) const
- {
- return !internal::isMuchSmallerThan(value, reference, epsilon);
- }
- Scalar reference;
- RealScalar epsilon;
- };
-};
-
-template<typename Scalar, int _Options, typename _Index>
-class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
-{
- public:
- InnerIterator(const SparseMatrix& mat, Index outer)
- : m_values(mat._valuePtr()), m_indices(mat._innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer]), m_end(mat.m_outerIndex[outer+1])
- {}
-
- inline InnerIterator& operator++() { m_id++; return *this; }
-
- inline const Scalar& value() const { return m_values[m_id]; }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
-
- inline Index index() const { return m_indices[m_id]; }
- inline Index outer() const { return m_outer; }
- inline Index row() const { return IsRowMajor ? m_outer : index(); }
- inline Index col() const { return IsRowMajor ? index() : m_outer; }
-
- inline operator bool() const { return (m_id < m_end); }
-
- protected:
- const Scalar* m_values;
- const Index* m_indices;
- const Index m_outer;
- Index m_id;
- const Index m_end;
-};
-
-#endif // EIGEN_SPARSEMATRIX_H